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Abstract

The current induced in a radial wire on or near the surface of
the ground is obtained as a solution to the differential equation for a
transmission line with a distributed driving source. The source of the
fields driving the transmission line in this note is a vertical monopole
antenna driven against the ground, At the air-earth interface, the
monopole antenna produces a radial electric field which is used as the
distributed source term in the transmission line analysis. Solutions
are presented for arbitrary terminations of the conductor and for four

special cases.

antennas, transmission lines, ground effects

* Extracted from Electromagnetic Field Distortions and Currents in and
Near Buried Cables and Bunkers, AFWL-TR-65-39, of same date. :




I STATEMENT OF THE PROBLEM

It is desired to determine the current induced in a radial conductor
near the surface of the gound in the vicinity of a vertical monopole antenna.
The configuration of the antenna and conductor is illustrated in Fig. 1.

It is assumed that the monopole antenna is electrically small and that the
antenna height is small compared to the distance between the antenna and
the near-end of the radiai conductor, It is also assumed that the vertical
height, or depth of burial if the conductor is below the surface,of the
conductor is much ;ess than one wavelength (in the appropriate medium) at
the frequencies of interest, The frequency range of interest is that for
which the so0il behaves as a good conductor., That is, we are concerned
with frequencies such that

o
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where ¢ is tﬁe conductivity of the soil, w = 2Tf and ¢ is the permittivity
of the soil.

Because the soil behaves as a good conductor, we may obtain the
principal components of the fields of the monopole in the air by treating
the ground as a perfect conductor, We thus use the vertical electric field
and azimuthal magnetic field of a monopole driven against a perfectly

conducting ground as the driving field to obtain the current in the soil.

To obtain the radial component of the electric field in the so0il, however,
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FIGURE 1 RADIAL NEAR-SURFACE CONDUCTOR IN THE FIELD OF A MONOPOLE
ANTENNA




we recognize that the soil has finite conductivity and make use of the
surface impedance of the soil and the soil current density ( or azimuthal
magnetic field). Having obtained the radial electric field at the sur-
face of the soil, we treat the conductor as one conductor of transmission
line with the soil as the other conductor and the radial electric field

in the soil as a distributed voltage source driving the transmission line.

II RADIAL ELECTRIC FIELD

The radial electric field is the voltage drop per unit radial dis-
tance resulting from the flow of current in the ground. The radial field
strength at the surface can thus be computed from the radial earth current
and the surface impedance per unit radial length of the earth. The radial

current is directly related to the azimuthal magnetic field by

I = 2TrH ’ (2)
r &

and the impedance per unit length in the radial direction is readily

obtainable from the theory of the surface impedance of skin effect:

1+j .
s ~ 2mrobd (3)

where O is the soil conductivity and § is the skin depth defined by

b om —— . | (4)

VB ivie)



The radial electric-field strength at the interface is thus

E =12
r s
_ o L1+3)
or
E:-(uj)/“gLL H, (5)

Thus the radial electric field lags the azimuthal magnetic field by 135°
in phase and differs in magnitude by a factor involving the square root

of the frequency.

The magnetic field at a distance r from a short monopole of height

h is
I h
0 3k 1 ) -jkr .
B, = S 6 6
8 4 ( r 2 e sin (6)
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where I is the base current of the monopole antenna. For the electrically

short monopole antenna,

I =juwcCV, 7)
0 a a

where Ca is the antenna capacitance and V is the driving Voltage.
a
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III TRANSMISSION LINE DRIVEN BY A DISTRIBUTED SOURCE

The analysis of the coupling between the conductor and ground may
be pursued along lines similar to classical transmission~line analysis.
The conductor is coupled to the ground through the conductor-to-ground
capacitance and ground resistance{'while current flow along the conduyctor
is impeded by the conductor resistance and inductance. However, instead
of being driven at one end by a 1ﬁmped source as is conventional in
transmission-line ﬁfoblems, the conductor is driven along the line by a
distributed source as illustfated in the circuit model of Fig. 2. This
distributed driving source is the radial electric field in the ground
in the vicinity of the conductor,

From Fig. 2, the following partial differential equations relating
the voltage and c‘urrent along the line to the driving field and impedance

of the conductor are obtained:

ar ,

ax - YV (8)
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By differentiating the first equation, solving for dV/dx, and substituting this value

in the second equation, we obtain

—= ~ Y"1 =YE . (10)

where

}’2 = ZY, the propagation factor squared

Z = R + jowL, the wire impedance per unit length

Y = G + jwC, the wire admittance per unit length
and

whC V .
E = (1-1)\/ a a[-x%a + _1__5] o~ ik(x+a) (11)

(x+a)

is the driving field, the radial field at the air/earth interface.* The differential
equation to be solved is thus

