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ABSTRACT

A coaxial line having a small aperture in the outer-
sheath and terminating in arbitrary impedances is considered
to be illuminated by an incident plane wave. The exci-
tation of currents in the termination impedances is
shown to depend upon three independent factors. Simple
analytical forms are given for equivalent voltage and

current sources of the aperture excitation.

coaxial transmission lines, shielding




INTRODUCTION

The field that penetrates a small aperture in an
electromagnetic shield is studied in a recent interaction
note.l The problem is of interest since a time varying
field penetrating the aperture may excite unwanted
currents in the shielded region. In general this presents
a formidable electromagnetic boundary value problem.
However, various aspects of the problem may be studied
by considering simple geometrical configurations. This
paper is concerned with such a simplification, the
excitation of a coaxial line through a small aperture
in the sheath.

In an earlier interaction note small aperture
diffraction theory is used to determine the penetration
field.1 This field is shown to be proportional to the
current and charge densities that would exist in the
region of the aperture if it were electrically shorted.
Furthermore, it is shown that the penetration field has
the same spacial dependence as static electric and
magnetic dipoles except when the operating frequency
is very near the frequency for a cavity mode of the

shield interior.

1Superscripts refer to the list of references at
the end of this paper.
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Recently the excitation of a coaxial line through
a small aperfure was studied by Harrison and King.2 The
resulting formulation involved an application of the
reciprocal theorem. Their approximations are discussed
in detail ahd compared with those of the formulation
presented here.

The excitation of currents in a coaxial line
through a small aperture in the sheath is shown to
depend upon three independent factors: (1) the external
currents and charges on the sheath, (2) the aperture
configuration, and (3) the interior configuration of
the coaxial line. Furthermore it is shown that equiva-
lent voltage and current sources may be defined for the
excitation of transmission line currents. Simple analytical
forms are derived for these sources and a physical
interpretation is given for the resulting expressions.

Sample numerical calculations are given to illustrate

the application of the presented formulas.



ANALYSIS

A coaxial line with a small aperture cut in its
sheath and impedances connected in series with the inner
conductor at its ends is shown in Figure 1. Illuminating
the exterior of the coaxial line is a plane wave as
shown. Further the coaxial line is considered to be thin
in order that the usual antenna theory may be applied to
determine the exterior current and charge densities on
the coaxial sheath. Under this condition the current
on the sheath is essentially axial. The center of the
aperture is located at (d,o,zo) and the sheath extends

0 to z = s.

from z

The axial electric field that penetrates the
aperture and drives the coaxial line may be obtained

. . . 1 .
from an earlier interaction note. It is
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Here PO and MO are the equivalent electric and magnetic
dipole moments, respectively, of the aperture. For the
aperture shown the electric dipole is directed along the
y axis and the magnetic dipole along the x axis. The

dipole moments depend upon two independent factors, the

external charges and currents and the aperture configuration.

Dipole Moments and the Impressed Field

The effective (or equivalent) dipole moment of the
field distribution in a small aperture are related to

the field components that would exist at the position

of the aperture if the aperture were shorted.l’3 That is
> >
MO = g Ho
N N (3)
PO = € o Eo

where o is a dyadic depending upon the aperture geometry
and (Eo’;o)lis the electromagnetic field at the position
of the aperture if it were shorted.

Often it is more convenient to express the field
components at the position of the aperture in terms of
the surface current and charge densities. For the case
of a coaxial cable with a small aperture, the total axial

current on the exterior surface of the sheath may be

readily obtained. If the cable is thin compared with
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wavelength then only the axial surface currcnt need be

considered. Hence

> IiXt(zoj ~
Mo = %xx 2mb X
. (4)
t .
> p°% (zy) =
Po = Svy 27D Y

/

ext (z )

where IZ o is the total external axial current at

the z = z, cross section of the cable and pext

(zo) is
the charge per unit length along the external surface of
the coaxial cable. Also Oy and uyy are the indicated

elements of the dyadic ao. From the equation of continuity

of charge

ext
(

0¥tz = L L 19z ) (5)

O Z (e]

