Interaction Notes
Note 103

May 26, 1972

of Thick Wires

Perpendicular Crossed Wires

Thomas H, Shumpert
Terry T. Crow
Mississippi State University
State College, Mississippi 39762

Clayborne D. Taylor
University of Mississippi
University, Mississippi 38677

§ 18 AUG 975

WL-EMP-IN~103

Induced Electric Currents on Configurations

thick wires, conductors, induced current, effects of EMP

\ T

Tesnmeat {ibrary
AF Weapons
Lahovatory



Induced Electric Currents on Configurations

of Thick Wires

Perpendicular Crossed Wires
ABSTRACT

The general theory previously developed is extended to a considera-
tion of thick wire structures by adding so-called end current corrections to
the set of general infegral equations for the system of wires., Perfectly
conducting flat end caps having a uniform charge distribution are placed
on the free ends of each wire. These charges contribute additional terms
in the scalar potential expressions and significantly affect the current

distributions on wires having small length to radius ratios.

FORWARD

Numerical results are presented and compared to thin wire theory in
a series of graphs at the end of the report. We express our appreciation
to Dr. Carl Baum for his continuing interest in this type problem and for

his comments and suggestions during the course ‘of the work,.




1., Introduction

In a series of papers and Interactions Notes, coupled integral equations
predicting the electrical behavior of a series of wires have been developed
and reviewed [1,2,3,4,5,6]. .In the present development additional terms
involving other end current corrections are added to the equations to
account for the finite thickness of the wires. These terms play a signifi-
cant réle in determining the form of the current distributions near the ends

of so-called thick wire structures,
2, Discussion

In a continuiﬁg effort to model more accurately an aircraft, a develop-
ment is outlined which attempts to account for the finite thickness of wires
used to approximate the structure. In an earlier Note [3] the derivation
of the integral equations is reviewed and the results of a parameter study
are presented. This work clearly indicated the need for additional considera-
tions to handle so-called thick structures. The approach used to simulate the
thick wire structure is to assume the existence of perfectly conducting flat
end caps on the free ends of each wire cylinder present in the system. A
recent note [6] considered the possibility of non-zero end currents on
structures but for a different application,

In terms of charge distributions the scalar potential on the n-th wire

of a system containing N wires can be written as






In (1) and (2)
Im(Sé) = total axial current at the point Sé on the m-th wire
Jr(ré,Lg) = radial surface current density on the upper end cap of the
m-th wire
p(Sé) = linear charge density at foint S; on the m-th wire
O(r&,L;) = radial surface charge density on the upper end cap of the

m-th wire

A

S, = unit vector tangential to the n-th wire at point S,
A

Sé = unit vector tangential to the m-th wire at point Sj
A v

r& = radial unit vector on the end caps of the m-th wire

Li,L; = lower and upper limits of the m-th wire
a, = radius of the m-th wire
G(Sn,Sé) = approximate Green's function from a point on the axis of the
m-th wire to a point on the surface of the n-th wire
G(ré,L;, S,) = approximate Green's function from a point on the upper
end cap on the m-th wire to a point on the surface of the n-th
wire
The definition of the few remaining terms in (1) and (2) follows in an
ébviOus manner.
The charge distribution on the upper end cap of the m-th wire is assumed
to be uniform (the leading term in the quasi-static charge distribution) and

of the form
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where G; is the magnitude of the surface charge density. From the equation
of continuity a differential equation relating the radial component of the

surface current density to U; follows
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A solution (with a finite current at rm=0) to this equation is
u = - u r
Jr(rm,Lm) juo EE, (5)

The total axial current which exists at the upper end of the m-th wire is

related to the surface current density on the flat end cap by
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From {5) and (6)
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On the lower end cap of the m-th wire the corresponding surface charge dengity is
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Thus, (1) and (2) can be rewritten as
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In (10) the end corrections have been neglected. In many problems such terms
would be most important on the n-th wire due to the G(Sn,Sé) factor; i.e. it
is expected that the end caps on the n-th wire will most likely affect the
currents on the n-th wire more than other wires. However, in the ASn(Sn)-
expression the gn'gm term will likely be zero or small unless the curvature
of the wire struéfure is large near the ends of the wireé.