2. . .
al 12 - Y1 = A }J{Ea T— z}e'Jk(x”) (12)
dx (x+2)

*It has been pointed out by W. R. Graham and D. Marston at AFWL that the
above expression for the radial electric field will be in error very close to the
base of the antenna (i.e., within one skin depth of the antenna base). Very
near the antenna base, the current density in the soil will be approximately
spherically distributed in the ground instead of parallel to the surface and
exponentially decaying with depth as assumed in deriving Eq. (11).
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where

f th V
A= (1-) Y (13)

The solution of this equation isz

Because of the similarity of the two integrals, it will be necessary to solve
only one of them; the second integral can then be evaluated by replacing y by

~ yin the solution for the first. Hence, letting

-yx| jk 1 -jk(x+a)
fe [x+a + 5 } e dx

A

(x+a)
v (15)
_ ika k+Y)x e-(jk+)/)x
- k= * 7 dx
(x+a)
we can make use of the integral formulas”
-qa > [q(x+a ]n
f T & = e flogpe) ¢ 3 AR (16)
n=1

and

ax gx © n
f( e_'Z dx = - __)e{+a + qe [log(x+a) + Z [__#qéx;a] } (17)
n=1

Xx+a)




.‘ so that

k+>')x -(jkty)x - (jk+y)x
-jka U e . e
le - o) {kf - e - (]k+y)f—-——-——x+a dx (18)
After rearranging,
-(y+jk) (x+a) ~(jk+y) (x+a)
= e’ ¢ —y [ —
&1 = e l - vy Y f <+a dx . (19)
Thus
Ay _ aTYX
F(x) 3y e :21 e v.%
k+}’) X+fi) - -(jk-y) (x+a)
= -8 le x+a)f dx + e y(x+a)fe______ dxt . (20)
2 X+a

.

After performing the integrations and rearranging,

F(x) = =-A {cosh y(x+a) log (x+a)

0 - ©
. e"’:a) 5 gl )] ™, se__y;fi) s ktneeal™| o

n.n!’ n-n!
n=1 n=1

The wire current is then

Ix) = Kle”X + K, e+ Fx (22)

2

where K1 and K2 are arbitrary constants determined by the terminations at

the end of the wire.

For large values of (jk+y)(x+a), the series is difficult to evaluate because

‘\ the terms become very large before the series begins to converge. For large
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arguments, therefore, the asymtotic expression for the exponential integral

may be used.‘4 Thus,

¢ eu e -q(x+a)] "
[ & -y, - gan -y o)
n=1

q(x+a)
(23)
N
o"d(x*a) n!
W =g
from which
N
00 [_ n -g(x+a) (
q(x+a) _ e n!
—-—rj, = -y, - logq(x+a) -—'—:—"Z —
ré:l n-nl e q(x+a) ~ [-q(x+a)] n
(24)

where Yo = 0.577 2157..., and N is chosen by considering the accuracy
desired and the magnitude of the argument -q(x+a) .

To obtain the potential of the wire relative to the undisturbed ground poten-

tial, we note that

= = -YV(x . (25)

Thus the wire voltage V(x) can be written

- 2.9 -yx] _ 1 dF
Ve = -2, [Kl e K, e e (26)

where Z_ = ¥/Y = /Z/Y is the characteristic impedance of the line.
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Letting
PR - g m
we have
VE = -Z, | K, e’ - Kye™ + F (%)
where

-jk(x+a)
Fv(x) = -A {sinh y(xta) log (x+a) + W
y(x+a) £ = n
e ~jk+ ) (x+a)]
- 2 Z nen!
n=1
_ YA 2 Ly )]
2 Z " nen!
=1
At x =0 the wire is terminated in an impedance Zl , So that
-2, 1) = V(0
or,
-z, |k, + K, + F(O)] = -7 [Kl - K, + F_(0)

11
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Similarly, at x =d , the wire is terminated in an impedance Z2 so that
ZZI(d) = V(d) and '
yd -yd ] _ yd _ ~yd
z, |k &% + K, e + F@) Z [Kle Kye 7’ + F (@
(32)

Solving Egs. (31) and (32) for Ky and K,, we get

N

z z
e'yd<1 - —Z—Z- 2% F_(0) - F(O)] < 2—3—)[—9 F_(d) + F(d)J

K = :
1 Z Z Z
<1'z—0>1"z'9>e' 1+ g *"‘ e’
1 2 1

z \[/Z Z \[ Z
—e’d <1 + -ZQ>[<-Z-Q>F (0) - F(O)} - <1 "z—0>[79' F (d) + F(d):!
2/\“1/ ¥ /L% VY

2 Z 7 Z Z
—'Z-Q 1'-"2"(') e-yd-— 1+—Z-Q 1+-Z—0- eyd
1\ 2 1 2

The general solution is thus obtained when the values of Kl and Kz
Four special cases of interest will

from

Eq. (33) are substituted in Eq. (22).

now be considered.
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Case I -~ The line is terminated with the same impedance at both ends (Z2 - 'Al).

