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Abstract

At frequencies high enough that a cable shield may be considered to be
a perfect conductor, and yet not so high that the cable diameter is comparable
to a wavelength, leakage through the shield can occur by both inductive and
capacitive coupling. An explicit statement of the two static problems that
must be solved to determine these two coupling effects is given in this note,
along with a method of fitting terms representing the two leakage sources
into the conventional transmission-line equations. Two simple cable models
are examined for illustrative purposes, more realistic models being left for

study in future notes.
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I. Introduction

This note is about an approach to certain periodic cable shield calculations.
"Periodic", in this case, means that the shield geometry is a periodic function
of the distance along the cable. It will be assumed that the shield and cable
are constructed of perfectly conducting material and that the maximum diameter
of the cable, with its shield, is much less than the free-space wavelength
corresponding to the frequency of the electromagnetic field. The minimum length
that must be traveled along the cable before the geometry becomes completely
indistinguishable from the geometry at some starting point will be denoted by
A, It will be assumed that A is much less than an electromagnetic wavelength.
As a special case A can be zero, énd thus the shield can be uniform. Another
special case is a cable shield with an infinite row of identical apertures along
it, A third special case is a perfectly regular braided shield.

In this particular note, no calculations will be made of realistic models
of practical cable shields. Rather, a general approach and a theoretical
justification of this approach will be given. The calculations will be reduced
to electrostatic and magnetostatic considerations. Transmission-line equations
will be derived for the current on the inner conductor of the cable and the
voltage between the inner conductor and the shield. The sources in these
equations will be the total current on the shielded cable and the total linear
charge density on the shielded cable. The coefficients of these source terms
can be derived from static considerations, and that is the point of this note.

A third type of source term in the transmission-line equations, due to direct
coupling with some incident wave, will be stated and theﬁ shown to be identically
zero for most practical shields. Since no calculations for practical shields
will be made here, no extensive numerical results will be presented. However,
two particular examples will be discussed for illustrative purposes, and the
second example is a fairly realistic model of an impractical shield.

A discussion of how to fit the effect of isolated leaks in the shield
into the transmission-line equations, and a discussion of the effect of finite
shield conductivity on those equations, will be left to future notes.

In the next section is a derivation of the transmission-~line equation for
voltage change and a statement of the particular magnetostatic problem that

must be solved to specify its source term completely.




In the tinird section is a derivation of the transmission-line equation
for current change and a statement of the particular electrostatic problem .b
that must be solved to specify its source term completely.

In the fourth and fifth sections, simple examples of the use of the
previous results are given. The fourth section deals with a shielded cable
where the inner cable is a circular cylinder and the shield is a unidirectionally
conducting circular cylindrical shell. The fifth section deals with a shielded
cable where the inmer cable is a circular cylinder and the shield consists of
a finite number of uniformly spaced thin wire helices on a circular cylindrical
surface concentric with the inner cable.

In the last section is a discussion of a few points about the transmission-

line equations derived in the second and third sections.




II. Voltage-Change Equation

To obtain the voltage-change transmission-line equation, one can integrate

the normal component of Maxwell's equation,

VXE = iwuog, (0
over a surface, Sl’ such as that bounded by path 1 of figure 1. In equation (1),
and in the rest of this note, a harmonic time dependence of the form exp(-iwt)

is assumed and suppressed. Figure 1 is a picture of a periodic shielded cable.
Segments a and c¢ of path 1 are two identical lines in planes perpendicular

to the cable direction, and a distance A apart along the direction of the cable,
that join the cable itself to its shield. The other two segments of path 1

lie along the cable and its shield. The segment on the shield, b, is restricted
to lie along a path of perfect conductivity, thus all apertures must be avoided
and, if the shield conducts in only one direction, the path must lie along that
direction, A further restriction on segments b and d is that they should not
make any unnecessary loops arocund the shielded cable. Of course, if segment

b is required to make a loop around the shield by the particular shield
geometry then segment d should make a loop around the inner cable.

Once path 1 has been chosen, the pair of segments, b and d, can be repeated
indefinitely along the length of the cable and so can be used to define a one-
dimensional space. The distance along the cable, z, seems the most natural and
appropriate coordinate of this space.

