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1. INTRODUCTION

In EMP (Electromagnetic Pulse) studies; a typical problem is to determine
the response of a scatterer due to a transient source. This problem is commonly
attacked first in the frequency aomain and then an inverse Fourier transform is
employed to obtain the solution in the time domain. Briefly this procedure
may be outlined below. Let G(;, t) be the response (e.g., current, scattered
field, etc.) due to a time~harmonic source S(;)e-iwt. Then G(r, t) must

also be time-~harmonic

~iwt

c¢(r, t) = GO(E?, w) e (1.1)

and furthermore, GO(;, w) 1is regular in the upper half complex w-plane
(causality condition).
Now, let us consider the response due to an arbitrary transient source

V¥(t) S(r) where
v{c) = 0 , t <0. (1.2)

To this end, we first write V(t) in terms of its Fourier spectrum

it

{ V() e dw (1.3)

lr—'

v(it) =

[S%
=]

where C is a contour shown in Figure 1, and Vo(m) is a regular function in

o .
the upper half complex w-plane. Applying the superposition principle, we
may readily arvrive at the conclusion that the response R(r, t) due to the

transient source V(t) S(r) is given by

R(E, ©) = 5= |V () 6 (F, w) o IOt 4y . (1.4)
f
<« C !



For t <0, we may close the contour C with a semi-infinite circle in the
upper w-plane. Since Vo(w) and Go(w) are regular there, it follows
immediately | _

R(r, t) = O, t -0 (1.5)
which is to be expected. Thus, the main problem is to evaluate the integral
in Equation (1.4) for t > 0. In many cases the integral has to be processed
numérically. Not only that it requires extensive machine calculations, but
this procedure has to be repeated whenever the source Vo(w) is changed. In
this connection it is desirable to be able to decompose the part of contribution
to R(x, t) from the scatterer GO(;, w), and that from the source Vo(w). When
this is accomplished we may predict some general features of the response
R(;, t) without even specifying the source, and this will simplify many
considerations in EMP studies.

Baum2 recently proposed a singularity expansion method to accomplish the
decomposition mentioned above. The approach is to study the natural resonance
frequencies of the scatterer under consideration, which is precisely specified
by the pole locations of Go(?, w)in the lower complex w—-plane. In addition to
poles, Go(;’ w) may have branch singularities. Thus, for t > 0, we may deform
the contour C in Equation (1.4) to enclose the poles and the branch cuts in the

—_ *
lower w-plane and express R(r, t) in the following form

o -iw t
R(r, t) = -i - V,(w) [Res. GOG, w)le oy Rer, £)
a (1.6)

' stands for "residue

where {mn} are the natural resonance frequencies; "Res.'
of," and Rbr(?, t) is the contribution from the branch cut integrals. A

study of Equation (1.6) immediately reveals that this approach is particularly

*
For simplicity we assume V (w) has no singularities. Otherwise, additional

terms shall be included ino(l.é).



useful provided that the following two conditions are met:
(A) Rbr(;’ t) if not identically zero is negligibly small as compared
with the residue contributions;
(B) Only the first few'{wn} have small imaginary parts.
Under these two conditions, R(x, t) is well approximated by the first
few residue terms in Equation (1.6), except for an initial period when t
is small. We note that each residue term consists of three factors:*
(1) exp iwnt represents the temporal variation with an oscillation
period determined by Re W, and an attenuation rate by Im w .
(ii) Res. GO(;, mn)gives the spatial variation.
(1ii) Vo(wn) brings in the dependence on the source, which is merely
a weighting factor and is independent of (r, t).
Thus, in the singularity expansion method, we are able to decompose neatly the
temporal variation, the spatial variation, and the source dependence. This
not only simplifies many numerical computations, but also provides
us a better physical insight of the EMP problem under consideration. Of course,
this is true only if the two conditions in (A) and (B) are met. There seems
no general way that we can test the satisfaction of these two conditions; we
almost have to consider specific examples and learn from experience.
The purpose of this note is to present one of such examples, and
hopefully to shed some light on the question whether the resonance frequency
approach is a useful one in the EMP study. The geometry that we choose to
investigate is a finite c¢ylinder with small radius—-to-height ratio, and the
cylinder is excited by a usual §-gap source at its center. Our choice of
the cylinder is based on the following two reasons. First, the cylinder is
by far one of the most common geometries encountered in the EMP study. Second,

