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Abstract

The analy31s contained in this note is based on the magnetic-field
integral equation simplified to account for the rotatlonal symmetry and
perfect conductivity of the scattering body. Detailed calculations are
presented whiéh lead to a set of equations upon which a computer code is
based. This code can be used to calculate the induced surface current
that results when the body is illuminated by a plane wave. As an example,
this code is used to calculate the current induced on a finite cylinder
when the angle of incidence of a plane wave is varied. Plots of the induced
current versus both frequency and time are presented. The frequency plots

correspond to the incident plane wave having a time harmonic dependence

" while the time-domain plots correspond to the incident plane wave having

a step~function time dependence.
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I. Introduction

The problem of scattering by a perfectly conducting body of revolution
has been studied using the electric field formulation [17]}. This formulation is
particularly useful when the length of the body is much greater than its
width. When this is not the case,.an analysis based on the magnetic field
integral equationlis more appropriate. In this note we start with the magnetic
field integral equatibn for the induced surface current density and specialize
its representation to account for the rotational symmetry of the scattering
body. We do this by expanding both the incident field and the induced field
in an infinite sefies of trigonometric functions having arguments that are
integer multiples of the azimufhal angle, ¢. We then perform the ¢ integration
and obtain an infinite set of decoupled integral equations for the expansion
coefficients. These equations are decoupled for each integer multiple of ¢;
however, there ére two expansion coefficiénts for each integer corresponding
to the two orthogonal directions that current can flow on the body and they
remain coupled. These expansion coefficients are functions of only one

linear dimension, the‘atc'length along the body. Because of this we require

only a one dimensional zoning of the body to solve for these coefficients
rather than the two dimensional zoning that would be required if we attempted
to solve the original integral equation without performing the expansion.

‘We present detailed calculations which place no significant limitations
on the shape of the body other than the rotational symmetry. Our results are
in the form of a finite set of linear algebraic equations for each expansion
coefficient. This set of equations forms the basis of a computer code that
ultimately inverts the matrix associated with these equations. The elements
.0of the matrix are readily calculated from our final equations once the shape
of the rotationally symmetric body is specified. Included in the code is
the capability of determining the surface current density when the incident
plane wave has an arbitrary time dependence. This is accpmplished by
utilizing the analysis contained in this note and then employing Fourier

inversion techniques.

To illustrate that the code is functiening we calculate the total current

induced on a perfectly conducting cylinder of finite length when it is illuminated




by a plane wave. We val;y\ the angle of incidence of the plane wave and consider
the case where it is time harmonic as well as the case where its time dependence
is a step function. This problem is of interest in its own fight since missiles
are often modeled by finite cylinders. By allowing the angie of incidence to
vary we extend the work of a previous note [2]. It should be mentioned that
much of the theoretital analysis contained din this note is similar to the work

of Carlisle presented in a company report [3].



II. Formulation of the Integral Equation

The integral equation governing the scattering of a monochromatic electro-
magnetic plane wave by a perfectly conducting body in free space is well known

and has the form

—f;- K@ =K "@) + j 8(x)*x[VG6 (z,r " =K (x')Jds (D)
g. ‘
. . ; inc inc
where K is the total surface current density on the scattering body, K = fixg" T,
B is the incident magnetic field and G(r,r') = [exp ik|r - z'|J/é4nl|x - £'| is

the free-space Green's function. Both position vectors r and r' refer to points
on the surface of the body. We will cast (1) in a form suitable to the geometry
of a body of revolution. To that effect we introduce a local orthogonal
curvilinear system as depicted im Fig. 1. The three unit vectors ﬁ, $, t form
a right-handed triad and are defined as follows. 1 points‘in the direction of
the outward normal on the surface, $ is the usual azimuthal unit vector, and £
is tangent to the curve formed bybthe intersection of the surface of the body

and a plane passing through the point of interest and the z axis. The angle "

between t and z is denoted by v and varies from -180° to 180° (see Figs. la and lb).
The relationships between the local triad ﬁ, $, t and the cartesian triad

~ “~ ~
X, ¥, 2 are

.;j)
]

cos v cos ¢x + cos v sin ¢y - sin vz

- sin ¢x + cos ¢y . o (2)