Now, performing the integral of the normal component of equation (1)
over the surface bounded by path 1, and applying Stokes' theorem to the left-

hand side of the equation, one obtains
- &V = V(za) - V(zc) = - iwd (2)
where

V(z,) (3)
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Figure 1. A Periodic Shielded Cable.



and the direction of % is assumed to be from the cable to the shield. In

equation (2),

o = M f H-ds, (4)
Sl
and the normal to Sl has a positive component in the clockwise direction when
one is looking along the z-axis.

The basic assumptions that the electromagnetic wavelength is long compared
to both the maximum diametetr of the shield and A imply that ¢ can be calculated
at the static limit. They further imply that, when the sources of any incident
wave are remote, one can assume any incident field to be uniform over a period
of the cable.

It follows, therefore, from magnetostatic comsiderations, that ¢ can be
assumed to depend linearly on only four quantities: the total current along
the cable, the total current along the shield, and the two components of the
external magnetic field perpendicular to the direction of the cable. A further
examination of the magnetostatic problem reveals that the two proportionality
consténts connecting ¢ with the components of the external field are negligible
for most practical shielded cables. In particular these constants are identically
zero if the shielded cable has two planes of symmetry intersecting in the inner
cable (see Appendix A). Perhaps one could even define a shield as a conductor
configuration where the direct coupling with the extermal field is negligible.
0f course for some structures these terms are dominant [ 1],

This nevertheless leaves two quantities on which ¢ depends linearly, the
current on the inner cable and the current on the shield. One can therefore

write
oL 411 (5)
A cc s s

This equation defines two magnetostatic problems that must be solved to
completely specify the voltage-change transmission-line equation. ALC is the

flux through S, when one ampere flows on the cable and no current flows on the

1

shield. ALS is the flux through S, when one ampere flows on the shield and no

1
current flows on the cable. It should be noted that if the shield consists of



more than one conductor, then there should be no net flux linking any pair

of conductors of the shield. Of course, for practical shields,
L b << ln,|
s c
The only externally measurable current on a cable is

I, =1 +1,

so equation (5) should be rewritten as
2o -L)I +LI (6)
A c s’ ¢ s

T

or, defining

and

it follows from equations (4) and (6) that
&V . .
A iwLI + 1wLSIT.

Since A is very small compared to a wavelength, it is quite accurate to write

dv . .
iz = iwLI + :LwLSIT 7)

Equation (7) is the usual transmission-line voltage-change equation with

a source term proportional to the measurable, total current on the shielded cable.

It has been shown in principle how to compute the two proportiomality
constants, L and Ls’ that appear in equation (7), but it may be easier in

practice to use some good way of measuring these quantities [2].




An important particular case of equation (7) should be mentioned, If the
inner cable can be assumed to be a circular cylinder of radius oy and the shield
can be assumed to be within a very thin cylindrical shell,of radius pz,that is

coaxial with the inner cable, then it is easy to show that (see Appendix B)
0
L, =5, Inlo,/o))
and thus
- O -
L ln(pz/pl) LS.

For this special case, therefore, there is only one nontrivial magnetostatic
problem to be solved. Two simple examples of this special case will be studied
in the fourth and fifth sections of this note.

It should be pointed out that equation (7) is not new. Equations equivalent
to it have been used in previous cable shielding calculations [3]. However,
the derivation and discussion in this section may be useful and suggestive. In
the next section the other transmission-line equation will be derived, and the

source term in that equation does seem to be new.

For ease of reference in future notes a name will be given to the quantity
Ls' It seems appropriate to call it the inductive coupling coefficient per

unit length.



I1II. Current-~Change Equation

To obtain the current-change transmission-line equation, one can integrate

the normal component of Maxwell's equation

UxH = - iweE + J (8)
over a surface, Sz, such as that bounded by path 2 of figure 1. Surface S2 is
that portion of the surface of the inner cable bounded by two planes perpendicular
to the cable and a distance A apart. The intersections of the two planes bounding
82 with the surface of the inner cable define the two segments, a and b, of path
2.

