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Electromagnetic Scattering from Arbitrary Configurations

of Thin Wires with Multiple Junctions

ABSTRACT

The development of a system of integral equations for an arbitrary

configuration of thin wires having multiple junctions is discussed.
Particular attention is given to careful treatment of the necessary

boundary conditions.
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1. Introduction

The general formulation for the treatment of an arbitrary configura-
tion of thin wires with a single junction has been developed [1,2]. The
formulation is adaptable to many geometries commonly encountered in antenna
problems such as Tee-antemnas | 3], Vee-antennas, L-antennas [4,5], crossed-
dipoles [6,7], tripoles [8] and many others. The formulation presented in
this report is an extension of the existing theory to configurations having
more than one junction, The basic modifications to present theory result
from the fact that one can no longer enforce the boundary condition for
zero end currents on each wire of a multiple junction structure. The role
of these end currents is explicitly shown (this is not to be confused with

end current corrections that are now being used to treat thick antennas).
2, Analysis

According to thin-wire scattering theory [3,4], the tangential com-~
ponent of the vector potential and the scalar potential at a point S on a

conductor are
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where G(S5,S') is the usual Green's function and I(S') and A(S') the linear
current and charge densities, respectively. For an N-wire system of

arbitrarily oriented wires, these potentials on the nth wire can be cast

into the form
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where

G(s,,81) = eXp[-jk ‘Jrz(Sn,SI}l) + af;]
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I,(8,) = total axial current at the point S on the mth wire
Qﬁ = unit vector tangential to the nth wire at point S,
g& = unit vector tangential to the mth wire at point SJ
Ln = arc length of the mth wire

r(Sn,Sé) = linear separation distance from point S& on the surface
of the mth wire to the point S, on the surface of the
nth wire

The usual assumption of harmonic time dependence, ert, is made but

suppressed., For the N-wire system, the scalar potential becomes
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N
= 4 v d ' 1
0_(Sy) = 3 £ 3 f ds! ?fs_;' [Im(sm)] 6(Sy,8,1) (4)

Lo

In writing (4) from (2), the equation of continuity is used and

g =4u/e .



Since the wires are assumed to be perfectly conducting, the tangential

component of the total electric field must vanish on the surface of each .

wire; hence, on the nth wire

Eg_(Sp) + E;n(sn) =0 (5)

where E; (Sn) is the tangential component of the incident field and Eg (Sp)
n n

is the tangential component of the scattered field. The E field in terms

of ¢ and A becomes
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In order to work with a system of integral equations rather than a system

of integro-differential equations, it is convenient to define
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(7) in (6) yields
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The formal solution to (8) is [2]
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To derive the desired form of the integral equations, it is convenient to
define [1]
S

n
F (8y) = k'/o‘ ds! 4y(s!) sin k(Sy-S1) (10)

Substitution of (7) and (4) into (10) yields
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An integration by parts on the Sé integration leads to
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If the order of integration is changed [1], the Sé integration can be per-

formed in (12) and
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and, from (7) and (4)
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where L” and Ll are the upper and lower limits of the S& integration,
m m

respectively,

The function Fz(Sn) is defined as

Sn
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Substitution of (3) into (15) and integration by parts leads to
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/\ .
and O, is the unit vector tangent to the nth wire at S, = 0.
The integrals in (13) and (16) and the fact that C, in (9) equals zero

(since ¢,(0) = 0) may be used to rewrite (9) as
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According to (7) and (9) an equation for ¢n(Sn) similar to (17) can

be written

:
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or, in terms of currents on the structure
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3. Boundary Conditions

For a system of N wires with no intersections, there will be 2N
undetermined constants from (17), For thin-wire theory there will be
2N boundary conditions of the form

1,(s | =0 n=1,2,-—-,N (23)
free ends

For a system of N wires with a single common intersection point, there
will again be 2N undetermined constants from (17). In addition there will
be a discontinuity in the current on each wire and this effectively
introduces another N unknowns. The boundary conditions at the free ends

of the wires furnish a set of 2N relations. An application of the

Kirchhoff current law at the junction located at 1, on the nth wire, namely

N
im = [I (1,48) -1 (1 -6)] =0 (24)
$+0 n=1
provides one additional constraint. Enforcement of the continuity of scalar

potential at the junction
6 (1) = 6, n=2,---,N (25)

provides the necessary additional N-1 relations in order to obtain a unique
solution to the set of equations.

Consider a system of N wires counted in such a way that the first N1 of
these intersect at one point and N-N1+1 of the wires intersect at another
physical point and that the Nlth wire is the electrical connection between

the two junctions.



Figure 1. Two Junction Structure

Again, from (17) there will be 2N undetermined constants, and at the

right junction there will be N1 current discontinuities. In general, the
left junction will have N-N1+1 discontinuities (= the number of intersecting
wires at the left intersection); but, for the particular case shown in
Figure 1 there will be only N-Nl current discontinuities since wire number
(N1+1) does not pass through the junction. For the configuration shown in
Figure 1, there are 2N+N1+N-N1=3N unknowns. The free end boundary con-
ditions will number 2N-1 (again due to the fact that one wire terminates

at a junction). There will be two Kirchhoff relations, one at each junction.
At the right junction there are (Nl-1) scalar potential relations, and at
the left junction there are (N-N1) scalar potential relations. Thus, the

boundary conditions provide

2N-1 (free end conditions)
+ 2 (Rirchhoff law)
+ N1-1 (right scalar potentials)
+ N-N1 (left scalar potentials)
3N

3N constraint equations and a unique solution will be obtained.
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In practice it is convenient to define the coordinates such that,

the right intersection is located at

1_=0 n=1,2,---,N1

i = - I
ln=0 n=N1+1,---,N
Thus,
D,=D, n=1,2,-——,N1 (26)
Dy14+1=Dp =N1+2,-~-,N (27)
Finally from (21)
1 (= Tyy) = 6,00 n=N1+1,-~-,N (28)

Thus (28) provides at set of integral equations that must be satisfied

simultaneously with (17).
One application of multi-junction theory is to model an aircraft in

terms of thin-wire approximations as shown in Figure 2.
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This would be a 4-wire, 2-junction problem with 8 undetermined constants
and a single current discontinuity on wire 1 at the fore junction. There ‘
are four free end conditions, two Kirchhoff relations, two scalar potential
relations on the fore junction, and one scalar potential relation on the
aft junction providing a unique solution.

In this particular problem, the end current terms, Im(L;) and Im(Li)’
all vanish identically in (17) due to one of two reasons: 1) either the
currents are identically zero, or 2) the Green's functions reduce to the
same analytic form at a junction and the Kirchhoff law applied at the
junction then causes these terms to vanish., It is true that these terms
vanish in (21) as well and for the same reasons. This appears to be a

general result in thin-wire scattering theory.
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