Following exactly the same procedures outlined previously [3,6], .the

coupled set of integral equations becomes
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where O is the unit vector tangent to the n~th wire at S =0. Though Cg and
D, are treated as unknown quantities in actually solving the problem, it is
necessary to have analytic expressions for them in order to check the validity

of other expressions. (Notice that D, is a constant of integration [3,61.)

In a similar manner ¢n(Sn) becomes
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3. Numerical Results

To determine the unknown current distributions (11) must be solved. A

useful method for solving such problems in antenna theory is the direct inte-

gration technique [7]. 1In particular, the numerical results have been obtained



using piece-wise constant expansion functions and point matching (or Dirac

delta functions as testing functions). Also the match points are located
at the end of the current zones or subsections.

The geometry of the problem used in the calculations is az set of two
perpendicular crossed wires. The crossing point introduces the necessity
for requiring that 1) the Kirchhoff circuit law and 2) the continuity of
the scalar potential hold at the intersection of the two wires. It is con-

venient to define the center of t?F junction as the origin of the coordinate
y
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Figure 1. Perpendicular Crossed Wires -
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The set of coupled equations to which the above techniques were applied

are
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Again the assumpfion is made that end charge contributions on wire 1(2) will

not affect directly the currents on wire 2(1). In (18) and (19) the following

approximate Green's functions are used
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Due to the existence of an electromagnetic symmetry plane [8], the analysis
is performed in terms of E- and H-polarization modes, symmetric and anti-~
symmetric [3]. Also this allows one to make direct comparison to previously

obtained results from thin wire theory [3].
4. Graphical Presentation

As has been pointed out, results have been obtained for a configuration
of open-ended, perfectly conducting thin straight tubes which intersect
perpendicularly [3]. These results indicate that large instabilities appear
in the current and charges distributions as the tubes (wires) become thicker.
In order to illustrate the effectiveness of including the additional end
correction terms, the results presented here are obtained for the same basic
geometry as the results presented in [3]. Accordingly, the basic structure

parameters in this analysis are defined as:

1 _ 1 = —
ll/ll = 0.5 212/(ll+ll) = 1.0 k12 = 1,15

Excitation of the thick wire structure is accomplished in exactly the
same manner as it was in the thin wire analysis. All of the results presented

are for normal incidence only,.
Figures 2-4 give the magnitudes of the current distributions on each of
the elements of the thick wire structure as a function of position for E-

polarization, symmetric mode; i.e. the incident E field is directed along wire 1
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(see reference [3]). Figure 5 gives the magnitude of the current distribution
on wire 2 for H-polarization, antisymmetric mode; 1.e. the incident E field
is directed along wire 2 (see reference [3]). Figure & exhibits the dependence
of the linear charge distributicn on position. This particular curve gives
the linear charge distribution on wire 2 for E~polarization, symmetric mode,
The charge distributions on the other elements are not presented, but they
do exhibit essentially the same functional behavior,

The currents and charges are normalized with regpect to the magnitude

of the incident electric fields, E , and the total lehgth of wire 2, Z1,.

0
The linear charge distributions were calculated from the current distributions
according to the equation of continuity.

Prom the data that are presentad it is readily observed that including

end effects yields a much smoother current distribution on the wires plus

there is a slighi shift in the current amplitude. The latter effect is

expected since the addition of end plates increases the effective length of
the wire by an amount exactly equal to the wire radius. The calculation of
the charge density with end plates on the wires yilelds a much smoother dis-
tribution; however there is yet some oscillation present. This oscillation
is probably spurious and probably appears because the assumed uniform charge

distribution is not accurate enough.
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Figure 3. Currents on wire 1 (y > 0) vs y/li.
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Figure 5. Currents on wire 2 vs x/lz.
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Figure 6, Linear charge demsity on wire 1 (y 0) vs y/ll.
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