Now, performing the integral of the normal component of equation (8) over
surface SZ’ and applying Stokes' theorem to the left-hand side of the equation,

one obtains
- 81 = I(za) - I(zb) = - iwq, (9

where

[iH

1(z,) J Hedo (10)

2a
and the direction of £ is as indicated in figure 1. Of course, I is the total

current on the inner cable. In equation (9),

q = e J E-ds, (11)
)
or, in other words, 4 is the total charge on surface SZ'

One can now use the basic assumptions that the electromagnetic wavelength
is long compared to both the maximum diameter of the shield and A to justify the
calculation of 9. at the static limit. If the sources of any external fields
are remote, the external field may be considered uniform over any period of
the cable, as in the previous section.

It follows, from electrostatic considerations, that V, the potential

10




difference Letween the cable and the shield can be assumed to depend linearly

on only four quantities: the charge per cable period on the inner cable, the
charge per cable period on the shield, and the two components of the external
electric field perpendicular to the direction of the cable. For practical
shielded cables the direct coupling with the external field is negligible, and

is identically zero if the shielded cable has two planes of symmetry intersecting
in the inner cable (see Appendix A). The two constants of proportionality

between V and the external field will therefore be neglected. This allows one

to write
AV =8 q  + S q (12)

This equation defines two electrostatic problems that must be solved to
completely specify the current-change transmission-line equation. Sc is the
potential difference between the cable and its shield when there is one coulomb
per cable period on the inner cable and no net charge on the shield., SS is the
potential difference between the cable and its shield when there is one coulomb
per cable period on the shield and no net charge on the inner cable. It should
be noted that, if the shield consists of more than one conductor, there should
be no potential difference between any two conductors of the shield. For most

practical shields
|| << |s.]|

The externally measurable charge per unit length on a cable is

e 95

R
so it is useful to rewrite equation (12) as
4
V= (s, -8) =+ 8. (13)

or, defining




from equations (9) and (13) it follows that

= = jwCV - imCSSQT. (14)

Since A is very small compared to a wavelength it is quite accurate to

write

E’% = 1uCV - 1uCS Q. (15)
Equation (15) is the usual transmission-line equation for current change
with a source term proportional to the total charge per unit length on the
shielded cable. This source term does not seem to have been used much in cable
shielding calculations. Perhaps it has been assumed that this source term is
unimportant, but it is important sometimes. A further discussion of this point
may be found in the sixth section.
An important particular case of equation (15) occurs when the inner cable
is a circular cylinder of radius Py and the shield can be assumed to lie within
a very thin cylindrical shell, of radius Pos that is coaxial with the inner cable. ‘

For this case it is easy to show that, if € is a function of p only, then (see

Appendix B)

and thus

o
-l_i_[z_ﬁ_o____
pe(p) s

For this special case, therefore, there is only one nontrivial electro-
static problem to be solved. Simple examples of this special case will be

studied in the next two sections.
Again, for ease of future reference one could call the combination CS
8

the capacitive coupling coefficient per unit length, while the quantity SS

alone could be called a mutual susceptance per unit length.

12



IV. Unidirectionally Conducting Shield

As an example, in this section the necessary static problems will be
solved for the case where the inner conductor is a circular cylinder of radius
a and the shield is a circular cylindrical shell of radius b that conducts in
only one direction. The conduction direction will be assumed to maintain a
constant angle, ¥, with the z axis of the cable (see figure 2).

This cable falls into the category of the special cases discussed at the

ends of sections II and III. Therefore, one can immediately say that

uO
Lc = E%-ln(b/a) (1l6)
and
s, = ?_ﬂleo 1n(b/a). (17)

Furthermore, it is irrelevant to the electrostatic problem that the shield
conducts in only one direction; since the potential of the shield is constant

at any given cross section, it might as well be perfectly conducting. From

this it is clear that
S = 0. (18)

Now the only static problem that requires further investigation is the
calculation of Ls; This quantity may be calculated by considering the period
of the cable to be the distance along the cable corresponding to exactly one

circulation of a conductance path of the shield about the axis of the cable,

i.e.,
A = 27b cot ¢

Now the longitudinal component of current density in the shield will give

rise to no field inside the shield while the circulating component, given by



e e

7 Lines of current .
7 flow on the shield

Figure 2. A Unidirectionally Conducting Shield.
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will give «ise to a z component of the H field inside the shield of magnitude