The current distribution along a finite cylinder
illuminated by an incident plane wave may be determined
using standard techniques. For relatively short cylinders,
ks < 4w, and broadside incidence the one term approximation
of King4 may be used

47 E;nc cos k(z-s/2) - cos ks/2 (6)
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where

s/2
Yoy = (1-cos ks/Z)-1 dz'(cos k2 -cos ks/2)
'5/2 1 1
«[K(0,z )-K(s/2,z )]
s/2
WU = dz'(cos kz'-cos ks/2) K(s/Z,z')
-s/2

K(z,z ) = exp[-jk/(z-2z )% + b%] / /(z-2 )% + b%

O0f course the charge per unit length may be obtained by

differentiating (6) according to (5).

Dipole Moments and the Aperture Configuration.

The elements at the dyadic o depend entirely upon
the aperture configuration. But analytical expressions
for these elements have been obtained only for the
elliptical aperture in an infinite plane.1 The non :zero

elements are

3 2
3 _ o 21 e -
XX 3 XD E(eD )
3 2
) L 1-
a_ . = LU e (8)
Yy 3 E(ez)
3 2, 2
. _ o 21 (1-e%)e (9)
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where K(ez) and E(ez) are complete elliptic integrals5
of the first and second kinds, 21 is the length of the
semimajor axis and e is the eccentricity of the ellipse%
In (7) and (9) the major axis is considered aligned with
the x axis otherwise the expressions would be reversed
with the major axis aligned with the z axis.

Dyadic elements for more general aperture shapes

1 And for elliptical apertures in

must be approximated.
curved surfaces (7)-(9) remain valid provided 21 << radius

of curvature of the surface.

Interior Line EBxcitation

The aperture radiates into the interior of the coaxial
line. That is, a distributed voltage is applied to the

coaxial line. Along the inner conductor the differential

applied voltage at the z cross section is6

dVi(z) = - EZ(O,b,z)dz ' (10)

And the differential voltage applied to the sheath of

the coaxial line at the cross section z is
1
dVO(z) = - > [ % Ez (x,y,z)d]ldz , (11)
C

where C is the contour about the inner surface of the sheath

at the cross section z. Applying a simple change of

“The eccentricity is e = (1+(31/22)2)%
‘ 8-




variable (11) becomes

™

o1
dvg(z) = - 7 [ EZ(Zb sin¢ cos¢, 2b sin2¢, z)deldz
0 (12)

The differential voltage driving the transmission

line mode is
dv(z) = dVi(z) - dVO(z) (13)

Using (1), (10) and (12) in (13) yields

nk%Mo
dv(z) = T [gz(Z) -] gscz)]dz
3
k P0
T Ime [gz(z) -3 3 g4(z) -3 gs(z)]k(z~zo)dz (14)
where
T -3k/(z-2) “+ab? sin®y
_ 2kb e .2
g, (2) - Ve sin“¢

[(z-24) 2+4b% sin?g]

-jk/%z—zo)2+b2
e

dé (15)
n/2
[(2—20)2+4b2 sin2¢]



It is noted that the {g (z)} functions are sharply peaked
about z = Zg- Whereas gz(z), gs(z)(z-zo), and g4(z)
(z—zo) are all bounded, both g3(z) and gs(z)(z-zo) possess
logarithmic singularities at z = Zg- |

For convenience, let the coaxial cable be representéd
by the two wire line terminated in impedances ZS and ZO’
and driven from an arbitrarily located point in the line
by the impedanceless generator developing voltage dV(z)

as given in (14). Evidently the differential generator

current is given by

ar = —4V(z) (16)
&  I(s-z2)+Z(z)
where Z(s-z), the impedance seen looking into the

the transmission line above the cross section z, 1is
Zs + ZC tanh v(s-z)

Z(s-z) = Z (17)

C .
ZC + Zs tanh y(s-z) |
and Z(z), the impedance seen looking into the transmission

line below the cross section z, is
ZO + ZC tanh vz
Z(z) = ZC

(18)

Zc + ZO tanh vz

In the interest of brevity, the standard transmission line
symbolism used here will not be defined.7’8 Using standard
transmission line considerations the load impedance currents
are obtained as

