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The Response of an Arbitrarily Terminated Wire
Near the Side of a Conducting Cylinder

Leonard D. Licking
Sandia Laboratories
Albuquerque, New Mexico 87115

ABSTRACT
A perfectly conducting cylinder which has a wire running
parallel to its axis and very close to its surface is assumed to
be illuminated by a plane wave electromagnetic field, Formulas
for the currents in arbitrary loads which connect the ends of the

wire to the cylinder are presented.

1. INTRODUCTION

Many missile systems have been designed with external cables which run
parallel to the axis of the missile and very close to the missile skin, These cables
may be able to transmit significant amounts of energy to internal electronic pack-
ages when the structure is illuminated by an electromagnetic field, To be able to
predict whether the missile will function properly after exposure to electromagnetic
fields, one must be able to determine the currents and voltages induced inside the

missile,



This }Sroblem has been previously addressed by Harrison [1967]; however, .
his analysis neglected the radial electric fields at the ends of the cable, In this
paper, it is shown that these radial fields are major contributors to the total sys-

tem response and must not be neglected.

For this analysis the missile and cable will be modeled by a perfectly con-
ducting cylinder and a parallel wire that is connected to the cylinder through arbi-
trary impedances at each end of the wire (Figure 1). The cylinder has a half-
length of h and a radius of a; the wire has a length of £ and a radius of a; and the
bottom termination of the wire is located a distance g from the center of the cyl-
inder (g < 0 if the bottom connection is below the center of the cylinder). The
minimum distance from the cylinder skin to the center of the wire is ¢; the angle

formed by the positive x axis and the line which connects the axis of the cylinder

to the axis of the wire is §. The incident field is assumed to be a plane wave which .
propagates in the positive x direction, is polarized in the z direction, and has an
electric field of magnitude Ej = |E,

inc ‘

2, METHOD OF SOLUTION

As in the procedure of Harrison [1967], the wire and its image in the per-
fectly conducting cylinder will be treated as a transmission line that is excited by
that component of the electric field which is tangent to the wire and its image elec-
tric field in the cylinder. The electric field to be considered here is the incident
field plus the scattered field from the cylinder. Both axial and radial fields near
the cylinder must be found, since the tangent to the wire is in the radial direction

at the ends of the wire.

Note that this procedure accounts for the effects on the wire due to the pres-

ence of the cylinder, but the effects on the cylinder due to the presence of the wire



are neglected. This approximation should have little effect on the answer, since

the volume of space occupied by the cylinder is much greater than that of the wire.

The response I(z) of a transmission line when driven by a distributed voltage

source V(z) is given by

g+4
I(z) = /é G(z, z")V(z') dz'. (1)

Here, G(z, z') is the appropriate Green's function for a transmission line,

For this problem, V(z') is that component of the electric field tangent to the wire.

3. FORMULATION

When the cylinder is illuminated by an incident plane wave with time varia-

tions of the form ert, the scattered field at the point (r, ©, z) is

= e - 1 oz
Es(r, ®, z)= EO[-JUJA + J_mMOeOV(V A)] (2)
Here,
- “Oa h 2m =l ! e-JkOR ! t
A(r,cp, Z)z.T?rﬂ'_,/_‘h./O‘ J(CQ, Z)'—_R‘_dcp dz
(3)
and
R = \/(z - z')2 + rZ + a.2 - 2ar cos (¥ - ) ’ (4)
where ko = w/c, and J(9', z') is the current density on the cylinder due to a unit
incident electric field,
Since the incident electric field is parallel to the axis of the cylinder
— -jkoe cos ¢
Einc(a+ e, ¥, z) = -Esz(a, Y, z) e a, (5)



where Esz is the z component of ES, -h<z<h, and EZ is a unit vector in the z
direction (see Figure 2). The total electric field is the sum of Einc and Es' The

total electric field near the wire (with the wire removed)} is

- —waO 24 -jkoe cos |
Et(a+ e, ¥, z}) = 5 kogA(a-:» e, ¥, 2y - A (a, |, z})e a {
ko Z Z
{3 . 1 I -
+\'a—r(V'A)ar+;—5(V A)acp+$(v &t cate
=1
a - -jROQ.COS w _ (6)