there has been a large accumulation of knowledge on the scattering

* —
Using the terms coined by Baum, Res. G (r, w ) is the natural mode, and
Vo(mn) is the coupling coefficient. &




by a cylinder in the frequency domain which is necessary in the determination

of Go(;, w)in Equation (1.4) and its natural resonance frequencies. Furthermore,
the scattering by a cylinder with a transient source has been recently studied
by Sassman through numerical techniques,7which would provide us a valuable

check of our analytical results.

The organization of this note is as follows. In Section 2, the expression
for the induced current on the cylinder due to a unit-step source is derived.
Since the current in the frequency domain is well-~known, this step involves
only the taking of an inverse Fourier transform with respect to the frequency
w. The next three sections deal with the analytical evaluation of this
inverse transform. In Section 6, the final result of the current due to a
step source is discussed and compared with the numerical computations reported

by Sassman. Finally, a short conclusion is presented in Section 7.



2. CURRENT ON A THIN CYLINDER

®
In this section, we will derive the current expression on a thin solid

cylindrical antenna due to a tramsient source. The geometry of the antenna

is shown in Figure 2, and its radius-to-height ratio is assumed to be small

% << 1. {(2.1)

The antenna is excited by a voltage source at a small gap around z = Q.
First, let the source be a time-harmonic, unit-amplitude, slice-generator,

which gives rise to an incident electric field

(1) — -iwt
Ezl (r, t) = 6(z) e , at p = at . (2.2)

The induced current due to the source in Equation (2.2) has been the subject
of intensive research in the past. When the condition in Equation (2.1) is
satisfied, an approximate analytical expression can be found by the Wiener-

Hopf technique (Appendix A) and it reads

Iz, ) = 17 (z, w) + 8 g(gzzﬁz — [UGz = h, @) + UGz +h, )] .
(2.3)

The terms appearing in Equation (2.3) are explained below. I(w)(z, w) is

the current on an infinitely long antenna due to the source in Equation (2.2},
and is given by

z]

T _(=1) . 2ka N
7 T e t ot 7 in klz| , e 0
| o] Q.'n'F o]
1, W) = 2 (2.4)
Uz, w) s lz} »> a

*
As shown in Reference 3, there is little difference between a solid and a
tubular antenna as long as it is thin.



where k = w/c, ZO = 1207, and I = 1.78107. The universal function U(z, w)

on a cylinder has several different expressions. The one given by Kunz4

reads

_ 2m eik!zl
U(Z, w) = 2 5 (2.5)
z, on [2ik]|z]|/(Tka)“]

and the one given by Shen et al.5 reads

. ik]z] r
e

i ! 27i Q

U(z, w) = ~—/——— 4n 1 - - - 1.(2.6)
( Z, | " klzl + V(k2)Z+ 0.3 T 3
| 2n ) v 2"
- I'(ka) : -

Clearly, Equation (2.5) and Equation (2.6) agree when]ﬂ/a > =, Although
Equation (2.6) may give more accurate results for small[zVa, we use Equation
(2.5) in the following manipulation. This is because of the fact that the
branch singularities at w = f(c/z)/afg in Equation (2.6) were introduced

by Shen et al. in an arbitrary manner, and these singularities may affect the
evaluation of the current in the time domain (i.e. in the integration with
respect to w). The reflection coefficient R(w) appeared in Equation (2.3)

is that of a traveling wave at the end of a thin cylinder (solid or hollow),

and is given by approximately

Z
R(w) = 52 [2n(Tka)? - in] . 2.7)

It may be remarked that the expressions given in Equation (2.4) through
Equation (2.7) represent the most dominant terms in series expansions for
small (ka), and their higher order terms may be found in the literature.l

Next, let us consider the induced current on a cylinder due to a transient

source, namelv a step source (a DC source switched on at t=0) which gives rise




to an inci-dent electric field

Eéi) z, t) = (2.8)

l&(z) , £t >0 and p = at+ .