VA

_ c
di(s) = dIg Z. cosh y(s-z) + Z, sinh y(s-z]) (19)
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and

Z

_ c
dI(0) = dIg L. cosh yz + Z, sinh vz (20)

Substituting (16) into (19) and (20) yields

arco) = - $z) (2, cosh y(s-z) + Z_ sinh v(s-z)] (21)
and

di(s) = éy%—Z—l-[zC cosh yz + ZO sinh yz] (22)
where

- 2 .
D = ZC(ZC+ZS) cosh ys + (ZC+ZOZS) sinh vys

The total current in the load impedances may be obtained
by substituting (14) into (21) and (22) and integrating
over the length of the cable. Thus
3 s
nk MO

1(0) D

dz[ZC cosh y(s-z) + ZS sinh Y(s-z)Gl(z)
3 S ’
k P0
+‘Iﬁ€ﬁ dz[ZC cosh y(s-z) + ZS sinh y(s-z)]GZ(z)

0
(23)
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and

3 s
nk™M .
I(s) = =2 | dz[Z_ cosh yz + Zg sinh y2]6(2)
0
kP, ’
- Teep dz[ZC cosh yz + ZO sinh Yz]Gz(z) (24)
0

where

Gl(z) = gz(z) -] gs(z)

G,(2) = [g5(z) - § 3g,(2) - 3gg(2)1k(z-2()

Just as for the gn(z) functions, Gl(z) and Gz(z) are sharply
peaked about z = Zq with both possessing logarithmic
singularities. Therefore, it is to be expected that

the integrals (23) and (24) may be well approximated by
using a Taylor series expansion for the portions of the

integrands multiplying Gl(z) and Gz(z), i.e.

S S s
dz £(z) G (z) = £(zy) | dz G (z) + £'(zg) | dz G (z)(z-zp)*...

2 2 2
0 0 (25)

where the prime indicates the derivative with respect to the
arguement of the function f. If the coaxial cable is thin,

(kb)2 << 1 and the aperture not too close to the ends of
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the cable, zg >> b and (S‘ZO)Z >> b”, then the leading

terms of (26) and (27) become good approximations to the
integrals. Thus

S o
dz £(z) Gl(z) = Zf(zo) dz Gl(z) (26)
0 Z
and because Gz(z) is antisymmetric about z = Zg
S B
dz £(z) 6,(z) = 2f (z) | dz Gy(z)(z-zy) (27)
0 Z

Furthermore, it is easily exhibited that

co rco

. .1
dz G;(z) = j dz G,(z)(z-z,) = + j — (28)
1 2 0 Zkzb
ZO ZO

Using (25)-(28) in (23) and (24) yields

2
nk™, 4

I(0) = - j T7Khe T LZc cosh v(s-zy) + I sinh Y(s-z4)

% [Z, cosh y(s-zy) + Z_ sinh y(s-zy)]  (29)
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and

nkZMO 1
I(s) = j X5 D [ZC cosh Y2y * Z0 sinh Yzo]
kP
- 0y -
==k D [Z, cosh yzy + Z_ sinh Yzo] (30)

Suppose now the transmission line is driven
from an idealized voltage generator developing eg
an idealized current generator developing ig both
located at z = zg as shown in Figure 2. By using

standard techniques the load currents are obtained

as

e
I(0) = - —% [Z. cosh y(s-zy) + Zg sinh y(s-24)]

Z i
+ _Eﬁ& [Z, cosh y(s-zy) + Z_ sinh v(s-z4)] (31)
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Py

and

e
I(s) = —%— [ZC cosh Yz * ZO sinh Yzo]

+ —E%fi [ZO cosh YZg * ZC sinh yzo] (32)

The equivalence of (29) and (31) as well as (30) and (32)

is established when

nk M uM
. 0 s (o] (33)

(e
p—t

. 1. o n
1g Ireb Z_ JO T7% Z_ (34)

In thg foregoing it is tacitly assumed that the coaxial
line is air-filled, i.e.

¥ = jk = jo/ue (35)

Therefore, it.is shown that the excitation of currents
in the coaxial line is equivalent to that produced by a
pair of lumped voltage and current generators positioned
as exhibited in Figure 2. For a physical interpretation
of these results (4) is substituted into (33) and (35).