=y

Along the wire, the distributed voltage source V(z) is the tangential com-

ponent of Et(a + ¢, §, z); that is,

) _ rate .
V(z) = ztEtz(a +e ¥, z) 4+ zfa E. (r, ¥, 2) drg {8(z - g) - 6(z -4 - g)i] ()

In (7}, Etz and Etr are the z and r components of Et’ §(z) is the Dirac delta func-
tion, and the factor of two is due to the image electric fieldin the cylinder. Equa-

tions (6) and (7) yield

ijEO 2 -jkoe cos
V(z) = - ——l:T— kaAZ(a. +e, ¥, z) - Az(a, Y, z) e
0
3 - _ -jk.€ cos ¥
+5_z(v'A)ir=a+e-%(v.A)lr=ae ’
=y o=y

> ate -
+ kg l Afr, b 2)dr+ v AL - Al
©




{6(z - g) - 8(z - g -,uﬂ

kZ 0

ZJ(DEO ZA 5 ) _
:-———k{ z(a.+ e, ¥, z) - A (a, V¥, z)}+$ V'Alr=a+e'V'Alr=a
0

, [3Fe
+1k0 fa A (r, §, z2)dr+ V- A\r=a+€ -y - AIr:a}cp

6(z - g) - 8(z - g - )}

2 S - -jkoe cos Y
+§kOAZ(a’ @, z)+"a_zVA§ :a{l-—e }

%=y

-zwaO 3F 2 ate
:————kg [ROA1+ a + {ko ./Bj A_r(l', ¥, z) dr + F} {6(2 - g) - 8z - g - z)}
_ -jkoe cos |
-2E nc(a; ‘y: Z) . aZ:l ~ € } . (8)

Here,

Al(e, v, 2) =Az(a+ e, ¥, z)-A_(a, ¥, 2)

4

—Jk R

21T O 1 2
,/' ,/~ - - = = T (@, 2" dy' dz', (9)
z
2
i
Rl - er=a+€:’ RZ = er:a’ g £z, z <g+ *e,
=y P=y
and
F:V.A{I‘=a+€-v. AIr:a ’ (10)
C\D:‘l‘ Qp:\l[



If the ¢ component of J is negligible, (8) can be written

-ZEij 2 82
V(Z) =—Z_— kOA1(€: q;: Z) +'—_2Al(€: ‘lf, Z)
ko oz

3 -jkoe cos
+55 A (e ¥, z){@(z-g)-é(z-g-z)}]-Eo{l -e } < (11)

The Green's function for current when the transmission line is driven by

a voltage source is

ika(z-2") j2k(z'-g-4) -ji2k,(z-g)
e (l-pze 0 )<l-pge 0 )

-j2ko.€
ZZC(l - pgpz e )

Gz, z') = (12)

jk(z'-2) jek (z-g-4) -2k (z'-g)
eo <1-pze 0 )(l-pge 0 )

-jzkoz)

,gsz<z'<sg+ 4

s, gsz'<z<sg+ 4.

24C<1 - pgpz e

Here,

27 - Z

:—L———c.
pg ZZg+ ZC > (13)

zzz- Zc

Pp=%7 v 7 ° (14)
£ c
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. and

N
1

. lzozn[e/al + 1/(e/al)2 - l:| (15)

the characteristic impedance of the line

(the wire and its image).

In (13) and (14) two times the terminating impedances are used because of their

images in the cylinder.

Substituting (11) and (12) into (1), integrating by parts (twice where neces-
sary), and evaluating the result at z = g and z = g + ¢ yields the currents in Zg

and Z ,. The results are

J)

-(1-p )E -jk,4 ik b -ik. 4
I = g 0 c e OAl(e,\U,g)<eO+pze 0

o SFI)
Zc(l - pgpz e )

-jkge cos § -jkgh ~jkg s
-(1+pE)Al(e,\b,g+E)+l-e )l-e )l-pze /jko

(16)

and

-(1 -0 )E ik, 4 kA4 -jk. 4
I = £ 0 7T 4c e O[Al(e,\l,t,g+£)<eo+pge 0)

i -jkoe cos ..jkoz -jkg L
- (LEpAy (e b g) +(1 - e )(1 - e )(1 - pg e )/jko :