Using the Fourier transform as outlined in the introduction, it is a

simple matter to verify that the induced current is given by

, f -igt ,
I(z, t) = 5 : % I(z, w) e dos (2.9)

“C
where I(z, w) is given in Equation (2.3) and the contour C is shown in
Figure 1. Equation (2.9) may be compared with Equation (1.4). The remaining
step is to evaluate I(z, t) by deforming the contour C intc the lower
half w-plane and concentrating on the singularities of I(z, w). We will

separate I(z, t) in Equation (2.9) into two parts
Iz, t) = 1, o) + 19 (2, ©) (2.10)

where I<m)(z, t), the part from the integration over the first term in
Equation (2.3), may be identified as the induced current on an infinitely

long antenna due to a step source, and I<S)(z, t), the part from the second
term in Equation (2.3), may be identified as the contribution of the multiple
scattering between the two ends of a finite antenna. They will be evaluated

in the next three sections.



3. EVALUATION oF I 70 (z, t)

- First, we will evaluate I(m)(z, t), which is the current on an infinitely

long cylinder due to a step source. From Equations (2.3,(2.4), (2.5), and
(2.9), we have

r -iw(t - —IZT*-)

/
- ] ¢ duw (3.1)
o Jo win [iq / u]

I(m)(z, t) =

where q = 2 (<) (%) L a real constant.
a a r2

Equation (3.1) is valid when |z|>> a. Clearly,

2|

. (3.2)

I(w)(z, t) =0 , t <

For t > |z|/c. we may deform the contour C into the lower complex w-plane.
~ The only singularity of the integrand is that there is a pair of branch
points at w=0 and w = ©. Let us introduce a branch cut in the lower w-

plane along its imaginary axis shown in Figure 1, and deform the contour C

into P. and PZ' Note that

1
L
]w[ e 2 on Pl
w:
. T
-iy
lw| e on Py - ~(3.3)
The deformation of the contour results in
} 3 _lzl
. o (& = =) ,
1™, 0= & . dlol L (3.4
© lerln =4 - iﬂ? on =4+ in;
S # 0 Iw! ; IUJ] ,I
9



A change of variable with

|
le(t-%i-)rv (3.5)
yields
-V
1, 0 =2 : av .
© vien qlc 1;lZI/C) - im]f{in (t; z|/c) +in}]
0
(3.6)

The above integral has to be evaluated numerically. However, for the late

time behavior with
|
— (t - %J-) >> 1 (3.7)

the integral in Equation (3.6) can be estimated approximately as below. Under
the condition in Equation (3.7), the main contribution of the integral comes
from the portion between v =0 and v = Ve @ small constant. A good choice is

v, = /T =(1/l.78107).5 With this approximation, thation (3.6) becomes

1/T

1, ) ~ 2-5 . L AR (3.8)
o ‘. vitn gt - Iz]/c)}

Q v

When the integral in Equation (3.8) is carried out, we have the final result

ct - IzI

(=) _ 1
"z, t) v z ¢ 2Cct= [2]) |z ’ a
S -

>> 1.

(3.9)

This expression may be checked with the one obtained by Latham and Lee 8

10



through a different method. Their expression reads

L)

T ct - |z}
LL

1 -
s , »>> 1. (3.10)
Zo on] 2(ct ;a z )] a

(z, t) v

Note that Equation (3.9) and Equation (3.10) agree for large (ct ~ |z])/a.

11




4. NATURAL RESONANCE FREQUENCIES

The more interesting part of the current is I(s)(z, t) obtained from

the multiple scattering between the two ends of the finite eylinder. It

follows from Equation (2.3) and Equation (2.9) that

-

(s) i ! R U(w, ){U(z -~ h, w) +U(z +h, w]
177 (z, £) = 57 j wil ~ R U(2h, w)]
C
e U g4y . (4.1)

There are two types of singularities in the integrand in the lower w-plane.
In addition to the branch cut running from w = 0 to w = = along the negative

imaginary w—~axis, there are simple poles (Figure 1). The location of the poles

is determined by the following equation:
1-RUQh, w) =0. (4.2)