This yields

. t
eg = Jum IS5 (zg) (36)
. - s ext
o= Jw £ 0T (zg) (37)
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where m is a mutual inductance term with

w M
m = (38)
8ﬂ2b2
and fc is a measure of the electric flux density
penetrating the aperture with
n P
_ 0 1
fe =~z I (39)
81°b C

Further, it is noted that whereas fC is dependent upon

the dielectric constant of the material filling the

coaxial line, m is independent of the material properties.
The polarity of the equivalent sources is defined

as follows: a positive voltage implies the center

conductor is at a higher potential than the sheath and

a positive current implies a current in the positive z

direction on the center conductor and a current in the

negative z direction on the sheath.

-16-




ILLUSTRATIVE EXAMPLE

To demonstrate the application of the analysis consider
an elliptical aperture in a 5062 coaxial cable (GR 874-AZ),

0.244 in. = 0.0062 m. Let &, = 0.00062 m, e = 0.894,

b

1
= 0.458 m, E;nc=1V/m, and £ = 81.8 MHz so

s = 0.917 m,

z
0
that » = 1.832. For these data, the following are obtained:

o, = - 25(0.814) = - 1.94 x 10710 n’

gy = 2200.1777) = 0.424 x 1070 n®

oy, = - £2(0.2504) = - 0.549 x 1070 n®

19%%(2,) = (0.005049 - j 0.003617)A 4 (40)
My = - (2.514 - j 1.801) x 10711 an®

Py = 0

e, = - (0714 - § 0.512) x 1078 v

ig =0 )
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Further the currents in matched load impedances, Z_ = Z2_ = L

are

u

1(0) = (+0.143°« § 0.102) x 107° e Y%0 A
(41)

(-0.143 + § 0.102) x 1079 & 7(57%0) 4

I(s)

If the incident field differs from 1 V/m in amplitude,

the resulting currents and voltage eg may be obtained by

multiplying the foregoing expressions by the field amplitude.
For a comparison with the results of a recent report

by Harrison and King2 the following data are considered:

f

1 MHz, b = 1m, a = 0.00lm, 2, = 0.25m, e = 0.866, z;, = 75m,

s 150m, E;nc = 1V/m and ZC = 414.48. Agaih the following

results are obtained:

o = - 0.01323 m°

XX

I§Xt(zo) = (0.993 - j 0.561) A
My = - (0.00z11 - j 0.00118) A-m?

- (42)

S |

e, = - (0.00074 + j 0.00132) V

i =0

g )
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with matched load impedances at the cable ends

I(0) = (1.59 - j 0.89) A

(43)
|1(0)| = 1.8 pA

The corresponding value obtained by Harrison and King is
1.36 uA. This result is in satisfactory agreement with
(43) inasmuch as totally different solution techniques
were employed. The difference in the results must be
attributed to the different approximations that are
employed.

In the Harrison and King2 treatment, a coaxial line
with a small aperture in the sheath is considered to be
driven from a generator in series with one of the two
termination impedances and the far field radiated through
the aperture is determined. This field is used to
determine the current in a test dipole. Following the
usual procedure with the use of the reciprocal theorem
the test dipole is considered to be driven and the current
in the termination impedance is obtained with the series
generator shorted. In determining the dipole moments
of the radiating aperture essentially the same approxi-
mations are introduced as are used in the preceding
development. However to determine the radiated field from
the aperture it is assumed to radiate as an aperture in
an infinite plate. In an attempt to correct for including
the infinite plate a correction factor is introduced
to multiply the load impedance current. The result

previously quoted from their paper included this correction

factor. -19-



CONCLUSION

Considering a coaxial line with a small aperture in
the outer sheath and with an incident plane wave illumination,
the currenté produced in arbitrary termination impedances
are obtained. The excitation of these currents is found
to depend upon three independent factors: the external
currents and charges on the sheath, the aperture configuration
and the interior configuration of the coaxial line. Also
the excitation of currents in the coaxial line is found
to be equivalent to that of a pair of lumped voltage and
current generators. Simple analytical expressions are

derived for the output of these generators,
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