Now, taking account of the direction of the normal to the surface involved

in the definition of ¢, one can immediately state that

2

2
d = - uOHzﬂ(b -a’)
I
s 2 2
= -, 5 (tan PI)T (B~ - a%).
From this equation it is clear that
9]
Ls = 31
s
u
- - Z%-tanz v(1 - a%/pd). (19)

Suppose now that the cable under examination is infinitely long and

immersed in an incident plane wave whose propagation vector is perpendicular
to the cable axis. 1In such a case there can be no variation of any quantity

with z; thus, it follows from equation (7) that

=

S
I—--E—IT.

Taking account of equations (16) and (19) the above equation may be

rewritten as

I 1
—_ = F = . (20)
Ly 140262/ (0%-a%) Jeot? ¥ 1n(b/a)

The scattering of a plane wave by the structure studied in this section
may be treated exactly by the method of the separation of variables. This
treatment may be found in Appendix C. 1In Appendix C it is also shown that the
exact equation for F reduces precisely to equation (20) in the low-frequency

limit. Curves of F as a function of a/b for various y's are given in figure 3.

15
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Figure 3. F for a Unidirectionally Conducting Shield.




V. Multi-Helix Shield

As a second example, in this section the necessary static problems will
be solved for the case where the inner conductor is a circular cylinder of
radius a and the shield is made up of N uniformly spaced thin-wire helices
confined to a circular cylindrical shell of radius b as shown in figure 4.
The helices are coaxial with the inner conductor and the angle, on the surface
to which they are confined, between any helical wire and a line parallel
to the z-axis will be denoted by ¢. The space in the cylindrical shell between
the inner conductor and the helices is assumed to be filled with a dielectric
material of permittivity e.

This cable falls into the category of the special cases discussed at the

ends of sections II and III. Therefore, one can immediately say that

u
o
. E;-ln(b/a)

=
L]

1
S, E;E'ln(b/a).

There are two quantities that still have to be calculated, SS and Ls'
The calculation of Ss will be given first.

To compute SS, it will be assumed that the wires of the helices are thin
compared with a, b, and the shortest distance between helices. With this
assumption, the potential anywhere outside the wires can be computed by assuming
a uniform line charge along the center of each helical wire., The potential due
to one helix will be computed first; the total potential may then be computed
by simple superposition. Using the usual cylindrical coordinates (O,¢,2), it
will be assumed‘that the line charge passes through the z plane at the point
¢ = ¢O. The surface charge density of the line charge on the surface p = b is
given by

q . q
0(b,9,2) = 2 66 - ¢ - z BEY) = 2 4p) (21)

where % is the total charge per unit length along the z axis. It is possible
to write the potential in the region outside the helical line charge (region I)

in the form (see Appendix D)

17



Homogeneous
Dielectric

N uniformly spaced
\ | helical wires ‘\
\\\ 5
1

Figure 4., A Multi-Helix Shield.
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fes]

I Qp Kn(ntp/b)
3 (p,$,z) = v, - e ln(p/b)+Z Cn cos(nb) W (22)
o n=1 n
where
t = tan ¥

In the region between the inner conductor and the helical line charge (region II)

it is possible to write

x

' q F_(ntp/b)
@II(p,gb,z) = Vc - 57% In(p/9 +Z Cn cos(nd) _;‘IFIE)—— (23)

n=1

where
Fn(ntp/b) = Kn(ntp/b)In(nta/b) - In(ntp/b)Kn(nta/b).

I IT . .
The above two representations for ¢ and & = satisfy Laplace's equation
in their respective regions and the requirement, imposed by the symmetry of the

helical line charge, that
®(p,¢ + o,z +ba cot ¥) = &(p,¢,2)

In order that there be no net charge on the inner cylinder (a requirement of the

electrostatic problem through which Ss is defined) one must set
In order that the potential be continuous through the surface p = b, one must set

The remaining constants, Cn’ must be computed from the condition that the
change in the normal component of the electric displacement through the surface

p = b must be equal to the surface charge density. From (21), (22), and (23), then

lg



o]

