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ABSTRACT

A general formulation is presented for determining
the total axial current induced on a body of revolution,
Considering arbitrary illumination an exact integral
equation is derived for the axial current distribution.
As an example of an application for the formulation the
truncated cone is treated and sample numerical results

are obtained.




INTRODUCTICN

Theoretical-numerical techniques exist for the deter-
mination of the current induced on a body of revolution, but
they are very tedious becoming intractable with increase in
frequency.1-3* However, it is shown in this paper that the
total axial current may be obtained from a relatively simple,
yet exact, integral equation. The integral equation 1s
obtained by using the so called extended boundary condition,
where field relationships are imposed within a perfect

% A convenient extended boundary condition for

conductor.
a body of revolution is the requirement that the total
electric field vanish on the axis of reveolution within
the conducting body.

The presented formulation applies for a completely
general body with arbitrary iliumination. As an example,
the formulation is applied to the plane wave illumination
of a truncated cone. The truncation considered is a flat
end plate perpendicular to the axis of the cone. When
the body of revolution possesses surface discontinuities
special techniques must be employed. For the truncated
cone, the end plate is considered to have a sufficiently

small diameter that the leading term in a quasi-static

expansion for the end plate current may be used, i.e.

The superscripts refer to the list of references
at the end of the paper.




kam < where a. is the radius of the plate, and 8, << 1 where .
eo is the cone half angle,

Sample numerical data are presented for the truncated

cone. Extensive data are to appear in a subsequent report.




ANALYSIS

General Considerations

In the presence of a metallic body the total electric
field may be expressed in terms of the induced surface

current on the body as

E(R) = EIP@R") - i E%E‘{V I Vr-K(R')¥(R,R")ds’
5
+ K2 J K(R')w(R,R')ds'} (1)
S
inc

where E is the incident electric field, K is the induced
surface current on the metallic surface S, k is the propa-
gation constant, n = vYu/e = 120w ohms is the intrinsic wave
impedance of free space, R is the radius vector to the field

point,
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¥(R,R'} = T —F (2)
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Consider a body of revolution with the axis coincident

with the z axis of a cylindrical coordinate system (See Figure

1). Then in cylindrical coordinates
a 1
ds' = —oF—t5ry d¢'dz! (3)
- d
8(z') = tan 1 EIZt &(Z‘ﬂ (4)

¥Y(R,R') = exP['ikf£24r'Z—er'cos(¢-¢r)+(z_zr)zi

(5}

¢f2+r'2—2rr'cos(¢—¢‘)+(z—z‘)2
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VKR = gy (B (GDKD + G Ky (6)
E' = ;' cos 6(z') +7;' sin 8(z") (7)
dt' = dz'/cose(z') {(8)

Ultimately (1) will be evaluated at r=0, i.e. on axis of the

body of revolution. To that end consider the first integral

of (1)
L m
: ++' ++. ' _ ' ‘PO(Z,Z') 3 ' : r '
V'-K(R")J¥(R,R")ds = |dz o(z1) ot a(z')id¢ Kt(z 26 ")
cos8(z? '
S r=0 -1
L T
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+ J dz' -2 do! %57 K¢(Z',¢') (9)
cosB(z')
0 -
where

exp[-ik/ﬁz—z')2+az(z[)]
/?z—z')2+az(z')

(10)

¥, (z,2') =

Since the current distribution must be single valued the second
integral on the righthand side of—(9) vanishes. Now consider

the second integral of (1) evaluated at r = 0.

L T
s as Y (z,2")
KZ(_R')\?(R,R')dSI = dz?* Wa(zr) d“b'KZ(Z"‘b')
s =0 0 - (11)




Further it is noted
K (z',¢') = cos8(z")K (z7,¢") (12)

and -

,(z') = a(z') | do' K, (z',¢") (13)
-7
is the total current through the cross section at z' along
the axis of the body.
Using (9}, (11), (12) and (13) in (1) evaluated at r=0
yields L
_ pinc _: N 3 3
E,(0,9,2) = E;7C(0,¢,2)-1i zog {J dz' 3pr 1, (z") 45 ¥ (z,2")

+ k dz* It(z')¥o(z,z')} (14)

At the center of the body of revolution the total electric

field must be zero then (14) becomes

L
, _ .
dz'[%ET I.(z") g—z‘i’o(z,z')ﬂc It(z')‘l’o(z,z'):} = 1131;?5;“‘:(0,@:,23
: (15)

which is an exact integral equation for the total axial current
on the body of reveolution. The first integral may be integrated

by parts to cast (15) into a more common form,

L

a2

1 r [ 2 lil T L a 1 L
dz It(z ) |k -  SFTAR O(Z,z )+ It(z ] 37 ?o(z,z b}

o]

° = - i SIXpINC (0,4,7) (16)
n z

If the current vanishes at both ends of the body of revolution
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'
then (15) takes the form derived by Hallen5 and later by

Albert and Synge.6

Truncated Cone

If the body of revolution has surface discontinuities,
such as occur for a truncated cone, the integral equation
must be modified. This modification consists of two parts:
(1) continuity of current must be preserved on the surface
discontinuity and (2) the incident field on the continuous
portion of the body is forced to include the scattered field
from the discontinuity. And to solve the problem rigorously
requires the solution for the current on the discontinuity
including the interaction with the current on the continucus
portion of the body. However, for surfaces with character-
istic dimensions much less than a wavelength a quasi-static
approximation for the functional form of the current and the
use of the aforementioned modifications should yield a highly
accurate current distribution for the body. This is to be
the procedure followed in the analysis of the current induced
on a truncated cone.