-
4

sin v cos ¢X + sin v sin ¢y + cos vz

>
]

In what follows we rewrite (1) in component form in terms of the coordinates of

our new local curvilinear system. Referring to (1) we note that

(Exﬁ)'(VGg&)

L}
i

£+ [ax (V6xK) ] §+ (V6xK)

(3)

[
Il

§-[Ax(V6xK) T = (3xA) - (VOxK) = — £ (7GxK)
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and

1-ikR ikR(RxK), R=z'-r (4)

VoxK = S R
4R '

Next we write RxK in component form

EKE % é{(;"sin ¢! -0 siﬁ @)poslv'Kt,Aj kz - i)(sin v} sin ?'Kt,

+‘coé ¢‘K¢,j} + §{— (p! cés ¢' - p cos ¢)qos.v'Kt,

'+'(£i:f'z)(siﬁ v' cos ¢'Kt. - sin’¢'K¢,)}

+ 2{(pf cog o' -:p cés ¢)(sin>§‘;siq §' L + cgs'¢'K%,f

- (o' s%ﬁv§‘; P Siﬁ ¢) (sin v' cos_¢'Kt, - sin ¢'K¢,) (5)

Eq. (3) now can be rewritten as

£+[nx (VGxK) ]‘.

= l:i%B eikR [t(z' - z)sin v' - p' cos v'Jeos (' = ¢) + p cos v']Kt,
4R ' -
= sin(s' - 8)(z' - 2)K,, (6)
¢
§+[nx (VxK) ]
= l:i%ﬁ eigR sin(¢' -¢)[p sin v' cos v - p' sin v cos v' + (2" - z)sin v sin V'K,
4R ‘ '
+ Bms(¢' - ¢)[(z' - z)sin v+ p cos V] - o' cos v]K¢, (7)

Next we expand K(K K ) in a Fourier series in the ¢ coordinate. TO that effect
ine

ne -~
we first examine the Fourler expansion of the incident, current den81ty K = nxH



Consider a monochromatic (é—iwt) plane wave incident upon the axially
symmetric conducting body. Without loss of generality we orient the xz plane
so that the k vector has no y component. The angle between k and z 1s denoted

by ei and k has a negative x component (see Fig. 2). The incident magnetic

field forms an angle ep with the y axis. We stipulate that if ep varies
between O and 180° the magnetic field has negative x and z components. Assuming

thatlgénc has unit amplitude we can write down the analytical expression for it

ine . ik(z cos §,-x sin ei)
H = [ (- % cos 8, - z sin 6,)sin 8, t v cos ep]e

From Maxzwell's equation - iwE = VxH, or simple gepmetricai considerations
. . . , . .
(Elnc has to lie in the plane formed by g}nc'and the y axis and k;, E?nc’ E}nc

form a right—handeﬁ,triad) the expressionvforiglnc is

4.

. A\ ks
in ~
¢ =k§2) [KXcos 3]

(o}

~ik(z cos eifx sin ei)
+ 7z sin 6.)cos 6_ + ¥ sin 8 _Je ' :
1 P P

=]

i

The axis of revolu;ioﬁ is z and for ep = 0 or 1800‘the electric field lies
in the plane k, z and we then talk about parallel polarization, whereas for
8_ = 90° the electric field has a perpgndicular'polarization. For a general
&_ we can decompose the electric field into the two pola;iiations and the incident

... inc A inc .
current density K = nxH can be decomposed similarly

ik(z'cos‘e.—x sin 8.)
i i

A~ _inc :
tX = cos & _ cos ¢e
= TP
, ik(z cos 0,-x sin 8.)
~ _inc i i

i

- cos Sp sin v sin ¢e

(8

ik{z cos 6.-x sin ©,)
| i

~ i . ,
g.ghC = gin 6 cos €, sin de
, o : ik{z cos B.-x sin 8.)
~ _inc . . . : i i
$+K = gin 9 {(cos v sin 8, + sin v cos 0. cos é$)e
—L » D i i