The solutions of Equation (4.2), denoted by {wn}, are the natural resonance

frequencies of a thin cylinder. We will now consider the solution in some

detail. Explicitly, Equation (4.2) reads as

L+ oi2kh E 2¢n(lka) = im =0 (4.3)

2¢n(Tka) = in(4ikh) J

.

where k = w/c. Let us concentrate on the sclutions of @ such that

w .
c @ << 1. (4.4)

Under the condition of Equation (4.4), the equation in Equation (4.3) can be

approximated by

fn(4kh) - ir/2 =0 . (4.5)
2en(T'ka) E ‘

12
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Obviously, Equation (4.5) admits a string of solutionms of the form

nr + A
n

kh = 5

’ I‘l=:|_'l, '_*_'3’ 1'5’ - == (4.6)

where An is to be determined. Substituting Equation (4.6) into Equation

(4.5) yields the result

N wn(2nrn) - i(w/2)
An i e s Eﬂ)z . 4.7
R )

Thus, the solution for a string of natural resonance frequencies takes the

following approximated form
. 2 -
1+ 1 ;—Qn(an)

4nin(T %-i%lﬂ) j

nnc

1+ , (4.8)

—

n'—'i-l’ :’:3,1‘5,--_
which is valid under the condition of Equation (4.4), or more explicitly

m=.l_.|_““(-;-)<<1. (4.9)

For m v 1 or larger, no convenient expressions can be found for'{wn}.
Fortunately, those higher order resonance frequencies have large imaginary
parts, and usually contribute very little to the late-time behavior of the
current. The real and imaginary parts of {wn} in Equation (4.8) can be separated
as below. Remember that, for negative n,

Zn 2n7 = 40 Zlnlﬂ + im . (4.10)
It follows from Equation (4.8) that

nmc 1

Re w = 1 - : (4.11a)
QInI[Qn(h/a) - n 2.8|n}]

13




anlniﬂ
Imw = - —4‘]{—1 (4.llb)
n [zn(h/a) - in 2.8|n]|]

for n =41, +3, +5, - - - .
Note the relation that
Re w = = Re w (4.12a)
-n n
Im w = Im w (4.12b)
-n n

which is to be expected. A sketch of {wn} in the complex w-plane is given

in Figure 1. At this point, it is interesting to point out that the sclutions
in (4.11) are not the only natural frequencies of a cylinder.2 Rather, they
represent the string of natural frequencies which is closest to the real
w~axis (implying least damping), and may be considered as the principal
natural frequencies.

It is also interesting to mention that the principal natural frequencies of a

thin cylinder have been studied quite extensively in the literature. We will
now compare our result in Equation (4.8) with some of the classical ones.

For the convenience of comparison, let us introduce a parameter used by

Schelkunoff 8 known as "logarithmic decrement,"

ZN[Im w_|
o) = ——-———-—-——Il- =

|Re wnE

T
Qn (4.13)

where Qn is the usual quality factor. From Equation (4.1l1), we may obtain the
expression for 5n s

in 2|nln
nlten (%) - 20 2.8 [n} -

. (4.14)
]

n

4|n|

14
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The first two Sn as derived from Equation (4.14) are tabulated in Table I
where we have also given the expressions obtained by other authors. All

demoninators are in agreement in the asymptotic sense (i.e. for large h/a).

However, our numerical values in the numerators are somewhat different from
all the others. A possible explanation for this is that all the other
authors, except Hallén, derived their results based on spheroids or biconical
antennas, ;nd inaccuracy may have resulted because of the approximation
of the cylinders by those geometries. 1In the case of Hallén, he used the
following expression for the universal function

ik|z|

Uz, w) = 2rie > (Hallén) . (4.15)
z, snf2ik|z] /T (ka)”]

When compared with the one used in the present paper, we find that Hallén's

expression in Equation (4.15) differs from our expression in Equation (2.5) by
*

a factor ' = 1.78107 in the argument of the logarithmic function. It has been

shown by Kunz4that Equation (2.5) is more accurate thanm Equation (4.15).