11



Equations (16) and (17) are formulas for the desired currents. Voltages can .

be found by multiplying (16) and (17) by the appropriate load impedances,

4, RESULTS

If the wire is shorted to the cylinder at both ends,

pg = pz = -1
and
ZEO -jkoe cos { '
Ijz,sc = - Zc [CAl(e, v, g+ 4)+ (l - e )/_] 0] . (18)
For koh 1, Al is proportional to w and, therefore, IZSC is proportional to

w if cos § = 0 or is constant with respect to w if cos § # 0; that is,

Lo}
1

Isc Clw if cos =0 (19)

or

I

fsc

C, ifcos §y #0. (20)

Cl and C2 do not depend on w. For pg = pz = -1 and koh < I, equation 50
from Harrison [1967 ] reduces to the form
Ige = Ca/w - (21)

. The difference between (21) and (19) is due to the radial fields near the

ends of the wire.

12



Examination of (11) shows why the radial fields cannot be neglected. In (11),

if koh «< 1, the term

2

(W/kg)%? Al(€9 \l’, z)
Z

. ‘ . 2
is constant, wAl varies as W , and

: -jkoe cos §
varies as W. Therefore,
2

(w/kg): ZAl(e, v, z)
z

is the dominant term in (11) except at z = g or g + 4. The term
12\ A (e, U, )8 8 4]
w/kg) 57 A(e, Vb, 2)[8(z - g) - 8(z - g -

is a result of the radial field at the ends of the wire. Integration of these two

terms along the wire yields

g+4 52 g+l 3
'/g‘ 3 2 A1(€! ‘Jr[: Z) dz +/ _a—Z-Al(e’ ‘l’: Z)[G(Z = g) - 6(2 - g - ’e’)]dz
z g
3 z=g+ 4 3 z=g+4
=357 4,0 ¥, 2) ) -5 Ay(e b, 2) =0 . (22)
z=g z=g

Equation (22) shows that the dominant part of the integral of the z compo-

nent of the electric field along the wire is the negative of the integral of the radial

13



component of the electric field at the ends of the wire. The net effect is that these
two terms tend to cancel each other and that the remaining terms in (11) are the

dominant terms.

Each of the two terms of (18) has a distinct physical interpretation. Let

Izsc = IJZsz:l + IZSCZ (23)
where
ZEO
Izscl = - Zc cAl(e, b, g+ &) (24)
and
ZEO -jkoe cos §
M2 T Z_\ 7 © )/Jko : (25)

Equation (9) shows that Al(e, ¥, z) is dependent on the current density on
the cylinder; in fact, Al(e, ¥, z) is nearly proportional to the product of ¢and
the current density at the point (a, ¥, z}. Through use of available current dis-

tributions on a cylinder [Harrison et al., 1967], (9) was evaluated numerically

for A;. The current distribution program of Harrison et al. [1967] neglects the

effects of shadowing so that J_ is independent of ®. Therefore, in this calcula-

tion, Al was not a function of §y. Numerical results show that Al is proportional
to €. The shape of the graph of Al(zl)/e versus koh (Figure 3) confirms that Al’
and therefore Izscl’ is nearly proportional to the total current on the cylinder

at z = z,. Here, Al(e, §, z) was written as Al(z) to emphasize that Al(e, i, z)

I

is independent of | and nearly proportional to ¢ when shadowing is neglected.

14




I,@ch is a result of the second term of (8), which is

-jkoe cos
Vz(z') = -ZEO(I -e ) . (26)

Since koe « 1, for all frequencies of interest

V,(z') = -2jEkye cos § = -jw2d._ (27)

where @inc is the magnetic flux per unit length due to the incident field which is
enclosed by the wire and the cylinder skin. Thus, (25) is an equation for that
part of the current due to the derivative with respect to time of the enclosed

magnetic flux of the incident field.

Note that the short-circuit current is independent of the length of the wire
and has no resonant frequencies corresponding to the length of the transmission

line (wire). The lack of resonant frequencies is due to the distributed source

V{z).