F! (nt K'
%5 o) = oS ¢ cosaey BE [oonn o Kplee)
b 27b n b F (nt) o K (nt)
n n
n=1
where primes denote differentiation with respect to the total argument of a

function. Thus,

] 1
E§-= mC nt S~EE£EEz - € EEEEEz (24)
b nb F (nt) o K (nt) | °
n n
From (23) and (24) one can then write the potential at the surface p = b in
the form
o . . -1
dg cos(n8) Fn(nt) Kn(nt)
CD(b,d),z) =V + > - g ————
c Tt F (nt) o K (nt)
n=} n n
= Vc + dq E ;E’cos(ne)
n=1

Now, if there are N wires, each with charge qS/N, one may write the total

potential on p = b in the form

& N
q D
= = E n
@N(b,¢,z) VC + v - :Z: cos(nl6 + 2mm/NT])
n=1 m=1

[e2}

D
_pN
VC + dg Nt cos (pN6)

p=1
Now, if each wire has radius r, the intersection of the surface of one wire

with the surface p = b is given by the equation

8 = r/(b cos V).

Thus, the potential at the surface of a wire is given by

[s+]

D

N Nt

V =V + _bX PNt

s c 9 pNt cos(b cos w)’
p=1

20




Now by defining the optical coverage c,as ¢ = Nr/(mb cos ) one can write
o]
e . VS-—VC ) DpN cos (pre) 25)
s aq pNt
p=1

In the important special case where ¢ = €, it follows after a little

algebra that

K (nt)
me D

o = ™t B (real) [ru @0, ears) - % o1, Grearo)

and thus

K N (PNE)
l 2{: K (pNta/b) [ (pNt)K (pNta/b) - KPN(pNt)IpN(pNta/b)]cos(pwc).(26)

1f one further specializes this equation to the case where y approaches

zero the result is

8

_ o1 _ 2Np | cos(pme)
5, =g 3 [1 - (am)?P] co2lene)
o
p=1

which can also be written in the closed form

1 o [am® T
T Ss T Gmey M@/® ¥ [5_53575;757] <27)

There are several other special cases of equation (25) that one could examine.

For example it can be shown that if a/b approaches zero then

In(nt)Kn(nt)
mesDy = (/e )K_(at) 1! (at)-K. (RE)L_(nt)

If, in addition, € = € it follows that
weoDn = ntIn(nt)Kn(nt)

and

21



[=e]

1
- Ss = e E IPN(pNt)KpN(pNt)cos(pﬂc)
p=1

If { approaches zero in this equation the result is a special case of

equation (27), while if N is large the result is
_ cos ¥ .
s = Zmew 1n[2 sin(en/2)
This completes the treatment of SS. The next item is the computation
of L .
s
In order to compute Ls one may make use of , a magnetic scalar potential,

in regions I and II. 1In region I one can set

u I
I o's
B = 1o "e"dJ VS'ZI (28)
and in region II
u I tan ¢
II
B o7h e, = Vi . (29)

Again the wire will be assumed to be very thin, thus allowing omne to

write, for the surface current on the surface p = b,

I I

K, =-E§ 8(¢ = ¢, - z tan Y/b) 5—5-6(6) (30)

It

S
ch = 5 §(8) (31)

A solution for 9 that can be made to match these surface current conditions

is (see Appendix D)

- K _(ntp/b)
SBI =Z Cn sin nd —E‘I‘FE{)—' (32)

Gn(ntp/b)
Q = C sin n6

IT n G;(nt) (33)

22




where
- ' _ 1
Gn(ntp/b) Kn(ntp/b)In(nta/b) In(ntp/b)Kn(nta/b)
Equatioms (32) and (33) assure that Bp is zero at the surface of the inner

conductor and Bp is continuous through the surface p = b.