*
It may be noted that,if Equation (4.15) is used in Equation (4.2), we may

recover exactl the n rical values 1 '
pecover exact X u?e 1 values 2n4§?e numerators of 6 and 63 given

L5




Table I. LOGARITHMIC DECREMENTS
Abraham:
2.43 1.17
1= h 8y = h
n (z)+0.69 in (;)+0.69
Brillouin: .
'f 1.22 0.47 :
A b 63 = B ’
i ¢n (=) + 0.69 gn (L) +0.69
% a a
; A it i ot ey
" Hallén: i
2.43 1.17
8y = h $q = h
¢n (=) + 0.69 ¢n (=) + 0.69
a a .
i ;
i Page: )
; N
% ;
‘ 61 _ §,43 63 - 1}1'24
; ¢n (=) - 0.52 tn (=) + 0.94
% a a :
T
' Schelkunoff: :
i
51 = _.__2.:_4_3_ 63 - 1‘3.1..17
: in ( -; ) in (“a‘ )y - 0.2 “
i ‘
; Lee:
1.84 0.98
81 7 h 63 h
in (-z )y - 1.28 n (-g )-2.21
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(s)

5. EVALUATION OF I (z, t)

With its poles determined in the previous section, we will now consider
the integral for I(s)(z, t) in Equation (4.1) under the late-time condition
(ct/h) >> 1. Deforming the contour C in Equation (4.1) into the lower
complex w-plane (Figure 1), there are two types of contributions to I(S)(z, t)
one is that of the branch cut integral denoted by Iéi)(z, t), and the other
is residues at.the poles at w ='{wn} denoted by Iéz)(z, t).

First, let us discuss the branch cut integral Iéi)(z, t). Using further

simplified expressions for U(z, w) in Equation (2.5) and R(w) in Equation

(2.7),

ik|z|
Uz, w) = -27me
Zoﬁ,n(l”ka)2 (5.1
Zo 2
R(w) = — in (Tka) (5.2)
2
we have from Equation (4.1) that
wlz -iw (t - E)
I(s)( t) _ :];_ cos o e 3 d
br ) Zo cos uh iq *
branch c win ( " ) (5.3)

where q is defined in Equation (3.1). Combining the integrals over P1 and

P2 (Figure 1) and introducing a new variable

Z s _ h
u = iw (t c). (5.4)

The integral in Equation (5.3) can be written as

x

cosh ( E-tu-z-—h ) Sl
Iéi)(z, £y = %2—71 — - du.
o cosh ( m ) u[lnii(-t—-—a———/ﬁ]z
0 (5.5)

17




Following the same argument used in association with the evaluvation of

Equation (3.6), we may approximate Equation (5.5) by

/7
2, 21
(s) ~27 { 1 (h" -~ z%)u
I (z, £) ~ — 1 - [
br 24 i 2 (et -w? |
0
: e " qu o Z2T 1
ulin gt - h/c)]z Z onl 2(ct = h) 12
u ° Fa l;’ !
[ 2 2,3
h” - 27)
+ 0 55 ; (5.6)
¢t

which is valid under condition (ct/h) >> 1.
Next consider the contribution to Equation (4.1) due to theprincipal poles at
w = {mn} specified in Equation (4.8). Using the expressions in Equatiecn

(5.1) and Equation (5.2), the integrand of Equation (4.1) may be approximately

S
written as
cos £
-i c e-iwt
-i (5.7)
Z wh .
o cos —— win(iq/w)
Its residue at w = W, is approximately given by
nnm z
; cos( 371 ) ~tw_t
e . (5.8)
30nm in (4 h|z|/F232nw)
Summing the residue contributions due to the principal poles, we have
g nw z
(s) \ 5 cos (-3 ) -l t
I (z, t) ~ / e (5.9)
po e 30aw en (4 h]zI/l"Zazmr)
where {mn}'s are given in Equation (4.8). As mentioned in the paragraph -

18
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following Equation (4.12), the {wn} found in Equationm (4.8) are the principal

poles. Thus, in addition to the terms in (5.9), we may add residue contributions

from other poles. However, due to the fact that those additional poles are

relatively far away from the real w-axis, corresponding to larger damping

constants, they are less important in the late-time behavior. Hence, we have

not included them in Equation (5.9).