A numerical calculation will give an indication of the currents which can
be expected. Consider a missile system with the following parameters: h =5 m,
a=0.5m, a = 2.5 x 10"3 m, g+ 4£=0, = lO-2 m, and § = 7. Let the incident
electric field have a magnitude of 1 volt/m and a frequency of 10 MHz., Then,

Zc = 247. 6 ohms and koh = 0.955. Using Figure 3 gives

2 x 10-2

g X1

llzscﬂ =1x

5.7 x 1074 amps ,

15



lx-—é—gxlo-z .

zscll = 247,

8.1 x107° amps ,

and
II |~6 5xlO"4 amps
ssc . .

Multiplication of these currents by the high-magnitude electric fields due to EMP

or lightning would result in a significant amount of short-circuit current.

5. COMPARISON TO EXPERIMENTAL RESULTS

An experimental model was mounted on a large metal ground plane and il-

luminated by an electromagnetic field. The model and its image in the metal

ground plane form the free space equivalent of the structure analyzed in this re-

port. Parameters of the system had the following values: h = £ = 0,191 m,

9.5x10-3 m, a, = 4,1 x 10“4 m, € = 1.22x10-3 m, Zg 'Z,Q,: 50 ohms, and

a

¥

m/2 and 1.

Inasmuch as (23), (24), and (25) can be generalized to include cases where

the wire is not shorted to the cylinder, I‘€ can be expressed as

I,=0,+1,. (26)

If § = 1/2, thenI,, = 0 and no magnetic flux from the incident field is en--

42
closed by the wire and the cylinder skin., Figure 4a shows graphs of experimental

and theoretical values of current in the 50-ochm resistor, Z If ¥ =1, neither

I
Izl nor I£,2. is zero and both terms of (26) must be used., If koh < 0.2, lI;z,Zl > .
[Imlso that 1121 = [IEZI on the left side of Figure 4b and if 0.5 < kjh < 10,

16



. 11,: | > II,@Z‘ so that ]Izl =~ llzl | on the right side of Figure 4b. Thus, the tran-
sition region where both Iﬂ,l and II,Z, make significant contributions to I,Z is in-

cluded in Figure 4b,
6. CONCLUSION

‘A method for calculating currents and voltages induced in the 1oadé of a
cylinder and parallel wire configuration has been presented. Shadowing effects
have been neglected in the numerical results. Since Al(e, ¥, z) is nearly pro-
portional to the current density on the cylinder at the point (a, ¥, z), the high-
frequency portion of Figure 3 would be too small if the wire was on the illumi-
nated side of the cylinder and would be too large if it was on the shadowed side.

I would not be affected by shadowing.

4sc2

If the incident electric field was not polarized in the z direction, the results

. of this paper could be applied by defining Eo as EO = \Einc . EZI instead of EO =

|E, |. Since J_1is altered by the y component of E, , the assumption that the
inc o) inc

effects due to J,. are negligible may become less valid and, therefore, introduce

®

some error in the results.

It is possible that (6) could be used to calculate the electric fields near a
cylinder when illuminated by a plane wave. However, the derivatives in (6) would
have to be taken numerically after the integrals for A were evaluated, because the

derivative and integral signs cannot be interchanged when r = a,

17
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°<
[
U
X
z=h >
22'\
IE? <« z=g+14
2=0 —» .WIRERADIUS=a1
7 < Z°=(
g
lgf
Z=-h >
—» 28 |

Fig. 1. Model of the missile system.
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Fig, 2,

Geometry of model to be used
for calculating the spatial phase
change of Einc'
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Q=21In(Zh/a)=6
2=0.0

— 10, z=10,5h
@
)
<|—~l
2
1.0
0.1 -+ fmep— - H
0.1 1.0 10
koh

Fig. 3. Graphof |cA (e, @, z)/e]= lca (z)/e].
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2¢-1¢

Y =72
107
Q.
=
R
10 - « « EXPERIMENTAL
= DATA POINTS
T —— THEORY
10-7 -+ ——
0.1 0.5
koh

U=
107
_ T
= 1
i . « « EXPER IMENTAL
] DATA POINTS
= —— THEORY
10_6*: H it
0.1 0.5
koh

(b)

Fig. 4. Comparison of experimental and theoretical results.