Recalling that

-ia cos ¢ y, ,~ I
e = = =
. E e 1 Jm(a)cos mé, e 2 m# 0, ¢ ‘1

m=0
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" we can easily show (by.appropriate differentiation) that

[=<)

cos ¢e_ia cos ¢ . _ Z i_(mH) Jr'n(a)cos m¢

m=0
- (9
. J (a) :
sin ¢e~la cos ¢ _ :E: = (w+1) —_E—— sin m¢
- m=0 ’

t

Noting that x = p cos ¢ and relating (8) to (9) we understénd that the K

components. can be represented by a pure cosine or sine series with the following

results
1nc - 2 : inc
(K“ 7— » (Kl )”m coSs md)
1nc inc | .
E (K - sin m¢
(10)
1nc 2 : (Klnc sin mb
Am
1nc E (Klnc cos mo
Lm
ihc - 0 C,
(K1 )”m cos eme(kp sin ei)smwm
ines me(kp sin Qi)
ng.'?”m = cos ep sin v — 5, e b
- B (11).
inc me(kp sin ei)
(RK;7) = - sin 8_ cos 6, - e Y
im P i kp sin ei ‘m'm
inc o ' : . '
K = <d ' . _ . .
( 5 )Lm sin ep[sin VvV cos 6iJm(kp sin ei) i cos v sin eiJm(kp sin ei)jsmwm

where wm = exp i[kz cos 6i - (m+ Dw/27.



In view of Eq. (10) the incident current density can be written as

ing - (Einc)

ine ine » inc
K )

= K t +K
L

|t & ¢ y 9

and

.Kinc = ;E: [(Kiné)”m cos mé + (Kinc)lm sin mé ]
m=0

- (12)
' inc inc . inc
K¢ = E [(K2 )Hm sin m¢ + (K2 )_Lm cos md ]
m=0 '
For simplicity we define
Line _ inc inc - piinc
<Kl )Hm = Klm 3 (Kl ).Lm Klm
| (13)
inc . pinc inc _ _ piinc
(KZ ’)”m 'K2m ’ (KZ Cam K2m

The reason for the minus sign will become apparent later. In view of (12) and
(13) the total current density K will have a Fourier expansion of the form

= 1 :
Kt E : Klm cos mp + Klm sin méd “
- : - i
, K¢ = E K2m sin mé sz cos mo
m=0
‘With the aid of Eq. (6), (7) and (12), (13) and (14), Eq. .(1) can be rewritten
in component form for the mth modes utilizing the orthogonality properties of

the trigonometric functions

, Yo L L
i = ine ' ' ' ! ' t
5 'Kl.m (t) = Kl () + JoAm(t,t ) Ky (e')de’ + JOBm(t,t ) K, (t')dt
- (15)

inc L L |
= inc t 1 i 1 T t
sz (t) sz () + JO Cm(t,t ), Klm (£')yde' + JO'Dm.(t,t ) K2m (¢')dt

N
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L
1 . = ptinc ‘ 1y 1 1 ' 1y 1 1 '
3 ‘Klm (t) sz () -+ JoAm(t,t )Klm(t )y dt' + joBm(t,t )sz(t ) dt
(16)
1 i r t
= 1 = wrinc 1 1 1 ' 1 ' 1 1
5 K2 m(t) sz (&) + Jocm(t,t )Klm (") dt' + fonm(t,t )sz(t ) dt
where
2w 2n
Am(t,t') = al(t,t') j cos 8 cos m8f(R)d6 + az(t,t') J cos m8f(R)d6
) o)
2%
Bm(t,t') = b(t,t") j sin 6 sin mBf(R)d6
o ) o .
27
Cm(t,t') = — c(t,t") J sin 8 sin m6f(R)d®
o
2T . 27
Dm(t,t') = dl(t,t') J cos & cos mBf(R)d6 + dz(t,t') J cos mOf(R)d6
0 )
al(t,t') = (z' - z)sin v' - p' cos V'
a2(t,t') = p cos v'
b(t,t') = - (2' - z)
c(t,t'") = p sin v' cos v = p' sin v cos v' + (z' - 2z)sin v sin V'
dl(t,t') = (z' - z)sin v + p cos v
d2(t,t') = - p' cos v

The variables t and t' represent the arglgngth meésured from the bottom of our

body (see Figs. la and 1b) and we denote the total arglengtﬁ of our body by L.