According to the quasi-static approximation the leading
term in the expansion for the radial current distribution
on the end plate is7

Kt(r) = Const., x r (17)




Preserving continuity of current at the edge yields

K e L T (0 18
r(r) ;;;i— t( ) (18)

and the contribution to the incident electric field

component along the cone axis is

in It(O) Cikz zeik(z-%z *a
AE_(2) = ————— e 1 - (19)
z 2nkal -
Z a
m

Therefore using the foregoing contribution to the
incident field yields the following integral equation for
the current distribution induced on a cone truncated with a

flat end plate

L

dz'1, (2K, (z,2') = -1 2ZK ginc (4 (20)

0

where

2

2 - o) K(z,z') - 26(2') o= K(z,2")

K, (z,2') = (k
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(21)




—
%! (22)
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It

K(z,z')

n

a

m tane0

The solution for the current density may now be effected by

solving (20) subject to the boundary condition

I.(L) =0 (23)

If the cone is illuminated by a plane wave then

EIPC(z) = E_ sine o 1 (kK c0s6)z (24)

where the direction of propagation forms an angle 6 with
the positive z axis and E, is the complex amplitude of
the electric field.
The only restricticns in the foregoing analysis
results from the use of the leading term in the quasi-static

expansion current distribution and they are

ka < L. (25)

8o << 1.




NUMERICAL SOLUTION TECHNIQUE

The integral equation for the current distribution
is readily solved by use of the method of moments. It
has been shown that the piecewise sinusoidal expansion for
the current distribution provides a rapidly convergent

solution. According to this technique the current is

N
I,(z') =1 I.(z') U(z'5z,,,2.) (26)
m=1
where
Im(z') = a1 sink(z'—zm)+ o sink(zm+1—z') (27)
U[z';zm+l,zm) =1 z, < z' < Zo+1 (28)

= 0 otherwise

with {zm} as the set of N+1 equally spaced points on the
domain of the current distribution including the end points.
Substituting the current expansion into (20) and forcing
the resulting equation to be satisfied at a suitable set of
points yields a system of linear equations for the expansion
coefficients. Also (23) must be satisfied. Accordingly the

following system of equations is obtained:

g =T (29)




where
z
m
1 _ LI A 1 3 LI
am (1 Gml) dz kz[zn,z )sink(z zm-l)
“m-1
“m+l
+ .
dz' Kz(zn,z')51nk(zm+1-z')
z
m
2 -ikzgq -
Sy z, K(z,,0)
a
m
+ 8 K(z,O)J sin k A (30)
9z
z=z
r = -i 4k o sinee-ik cosB®zp
n n o
Zn = (n-1)A
A = L/N
L - 2 32 T
KZ(Zn,Z ) =ik - —W— K(Z,Z ) (32)
z=2

In the foregoing K(z,z') is defined by (22). Note that
applying (23) to (26) yields
sy 0

This result is used in obtaining (29).
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NUMERICAL RESULTS

The system of linea~ equations {29) are in a form
amenable to solution b? using a high speed digital computer.
A fortran p;ogram was written for the IBM 360 model 40
digital computer that was available. The execution time
for the program to calculate the current distributions for
three angles of incidence with N = 10 is gbout 4 minutes.

To illustrate to the convergence of the solution a
table of currents 1s presented for increasing values of
N. It is noted that N = 10 should yield sufficiently
accurate results for most practical purposes. Figure 3
illustrates the variation in current for different angles
of incidence. It is hoted that broadside incidence
produces the largest currents and that the shape of the current
distribution is relatively unchanged with the change in the

angle of incidence.
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TABLE: CONVERGENCE OF SOLUTION FOR THE AXIAL CURRENT

DISTRIBUTION

o] il V4
8 =67, kL = vl L=1m, 6 = 0 and EO and 1 =

CURRENT = I + i1

tR tI
N Max (I;p) Max (1) Ttr z=0  Te1 z=0
10 1.021 ma 1.706 ma 0.1497 ma 0.4145 ma
20 1.067 1.730 0.1427 0.3878
30 1.078 1.759 0.1331 0.3658
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FIGURE 1: BODY OF REVOLUTION
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FIGURE 2: CONE TRUNCATED WITH A FLAT END PLATE
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FIGURE 3: AXIAL CURRENT DISTRIBUTION ON CONE FOR VARIOUS ANGLES OF INCIDENCE,
HERE e, = 5°, N = 10, kL = 0.1
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