APPENDIX

NORMALIZATION
AND TRANSIENT RESULTS
As shown in section 4, the currents in Zg and Zz can be broken into two
parts. One part can be normalized with respect to the cylinder parameters and
the other part cannot be so normalized, However, the part that cannot be nor-

malized can be expressed by an algebraic formula making normalization unneces-

sary.

From (17) the two parts of I'e are

-(1 -p )E -k Jkq4 -jka 4
0 0 0 0

3t - SIS Aple voed L)'(e TPy )

ZC<1 - pgpz e )

- (1 + pg)Al(e, ¥, g) (A. 1)
and
. -(1-p)E, : -jkge cos 1§ . kg2
L2 -j2K 8 - ¢ - €

Zc<l pgp'6 e )

-jk a2
(1 - Py e 0 )/jko ) (A.2)
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Normalization

Equation (A. 1) can be normalized by the following procedure. From (9),

Uy ,hoen iR iR
Ale b =% [ f - dp' I(z') dz' . (A.3)
1 gn® J-h Jo Ry R,

Here, it was assumed that J'Z is a function of z only and that

I(z") = Zﬂ'aJZ(z‘) . (A, 4)

From Harrison et al, [1967], I(z'} has the form

I(z") = hFl(z'/h, Q) . (A.5)
Here, Q = 24n(2h/a), and Fl(xl’ XZ) is to be read as a function of Xy and X5e
Using (4) it can be shown that

R, = hFZ[(z - z'/h, e/h, Q, (p- Y] (A.6)
and

R, = hF, [(z - 2)/h, 0, (@ - ©)]. (A7)

Substituting (A. 5), (A.6), and (A.7) into (A. 3) and using the change of dummy

variable z, = z'/h shows that

1

ca (e, ¥, 2) = hF4(Z/h, e/h, Q, k,h) . (A.8)

0

A1 is not a function of wbecause Jz was assumed to be independent of ®, Anal-

ysis of numerical results show that Fy has the form

F,(z/h, e/h, Q, k,h) =§ Fg(z/h, Q, k,h) (A.9)

24




over the range of values of ¢/h of interest. Thus,

cAl(e, ¥, z) = eFS(z/h, Q, koh) . (A.10)

Equation (A.10) justifies the normalization procedure used in Figure 3. If the

4.
load impedances are resistive, pg and p,are independent of w and are not affected
by normalization, because ZC is not changed by normalization. Substituting (A.10)

into (A. 1) shows

0

for resistive loads., Equation (A,11) is the general normalized equation for I,@l'

Short-Circuit Current - CW

If the wire is shorted to the cylinder at both ends, pg =P, = -1 and (A. 1)

and (A.2) become

-2cE
217 Z
c

—
|

Ale, ¥, g+ )

-2E
Z

0 eF (g + £)/h, Q koh] (A.12)

and

-ZEO -jkoe cos Y
11&2: = l -e /_‘Jko. (A.13)

25



Open-Circuit Voltage - CW

If the wire is open circuited at z = g + £ and shorted to the cylinder at z = g,
pg = -1 and Py = 1. Using (13), (14), (A.1l), and (A.2) it can be shown that the

two terms of the open-circuit voltage are

V,0cy = tan kW) [-Egea (e, ¥, g+ £)]
= (j tan ko) - EgeF (g + 4)/h, O, koh)] (A.14)
and
. -ikge cos ¥\
V ,0ez = (i tan koz)[-}:o<1 - e )/Jkojl . (A.15)

Transient Analysis

Transient response is obtained by using either

r(t) =% ’/0"50 Re[E(W)T(w)] cos wt dw, t =0 (A. 16)

or

r(t) = - % -/o. Im[E(w) T(w)] sin wt dw, t2 0. (A.17)

Here, r(t) is the transient signal, E(w) is the Fourier transform of the incident

electric field, and T{(w) is the CW transfer function,

The incident electric field will be assumed to be a step of magnitude, Ey

in the remaining portion of this report. Then

Ey
E(w) = 3 (A.18)

26




. and

2E )
_ 0 cos Wt
R(t) = - A Im[T(w)] - dw, t=0, (A.19)
Equations (A.1ll) and (A.19) show that (substitute IJZ,l for T)
ZEOe
1,0(8) = Z_ fo(g/h, 4/h, £, Py, 0, te/h) (A.20)

if the wire is terminated in resistive loads. Egquation (A.20) is the general nor-
malized equation for izl' Figures A-1 through A-8 are plots of f6(g/h, L/, pg,
Py Qs tc/h) versus tc/h for various values of the parameters g/h, 4/h, pg, and

0, (Q = 6 in all figures.
An algebraic formula for iﬁ?_(t) will now be found.