We‘ﬁhus see that the_g'components.corresponding to ﬁhe two different orthogonal
polarizations (parallel and perpendicular) of the inéidént plane wave are

decoupled and can be treated separately. The minus sign introduced in (13)
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allowed for the identical form bétween (15) and (16). In what follows we
'integraté numerically (15) and the same procedure will apply for (16).

We will rewrite (15) as a system of linear algebraic equations. We
will divide the body in pafallel zones and calculate the currgﬁ; densities at
the center of a zone. The length of the nth zone along the surface of the body

(E direction) is 2hn and we also introduce a continuous coordinate u along the

direction of t:

'P b
v o= vp, v! = v (n=1...0)
S
Z zn + u cos vn

p + usin v
n n

We can now cast (15) into the following form

) N
Kiic(tp) +-:E: [Am(tp,tn)Klm(tn) + Bm(tp,tn)KZm(tn)]

n=1

1
E'Klm(tp)

(17)

N

1 inc . :

3 Kon(e)) = K5nSCe ) + ) [C (e e Ky (£) + D (e Lt 9K, (e )]
n=1

where
h_ ,
. no(m ‘
Am(;p,Fn) = j‘h [o{[(zn - zp)51n v, ~ o, cos vn]cos 8 + pp.cos vn}cos mé
. 1-ikR eikR(

3

I + u sin vn)dedu
ZWR

h -

n m o
B _ . _ . .
m(tp,tn) J_h IO{[u cos v + (zn zp)]s;n 8 sin m8}
n

1-ikR ikR .
X 3 e (pn + u sin vn)dedu

27R




o .
)

Cm(tp,tn) = - J—h f {[p cos v, + (z - zp)sm \)p:lsin v, =0, sin v, €08 vn}
sin 6 sin mf® x (o + u.sin v ) 1-1kR dedu
, n n 3
. 2TR
h
Dm(tp,tn) = f-h f {[p cos \)p + (u cos v, + z - zp)sm vp]cos 8
- (p_ + u sin v_)cos v _}jcos mé(p_ + u sin v_) 1-1kR ikR dedu,
n : n, 0 p S0 n .n 3 .
27R
and

2 2 ";&_‘“‘ _'7 S . 2
R. =u” + .’Zu[(z - zp)cos v{l + o sin \)n:l + (zﬁ.— zp)

2 2 L
‘+ pp to - 2pp[pn + u, sin vnjéos 8

g ‘When n = p the integrands become singular at u = 0, 6 = 0 and one needs
to apply special care to handle the. numerlcal 1nLegrat10n - However, we can
rewrite the 1ntegrands in'a way that allows us to subtract out the singularity
and perform part of the :Lntegratlon explicitly. To that effect we rewrite

(l—ikR/R3) eikR as follows

1-1kR ikR _ (1-ikR)e™ - (143 R + (105 °R%)

S R’
U 2.2‘».‘:
= g(u,0) + LR
R
where
(1~ 1kR)e -'-(l-i-‘/zszz)
g(u,d) = 3
R
and
Q) R2=u2+2p(l—cose)(p + u sin v_)
n n n

11



The u-integrations containing g(u,6) have nonsingular integrands and the rest .

of the u-integrations can be pefformed explicitly. The results are

o, cos vr'l b hn
An(tn,tn) =5 J' J g(u,e)(pr1 + u sin vn)du
o{‘~h
n ‘ .
h_ ' h h_
-{—pnj -é%i-—;-kzpnf -é’l+sinv J P3_(:11.1
-h "R Z=h -h R
n - ioon n
h

1 2 Y o U
+ 5 k™ sin vy f B du}(l - cos 8)cos mHds

~-h

n-

) cos v_ 1 v hn 1 1
ST T s\Ft=
o]2-sin vn(l'-'-co,s 8)|"n Ro R

(o}

. . i1
+ sin \)n(l—cos 6)(+— _)