The condition that must be used to determine the Cn is that

e x @ ®,6,2) - B (0,0,2)) = uK(p,2)

* e Ti T | T T 8, eyt

uoIs _ aQI aQII 9l-uolst aQI aQII “oIs
—z| 27b bae¢ ba¢

Both components of this equation may be satisfied by setting, in equations
(32) and (33),

K (nt) G_(nt)
mnC ? - ? =u I
n Kn(nt) Gn(nt) o's

which reduces to

t t
uOISt ' Gn(nt)Kn(nt)
n T K&(nta/b)

Thus, from (33),
- K' (nt)

p It A
05 . n
Q1 = E sin né K;(nta/b) Gn(ntp/b) (34)

n=1

Now, 1f there are N uniformly spaced line currents whose sum is Is’ it

is easy to show by superposition that

uOISt KI:I (Npt)
- E ; _ NP -
QII - sin(Np8) K&P(Npta/b) GNp(Nptp/b) (35)
p=1

23



One can ~hoose as the surface of integration used for the computation of

¢ the surface
8 = /b cos § = wefN
where r is again the radius of the wire., Also, one may write
ds = - pdod¢ = - (t/b)pdpdz
dS¢ = dpdz.

It then follows easily from (29) and (35) that

2 o
ot 2 ut (b 2 K& (Npt)
0 a o t 1 P
= - 1 -=}- ———-f dp E Np cos(pﬂc)[—— + ——]pG (Nptp/Db)
4t < b2) T b2 pZ Np K&p(Npta/b)

p=1
2 b ]
A S S I L NP
= = - T - t
b4 bZ LA - Np KNP(Npta/b) dp dp
u0t2 a2 uotz d ! (Npt)
= - ~a2 ). NPT A
e (1 bz) - zi: cos(pvrc)KI:I (Npta/b) Np(Npt) (36)
p=1 P

where
G&p(Npt) = Kﬁp(Npt)I&p(Npta/b) - K&p(Npta/b)I&p(Npt)

In equation (36) one can recognize the first term as being the contribution
to LS due to the restriction of the shield current to one direction. This is
all there is to LS in the shield studied in the previous section. The second
term in equation (36) gives the contribution to LS due to the fact that the
shield is really made up of several thin wires rather than an infinitesimally

thin uniform sheet.,

24




There are several special cases of equation (36) that one can study.

of them will be mentioned here.

Some

If y approaches zero, the small argument asymptotic forms of the Bessel

functions can be substituted and this leads directly to

2Np
COS(EWC a
s 2 Z l: (b) ]

‘ 2
T CE)ZN + =G/ (37)
47N b 2 sin(ew/2)
Thus, from (27) and (35), as one would expect in the case where the cable

is independent of z and there are no dielectrics present,

Another special case of equation (36) that might be of interest is the
one where a/b approaches zero; in that case

2 -
uot uotz
- ° 2 : . .
L, - i T o COS(PWC)KNP(Npt)INp(Npt).
p=1

For large N one can use the uniform asymptotic expansions for large orders
of the Bessel functions [4] and sum the resulting series in closed form to give

2
t
UO M

(o] .
Ly * = % * TN cos T In(2 sin(em/2))

In the above equation one should note, from the definition of ¢, that
en/2 < /2

and the equality can only occur when the wires touch each other, a case that

doesn't fit the basic assumption of this section that the wires are thin compared

to their spacing and the cable diameter. Of course similar remarks apply to the

equivalent equation for S .
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VI. Discussion m

There are a few points about differential equatiomns (7) and (15) that

should be brought up now.

(a) 1If the cable shield material cannot be assumed to be perfectly conducting,
there should be an extra term in equation {7} to account for this fact. This
term will be proportional to the current in the shield, so if the variables

T and IT are to be retained, the coefficient of I in equation (7) would be

changed slightly.

(b) Na method has been given, in this note, for fitting the effect of an
isolated leak or irregularity in the extermal shield into equations (7) and
(15). This topic will be discussed in a future note. It may be that terms
describing the direct coupling with some external field, the type of term we
have thrown away in this note, become very important for some particular

isolated shield defects.

(¢} The solutions of equations (7) and (15) for any finite cable involve the
specification of boundary conditions on the current and voltage variables.
These boundary conditions can be specified in the usual transmission-line
theory way by invoking admittance and impedance concepts. In particular it
can be shown that, if an admittance Y is connected between the inmner cable
and the s?ield at some point Zys then

i(z, - 0) - I(zl + 0) = YV(zl).

1
Similarly, if an impedance Z is inserted in the inner cable at some point Zys

then

V(z, - 0) - V(z2 + 0) = ZI(zz).