Equations (33) then reduce to

yA Z Z VA
Coovdf, _Z0 o - 030
e <1 21>[ Zl FV(O) F(O)} + <1 + Zl>[ Zl Fv(d) + F(d)}

2 2
Z Z
1- -Z—Q e¥d . (14 —Z0 e¥d
1 1

(34)
Z Z Z Z
_ovd 0y 9 - S (1 -2 =20
e’ 1+ 5 >[z F_(0) - F(0) (1 > >[z F (d) + F(d)
_ ' 1 1 1 1
K, = _
2 7 2 7 2
Lo\ e <129> o
1 1
Case II -- The line is open-circuited at both ends (Z1 = Z2 =0). Equations
(33) then reduce to
F(0) Y4
K. = (0)e - _F(d)
1 2 sinh yd
‘ (35)
yd
x = E@ - e’ 7
2 2 sinh yd
and Eq. (22) becomes
F(0) sinh y(x-d) -~ F(d) sinh yx + F) (36)

I(x) = sinh yd
Case III -- The line is terminated in its characteristic impedance (2= Z2 =7 0).
Equations (33) reduce to
1 v -yd
K, = -3 [Fv(d) + F(d) ] e
(37)

< =170 - rol
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and Eq. (22) becomes

%) = F(x) - 5 F () + F(d) Yx-d) % F (0) - F(0)] e

(38)

Case III is applicable to buried bare conductors except within about a skin depth

of the ends.

Case IV -~ The line is terminated in an impedance 1/Y . Equations (33)

then become

ey [y - FO] ¢ aey [y« F@]

K =
1 1=y eV o 1ey? e

(39)

o " @y [yE O - FO] - a-n[yE@ + F@]
(1- }/)2 e-yd - (1+ y)2 e)"d .

Case IV is applicable to the buried bare conductor to within a few meters of the

ends.

When (Y = jk) (x+a) is large so that the approximation of Eq. (24)
applies and when yd is so large that the denominator of Eqs. (39) can be

replaced by -(1 + y)2 exp (yd) , Egs. (39) approach

yFV(d) + F(d)

K =

1 (1L +y) evd
(40)
- YE, (0) = F(o) L_1l-y YF (d) + F(d)
2 1+y a +y)z eyd
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Substituting Eq. (24) in Egs. (21) and (29),

YF (@) = Fa) = -2 @A By yan) - T D ey v 7
(41)
~jk(d + a) L1 F1
and
F(x) = - 5 [ W By) + T gy
(42)
_ e-.]k (x+a) [S(Y,X) . S(")/,X)
x+a jk+Yy jk=y
where
B(y) = log jki - 0.577 2157 (43)
and
N
S0.x) =D ’” . (49)

e | k)

Using these values in Egs. (40) and noting that

e/ Lk V¥

Ix) = K; 0

+ F(X)
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we obtain

o-ik(x+a)

:A_ S(Xs)gl S(_Y’X)
19~ 51" =m [jkw M e
-jka
-yX € y=1 S(y,0) _ S(-y,0) _
Toe a v+l k+y K-y 1} (45)
-jk(d+
| ridx) el S8 YL Scrd )
d+a jk+y y+1 jk-vy

where terms involving exp [ -y(x+d) ] and exp [-y(Zd +a- x)] have been
neglected. Far from the ends of the wire, exp [ -y(d-x) } and exp (-yx) are
both small if the real part of the argument is large. Furthermore, when
y(x+a)>>1 , the value of S(y,x) is closely approximated by the first term.
Assuming also that y >> k,

o~ik(xta) o5
x+a y2

m'p>

Ix) ~ - (46)

far from either end of the wire. This approximation is useful for computing the
current induced in buried bare conductors over a few hundred meters from the
transmitting antenna. If the other two terms of Eq. (45) are included, the

current can also be computed near the ends of the wire.
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Iv CONCLUSION

A study of the cable current problem has led to the development of a
relatively simple analytical theory based on a transmission line model for
calculating the current induced in a conductor by electric fields tangential
to the surface of the ground. In this transmission line theory it is assumed

that the conductor is isolated or that other conductors, if present, are far

enough away that they do not appreciably affect the tangential electric

fields in the vicinity of the conductor. Currents measured in the cables
studied in this note indicate that the transmission line theory is valid
for isolated conductors, for arrays of bare conductors in contact with

the soil when the conductors are spaced several skin depths (in the soil)

apart, and for insulated conductors above or below the surface,
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