Ro: B‘o_]
. ‘ . r_h |
: . sin v .
+ Kl(e)—" : 5 o 2 sin v —l-_-}_-+-1—:v+2—1-_§—_
2~sin”v_ (l-cos 8) Pa M\r R R
ne _ o o o
1,2 -2 . _+ -
+ 5 k pn[sln \)n(RO RO)

+[1 - sinz\)n(l - cos 8)]L(6)] (1 - cos 8)cos mdde




cos \)ﬁ ks hn . . hn udu
Bm(tn,tn) = - J f g(u,e)(pn + u sin V\)n)udu +te, f N
o{’~h ~-h R
n n
h hn 9
+-§-k2 pnj -——-—u;u+sinv j ) ugu
~h ~h R
n n
. hn
+ %'kz sin v f R du sin & sin mAds-
n -h R
n
cos v T : , h ’
= & = 5 n'-J Kz(e) - 5 1 -2 sin v -1-; + -1-_-_-)
. o . 2-sin \)n(l-cos 9){n Ro R

‘ ) Zsz;Ln\) o : "
) ot e - o 4 )

R+ R 2—-sin2v (l-cos 8) R R /°
o) o n o o
L 11 .
+ sin v (1l - cos 8)— -~ —]| + sin v _L(8)
k n . + — a
R ‘R
o) )
+ L k2 2 i——'hn:sinv\) (R+ +R)+[1 -~ 2 si 2\) (1 - cos 9)](R+ -~ R)
2~ Pp 2 P n" o . o it n o o}

+ sin \)n(l,'— co.s"e)‘[% sinzvn(l - cos 9) - 2']1(6)] sin 6 sin meds

13
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h h

cos v (m n - 2 2 [ 4u
D (t ,£ ) = - J j g(u,®)(p_+ u sin v )" du + p f ==
m'n’n 27 ol/-n | n n 3 BN R3
n n
hn hn hn
+-1-k2p§f E%l--f-Zp sinvnf ,E-g—g+kzpnsin\) f E—gﬁ
-h -h R ~h
n n n
h h
2 n uzdu 1.2 2 n uzdu
+ sin"v + = k7 sin"v : x (1 - cos 8)cos mAdd
3 27 n R
-h R ~h
n n
cos V_ (T h
= - Zﬂnj 5 1 ___r_11_++1___ +s_in\)n(l—cos8)L+-—-1—_
o] 2-sin“v_(l-cos 8)|°n \R R ( R R
n , o 0 0 )
, 2 sin Vo hn’ ) 1 1
4+ (1 - cos 8){- 3 — ——Sin\)[SinVn(l-COS 9)“2]—_*_'4'—_'
o 2-sin vn(l—cos 8) Pa n Ro RO

+ I:sinz\) (1 - cos. 8) - 2] .1 + K, (8) + sin2\) L(8)
n " R+ . 4 . n

1.2 2}, 3 .2 o - 2
+ 5 k pn[s:m Vn[?f - 5 sin vn(l'— cos 6)] (Ro - Ro) [1 + sin vn(l - cos 8)

[-:i sinz\) (1 - cos 8) -~ 3:]]L(6) +-l- sinz\) Er-l- (R+ +R) cos mbds
2 n 2 np, o0 o}
where
I h %
R+= 2 4+ 2(1L + -2 sin v )(L - cos 8)
o 2 : o n
Lo~ n
_ "hi h ' %
Ro = —§+ 2(1 -5 sin vn)(l - cos 8)
0 n
~"n
. 1 +
o sin \)n( ~cos 6)+(hn/pn)+Ro |

B
~
@
~
il

Q

sin \)n(l—cos 8)- (hn/pn)+R




(<

: n
Kl(e) = f- g(u,e)(gn + u sin vn)pndu

h
n
1
n
;Kz(e) = I-h g(u,e)(pn'+ u- sin vn)udu
. n o
. h_
n 2
K4(e) = f-h g(u,e)(pn‘+ u sin vn) du
n

‘ ikR ,, . 2.2
© (1-1ikR) e (145K R
g(u,0) = {=iiRe 3 (g R )

- ®?