Multiplication of (A.2) by (A.18) and rearranging yield

(1 -p,)cE
_ 4570
E(w]l,, 2
C
1. e WP _ 4 pg){e-jwq _ e-jw(p+q)} ; pg{e-jwzq . e-jw(p+2q)}
7
(jw)
m . . 2.
Z (PP z)l e Ivetal (A.21)
i=0
Here,

‘ pefoos? (A. 22)
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and
q=4/lc. (A.23)

Multiplying (A.21) by the delay factor, e-Jwe/c, to force the signal to zero for

t < 0 and inverse transforming (A. 21) yield

: (- PgleEy & i .
1) = — zo: (g0 ) f(t - 2iq) (A, 24)
i=

where
f(t) = (t - e/c)U(t ~e/c) - (t -p - e/c)U(t~p=-cfc)-(l+ pg)

[(t-q-¢e/c)U(t-q-¢el/c)-(t-p-qg-¢e/c)U(t-p-gq- e/c)]

+ pg[u: -2q -~ ¢e/c)U(t-2q-¢/c)-(t-p-2q-c¢/c)
Ut - p - 2q - &/c)]. (A.25) .

The current at z = g + £ is the sum of (A.20) and (A. 24); that is,
1z(t) = 1£l(t) + 122(t) .

If the wire is shorted to the cylinder at both ends, (A.26) and (A, 24)

assume simpler forms.

Short-Circuit Current - Transient Response to a Step Incident Field

Inverse transformation of (A, 12) times (A. 18) shows that izscl(t)’ has the

form

eEO
foe(t) === f5<(g + ) /h, Q, tc/h). (A.27)
C
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‘ Graphs of f5 are shown in Figure A-9. For pg =P, = -1, (A.24) reduces to

ZEOe cos Y
t) = ——5—— fg(t, € (cos §)/c). (A.28)

i (
48c2 R

Figure A-10 is a graph of f8. The total short-circuit current is

i,@,sc(t) = izscl(t) + izscz(t)'

Open-Circuit Voltage - Transient Response to a Step Incident Field

By expanding j tan kOJZ, in a power series of e-jw(Z,@/c)’ (A. 14) can be
written
Z‘” L -jwi(24/¢)
~ . oyl -Jwi(24/c
Vel = { Ejef; ((g + 2)/h, Q, koh)] 1+2 (-1)" e . (A.29)
i=1
The inverse transform of (A.29) is
sl .
_ 1
V 0e1(t) = eEqlis((g + )/, 0, te/h) + 2 2 : (-1)'fg((g + 9)/h, O
i=1
(tc/h - iZ,Z/h))U(tc/h - i24/h)
= eEOf7((g + 2)/h, 2/h, Q, tc/h) : (A. 30)

Figures A-11 and A-12 are graphs of f7 for various values of the parameters

g/h and ¢/h. For Py = -land p, =1, (A.24) reduces to

VzOCZ(t) = Eoe(cos ﬂ;)fg(t, (¢ cos §)/c, ﬁ/c) . (A. 31)
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Figure A-13 is a graph of fg’ The total open-circuit voltage is V,@Oc(t) = V,@Ocl(t)

+ VJLOCZ(t)'

Sample Calculation

Problem: For the structure with the parameters listed below, find
1z(t), vE(t), 1g(t), and vg(t) at t = 5 nanoseconds for a
5-volt/m step electric field., The parameter values are:

h=3m, a=0,3m, ¢ =0.01l m, al=0.001m,¢=3n‘/4,

-1.5m, 4=1.5m, Zg = 540 ohms, and Z = 60 ohms.

g )

Solution: Calculate the following parameters for future reference:

z_=1204n[10 + 9] = 359.2 ohms

2 x 540 - 359,2

Pe =7 %540 7 350.2  O°

_2x60-359.2 _

0, =5 %605 35092 > 05

g/h=-0.5
4/h =0.5
(g+ 4)/h=0

tc/h = 5x10-9x3x108/3=0.5
cos § = cos (3m/4) = -0.707

Q= 24n(2 x 3/0.3) = 5.99.