19




6. LATE~TIME BEHAVIOR OF I(z, t)

Summarizing the results in the previous three sections, the late~time
current due to a step source in Equation (2.8) on a Delta-gap excited

cylindrical antenna is approximately given by

an

. 1 )

I(z, t) ~ o - - ‘
> z_ ) 2Cct = |z]) 1tz f2(ct = h) itz

o :‘Qn[ Fa i;ﬁ n Ta E'] Ji

nm z .

5 cos (—f H) ~ 1wnt

+ 30am 2 2 e * (6.1)
= Qn(Aih]z]/F a nn)

The first term in Equation (6.1) can be further simplified to give the result

T @ll .E)
i 2 h -iw t
I(z, £) ~ Y 1 cOs h
ZEJ 30nm tn(4 h[z]/anznﬂ)
L2 jz] - n
Zc ct[ingEIJgLiz (6.2)
T'a

The final result in Equsation (6.2) is approximately valid under the following
conditions:
(1) thin cylinder, (h/a) >> 1;
(1i) away from the feed, |z|/a >> 1;

(iii) late-time, (ct/h) »> 1.

The first few terms in Equation (6.2), due to the residue contributions,

attenuate relatively slowly with time. Explicit.y, the exponential attenuation

20



constant for the twe most dominant terms is given by

c 0.46
Imw) =Imw ) = 3 5na/n) + 1.03 ' 6.3)
_c 0.74 i L (6.4)

Imwg = Imw 3 = 3 700G h) + 2.12

If we retain only the first two terms in the series in Equation (6.2),

i.e. n = +1, the current expression becomes

cos (1 Z) f )
2 h -0.46 ct
I(z,t) exp | et
157en(4 hlz|/r%a?n) L in(h/a) - 1.03 h | e
6.5
oein I 0.25 ot
s:.n\ -2— 1 - :T )

Lo tn(h/a) - 1.03

;i h - lz! !

0 ct 2%

cttn ( 3 )] /

The first term is due to the most dominant pole contribution while the
second term is from that of the branch cut shown in Figure 1. At this
point, it is appropriate to mention a recent study made by Baumz, and
Marin and Latham9 in regard to the presence of branch cut contributions.

For the scattering of an incident plane wave by a finite conducting body,

they indicated that there is no branch-cut contribution to the time-domain
response. Their statement, however, does not contradict the result in
(6.2) for the simple reason that the source considered here is an idealized

delta-gap gemnerator rather than an incident plane wave.

-Now we will make a qualitative comparison between the importance of the
dominant residue term in Equation (6.5) and the term due to the branch cut

integration. The temporal variations of these two terms are

21




-0.46 f !
Residue: exp § 9 % ﬁE § ] (6.6) ’
I a2n(h/a) - 1.03 i [
1
Branch-Cut: 3 (6.7)
(ct/h) [2n(ct/h) + in(h/a)]
Let us consider the following two time intervals:
W (2> (5 > 6.8
. a h .
1) G e (2 e 6.9)
! a ‘

During the first interval in Equation (6.8), the residue term dominates, while
during the second intzarval in'Equation (6.9 ), the term from the branch cut
integration dominates. However, it must. be emphasized that in many EMP
problems the response in the second interval usually has already become
negligibly small, and therefore is of little practical interest.

Next we will use a numerical example to illustrate the accuracy of the
simple formula for the natural frequencies in Equation (4.8}. Sassman7
recently calculated the current induced on a finite solid cylinder by a unit
step of magnetic field traveling in the broadside direction of cylinder.* He
formulated the problem first in terms of an H-integral equation in the frequency
domain, and then obtained thg transient solution through the inverse Laplace
transform. In both steps, he used numerical techniques with the aid of a
computer. A result obtained by Sassman are reproduced in Figure 3. The key

features of his results may be summarized as below.

(i) The relative current magnitude becomes quite small for

(ct/h} > (h/a). Thus, for all practical purposes,it is necessary to

<

concentrate on only the time interval O = (cc/h)y - (h/a).