2
u o+ 2pn(1 - cos 6)(pn + u sin vn)

This completes the definition of all of the terms in (17) and reduces
the problem‘to one of matrix inversion. Still left to be decided is the zoning
on the body. The study of scattering by a metallic cylinder reported in a

previous note [ 2] can serve as a guideline. 1In that study two basic requirements

were determined. a) To" secure sufficient numerical accuracy for the calculation
of the surface current density at least 17 sample points per wavelength were
chosen. b)  The integral equation we use is based on the magnetic field formu-~
lation which requires that the diagonal elements of the associated matrix be
the largest elements. This requirement is translated into the condition that
the length of a zone should not exceed the minimum radius of the body associated
with any point irncluded in the zone. A computer code based on (17) which
iﬁcérporates the associated matrix inversion has been written.

" Also incorporated in the code is the capability of calculating the induced
current density.when the incident,pléne wave has an arbitrary time dependence.

This"is accomplished by utilizing the preceeding analysis and then employing

Fourier inversion techniques..

15



Discﬁssion of Results

Our primary purpose was to develop a set of equations upon which a
computer code could be based. .The purpose of that code is to calculate the
induced surface current density that results when a perfectly conducting
body of revolution is illuminated by a plane wave. The basic set of equations
which accomplish this purpose are presented in (17). The analysis leading to
(17) was time harm&nic; howevef, the code is capable of calculating the
induced current density for an incident plane wave having an arbitrary time
dependence. This is accomplished by employing Fourier inversion techniques.

In this note we used the code. to calculate the total current induced
on a perfectly conducting cylinder of finite length when the incident plane
wave had both a time harmonic and a step function time dependence. 1In these
calculations we set § :equal to zero so that the axis of the cylinder, the wave
normal, and the electriec field all lie in the same plane. All of our results
are for the case.where the length of the cylinder is ten time its diameter.

The points. of interest on the cylinder as well as a description of the incident

3

plane wave are depicted in figure 3. In figures 5 through 9 we plot the magnitude ‘

of the induced current versus frequency. TFigure 5 corresponds to the incident
angle, Gi, equal to 75° while figure 9 corresponds to eixequal to 15°, The
intermediate figures correspond to the values ei spaced at 15° intervals.

Figure 4 is taken from a previous note [ 2] and corresponds to mormal incidence,
.6, =90°, 1In figures 5 through 9 we plot the current that exists at three
different points on the cylinder, at the center and at the two points half-

way between the center and each end. In these plots the current has the largest
peak value at the center of the cylinder. In figures 11 through 15 we plot the
current at: the. same three points on the cylinder versus time. The origin of

the time scale for each point on the cylinder is defined so that t equals zero
when the incident plane wave first strikes that point. Each figure corresponds
to a different value of ei again ranging from 75°% to 15° in 15° intervals.
Figure 10 is again taken from a previous note [ 2]. The induced current in

this figure has the opposite direction from the currents calculated in this

note because the incident electric 7ield considered in that note has the opposite

direction from .the one considered in this note. All of these time dependent

16
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plots correspond to the incident field having a step function time dependence.
It is interesting to note that the maximum peak current no longer occurs at

the center of the cylinder. In figures 10 and 11 the largest peak occurs at
the center of thé cylinder, while in figures 12 through 15, the peak occurs
halfway between the center and the upper eﬁdvof the cylinder. A physical
explanation for this can be given. First, wefﬁote that the current at a
particular point will continually increase until it experiences the subtractive
current reflected from the ends of the cylinder.v For ei equal to 90° and 75°
the center point will feel the effect of an end after a longer time than either
of the other two points. For the remaining angles the upper point feels the

effect of an end after a longer time than the other points and it experlences

the largest peak current.

17



Figure la. Local Orthogonal Curvilinear Coordinate Systems.
t,t' are the coordinate variables used to represent
the arclength measured from the bottom point B.
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Figure 1b.

TSR SNRARL RS A e S e

Local Orthogonal Curvilinear Coordinate Systems. t, t' are the

coordinate variables used to represent the arclength measured
from the bottom p01nt B.
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" Figure 2. Incident Plane Wave Description.

4



e

4. __1z=h/2

2a—

Figure 3. -Geometry'of Cylinder and Incident Plane Wave
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