From Figure A-2, f,(-0.5, 0.5, 0.5, -0.5, 6.0, 0.5) = 1.75 and
gu 6

5x10° %) =2x5x0.01y 954 g7 x107% amps.

iyl
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From (A.25),

9 9 8

f(5x10°7)=5%x10"" - O.Ol/(3x108) - {:5:)<1o'9 - 0.01/(3x10)

- (-0.707) x 0.01/(3 x 10%)]

= -7,07 x 10'3/(3 x 108) .

From (A. 24),

_-[1-(-0.5)]x3x108x5

i£2(5x10'9) - s [-7.07 x 1072/(3 x 10%)]
= 1,48 x 10—4 amps .

Then,

i,(5x 10‘9) =i, (5x 10'9) +i,,(05x 10'9) - 6.35x 1074 amps

and

v, (5 x 107%) = 60 % i (5 x 107%) = 3.81 x 1072 volts .

From Figure A-1,

' ZEOe

g1 (0 = — fo-a + /b, 4/h, 0y 0y 0 tc/h)

and

f6(0.0, 0.5, -0.5, 0.5, 6,0, 0.5)=1.8,

Therefore,

igl(5 x 10
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The current igz(t) can be obtained from (A. 24) by interchanging pg and p

this problem

igp(5 % 10

and
i (5x107?
g

Then,

v (5 x10°
g

32
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%

)

)

(1 -p)
:Tl_-dpi_) i,,(5 % 1077 =%—§x 1,48 x 10”4

. -9 . .
1g1(5 x10 ") + 1g2(5 x 10

540 x i (5 x 1077

9

)= 5.50x10 4

)= 2.97 x lO-1 volts ,

- 4.93x10°°

amps .

Ix

amps

For




2E.¢ :

£,(0.0, 0.5, -0.5, -0.5) : _ o te/h

6! i,,(t) = Z_ fo(g/h, /B, 0o, Py, O te/h)

£,(0.0, 0.5, -0.5, 0.0)

£,(0.0, 0.5, 0.5, 0.5) 2Epe o se/ml
. 3 . y = Ve ) . . - - , , , , t

6 1gl(t) Z_ f6( (g + £)/h, &/b, p, Py c )

E s

tc/h

Figure A-1. Transient response to a step incident field.

/fé(-O.S, 0.5, 0.5, -0.5) i,,(8) = z_ fo(g/h, £/, P, 0,0 0, te/h)

f(-0.5, 0.5, 0.5, 0.0)

f6(-0.5, 0.5, 0.5, 0.5) i

(t) = —> fo(-(g + #)/h, £/h, 0,y o, Q, te/h)

tc/h

Figure A-2. Transient response to a step incident field,
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2E.¢
. 3 0
f6(-0.5, 1.0, -0.5, -0.5) 121(‘5) = Zc f6(g/h, 4/h, pg, Py Q, te/h)
£,(-0.5, 1.0, -0.5, 0.0)
6 2E. ¢
£,(-0.5, 1.0, -0.5, 0.5) gy (8) = fé(-(g + /B, 4lB, 0y P Oy tc/h)
0=6
14
4'
-14
tc/h
Figure A-3. Transient response to a step incident field.
ZEOG
f,(-0.5, 1.0, 0.0, -0.5) lzl(t) = Z fé(g/h, 4/h, Pgr Py O tc/h)
f£,(-0.5, 1.0, 0.0, 0.0)
6 ZEOE:
Z-T fé('o' 5, 1-0: 0- 0, 0- 5) 1g1(t) = ZC fé("(g * z)/h’ fl/h: pz: pg: Q: tC/h)
14
2
-1+
.24 tc/h

Figure A-4. Transient response to a step incident field.
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~14

~24

. _“®p A
£,(-0.5, 1.0, 0.5, -0.5) i,,(8) = Z fo(g/h, £/h, Pgr Py Q. te/h)
£,(-0.5, 1.0, 0.5, 0,0)

2E. ¢

P () = /h, 2/h Q, te/h

£,(-0.5, 1,0, 0.5, 0. 5) 1g1(t) =% f6<-(g+ L) /h, P Py P )

14

tc/h

Figure A-5. Transient response to a step incident field.