* ) . - = . -

Note that the excitation uscd by Sassman is different from ours, but this fact

merely changes the weighting factor and does not affect the spatial and the ~
temporal behavior of the current.

22

-------------I-------lIl-IIIIIIlllIllllllIIlIIlllllllllllllllllllllllllllllll



A T4

(ii) The current oscillates between positive and negative values
with respect to time. Except for the first several cycles, the period of
oscillation is nearly a constant for a given (h/a). By curve fitting, we
have determined the period for three different (h/a) and their values are
tabulared in the last colu@p ;n Table II,

(1ii) The magnitude of the current decays nearly exponentially with
respect to time. Sassman determined the time constant t (defined by the time
variation exp ~(t/1)) for each case by curve fitting. His result is tabulated

‘

in the last columm in Table IIT,
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it is somewhat amazing that all the above three observations from Sassman's
numerical computation check with the predication of the first term given
in Equation (6.5). Quantitatively, the oscillation period T and the time

constant T as derived from Equation (6.5) are

T = (—f_}—) sec (6 10)
_ 0.25
tnlh/a) < 1.03

T = m(héié— 1-03 (% ) sec . (61D
Their numerical values for the three cases considered by Sassman are given
in Table II and Table III. For comparison purposes, we have also included
the values computed from the formulas given by Schelkunoff.6 They all agrse
with each other reasonably well except for one case. For (h/a) = 10, the
time constant given by us and that by Schelkunoff is shorter than that
given by Sassman. One possible explamation is that,in this cése,
n(h/a) = 2.3 is not large enough for the analytical formulas of the type

given in Equation (6.11) to be accurate.



7. CONCLUSION

The motivation of this note is to answer, at least partially, whether
the singularity expansion method developed by Baum2 is useful in the EMP
studies. The scattering of a unit-step d-gap voltage source by a finite
cylinder with small radius-to-height ratio has been chosen as a test case.
We have derived an approximate formula for the natural resonance frequencies
in Equation (4.11), examined the late-time behavior of the induced current,
and compared its time constant and period with the numerical calculations
performed by Sassman7 (Section 6). The main results and conclusions of
these studies are summarized below.

(i) The current expression in the frequency domain has two types
of singularities in the lower complex w-plane, namely, infinitely many
simple poles (corresponding to the natural resonance frequencies of the
cylinder) and a branch cut (Figure 1). Roughly speaking, the contribution
from the poles dominates for time (ct/h) < (h/a), and that from the branch
cut for (ct/h) > (h/a). However, in many EMP studies with a tramsient
source, the response usually becomes negligibly small (die - out) before
(ct/h) = (h/a). Thus, for all practical purposes, only the response in
the time interval 0 < (ct/h) < (h/a) is of interest, and that response can
be well predicted by the residue contribution except perhaps for (ct/h)

small (early-time response).

(1) With large (h/a), the natural resonance frequencies for a

cylinder can be found explicitly and are given in Equation (4.11). Our

result differs somewhat from those results obtained by earlier workers, and

it is believed to be more accurate.

(iii) During the time interval 1 << (ct/k) < (h/a), the current can

be approximataely described by the residue contributions corresponding teo the

first resonance frequency alone(i.e. Lquation (6.3)). The oscillation period,
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and the time constant for the first resonance frequency are given by
Equation (610) and Equation(6.1l) respectively. These two simple
formulas give good results as. compared with the numerical computativns of
Sassman (see Table II and Table III).

From the above discussions, it is cleay that the natural resonance
frequency approach is indeed a useful method in the EMP studies. For the
case of 2 thin cylinder a simple expression as that in Equation (6.5) predicts
all the main features of the late-time benavior of the induced current,
thus avoiding the extensive numerical computations necessary in other
approaches. for scatterers whose geometries are more complex, it is
probably not possible to determine their resonance frequencies by analytical
means as we have done here. 1In thcse cases, numerical means have to be
resorted to, and the development of techniques for that purpose is certainly

a worthwhile subject for future EMP researches.
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Figure 1.

Contours and singularities in comples w-plane
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Figure 3. Current on a cylinder induced by a unit step of magnetic field

versus ct/h computed by a numerical method (Sassman)