2E ¢

. - 0
f6(-0.5, 1.0, 0.0, -0.75 121((:) —Tfé(g/h, £2/h, pg, pz, Q, tc/h)
fé(-O.S, 1.0, 0.0, -0.50
ZEOe
ZL fé(—o' s, 1.0’ 0. O, _0.25) 1g1(t) =-—Z-,—C——f6(-(g+ 2)/h, 2/h, pz; pg: Q: tC/h)
Q=6

14

2 4 6 Vﬁ?ﬂ*
-14
-24

tc/h

Figure A-6. Transient response to a step incident field.
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2E ¢
£,(-0.5, 1.0, 0.0, 0.25) iy (t) = z
£,(-0.5, 1.0, 0.0, 0.50)
6 2E4¢
£,(-0.5, 1.0, 0.0, 0.75) 1g1(t) =——Z—Z—f6<-(g +4)/h, &b, 0y, Py Q, tc/h)
Q=6

14

tc/h

Figure A-7. Transient response to a step incident field.

ZEoe
£(-1.0, 1.0, 0.0, 0.0) i,,(0) =—z:'
f6(-l.0, 0.5, 0.0, 0.0)
5 ZEOe
f(-1.0, 1.5, 0.0, 0.0) iy Z
Q=6
1+
: : /\ e '
2 4 6 10 12 14
-l.{. tC/h
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Figure A-8. Transient response to a step incident field.

f(g/h, £/h, Pyr Py Q, tc/h)

fé(g/h: z’/h; pg: pz; Q, tC/h)

(t) = f6<—(g + A/, 4/h, 040 000 tc/h)




ZEOe ‘
0. 0) ipeel(® =5 — fs((g + 2)/h, Q, tc/h)

5 -
£5(20. 5)
4+ 2E . €

X - 0
1gscl(t) =~ fS(g/h, Q, tc/h)
34 c
Q=6
24
1 A
2 4 6 g 10 12 T4
14
24 tc/h
Figure A-9. Transient response to a step incident
field (short-circuit current).
ZEOe cos ¥
lzscz(t) = 1gsc2(t) = Z fg(t, (¢ cos §)/c)
t t2
0
i
\i
lf-—- -
t, = min {e/c, (1 + cos y)e/c}

fS(t, ¢ cos y/c)

ot
]

5 max {e/c, (1 + cos w)e/c}

Figure A-10, Transient response to a step incident
field (short-circuit current).



38

£(0.0, 0.5) v i0c1® = Eoef7((g + 4)/h, 4/h, Q, f:c/h)
£(0. 5, 0.5) Vgoe1® = E ef (-g/h, 4/h, Q, tc/h)
Q=6
44
24
2
-2+
-44
-64

Figure A-11l. Transient response to a step incident
field (open-circuit voltage).

£,(0.5, 1.5) Vi0e1(t) = Egeto((s + 4)/h, £/h, Q, tc/h)
£,(0.5, 1.0) V001 (8) = Egeiz(-g/h, 4/h, O, te/h)
£,(£0.5, 0.5) Q=

Figure A-12. Transient response to a step incident
field (open-circuit voltage).




Vg0c2(®) = Vggea(t) = (Ege cos ¥) fo(t, (e cos ¥)/e, 4/c)

fo(t: (e cos y)/c, 4/c)
]
" n
—— N("P
PN
mﬁ—"’
o\(‘f“
mﬁﬁ

t = min{e/c, (1 + cos w)e/c}
t, = max{e/c, (1 + cos w)e/c}

t.=t, ,+24/c;i=3,4, 5. ...
i i-2

Figure A-13., Transient response to a step incident
field (open-circuit voltage).
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