2

(d) It follows from equations (7) and (15) that the equivalent circuit for

one period of the periodic line may be drawn as shown in figure 5 where the
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Figure 5. An Equivalent Circuit for a Periodic Section.,
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Appendix A
Argument for Neglecting Direct Coupling

In this appendix a brief argument will be given for the truth of the
statement in the text that, if the shielded cable has two planes of symmetry
intersecting in the inner cable, the coupling coefficients between V and the
two transverse components of a uniform external electric are zero. An analogous
argument may be made to show that the coupling coefficients between ¢ and the
two transverse components of a uniform external magnetic field are zero.

The uniform, transverse, external, electric field may be decomposed into
its two components perpendicular to the two planes of symmetry of the shielded
cable, Looking at one such component, one can define the potential of the
external field to be zero on the plane of symmetry and proportional to the
coordinate perpendicular to the plane of symmetry. Since the structure is
symmetric about the symmetry plane and the external potential is antisymmetric
about the symmetry plane, the induced potential can be assumed to be anti-
symmetric about the symmetry plane. This leads to the conclusions that the
potential on the inner cable is zero and the potentials at symmetrical points
on the shield are equal and opposite., But all points on a cross—-section of the
shield must have the same potential, therefore this potential is zero and there

is no difference in potential between the cable and its shield.
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Appendix B

Partial Solutions for a Special Case

A special case was discussed at the ends of the second and third sections.
In this appendix a justification of the expressions for LC and Sc for that
special case will be given.

The special shielded cable to be studied is one whose inner cable is a
circular cylinder and whose shield is confined to an infinitesimally thin
circular cylindrical shell, co-axial with the inner cylinder. The radius of
the inner cylinder will be called oy and the radius of the cylindrical shell
will be called P

To determine Lc, one must find the magnetic field between the cable and
its shield when there is one ampere flowing on the cable and no net axial current
on the shell, But, if I is the current on the inner cylinder, one can write

I + Hsc.

E_=_§¢ 2wp —

Now the boundary condition that H be tangential to all conducting surfaces,
and the condition that the tangential component of H doesn't change through
the outer shell (which is sufficient to assure that no net current flows in
the shell), are both satisfied by setting E?c to be zero. It then follows that
p
o) uo J 2 dp uo

LTI T30 | e Tam m0pfey)

1
To determine Sc’ one must find the electric field between the cable and
its shield. One can use an argument analogous to the one used above for the
magnetic field to say that, even if there is a cylindrically stratified

dielectric material present, the electric displacement, D, is given by

i
™
~

°
Nt
=

|

D

From this equation it follows that
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and if ¢ is homogeneous
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Appendix C
Plane Wave Scattering by a Unidirectionally Conducting Shield

In this appendix an exact calculation will be given of the scattering of
a plane wave from a circular cylindrical conductor of radius a. Outside the
conducting cylinder is a unidirectionally conducting shield in the form of a
circular cylindrical shell of radius b. The conduction direction of the shell
maintains a constant angle, ¥, with the axis of symmetry. The incident plane
wave will be assumed to travel perpendicular to the axis of the cylinder and
to have its electric vector parallel to the axis of the cylinder.

If ¢ is the angle from the direction of propagation of the incident wave
in the plane perpendicular to the axis of the cylinder, and if p is the radial
distance from the axis of the cylinder, then the electric field in the region
outside the shield (region I) and in the region between the inmner cylinder and

the shield (region II) may be written in the following form [5]

[ee] o<}

Ei = Z i Jn(kp)ein¢ + Z ran(kp)einqb

1n==—c0 = O

o«

I¥ _ ind
Ez = E tan(kp)e

e OO

where
% (ko) = J, (ko) ) Y (ko)
n Jn(ka) Yn(ka)
also
I_ tor 1 ing
E¢ E ran(kp)e
n:—oo
IT _ 2 : 't ing
E¢ thn(kp)e
n=—w
where
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Jr‘l(kp> Y;(kp)
Z'(kp) =T =
n Jn(ka) Yn(ka)

In addition, one can write the following representations for the magnetic field

=]

1 , ' ing
Zon i E ran(kp)e

n=-—OO
IT _ . 2 : 1 ing
ZOHz = i thn(kp)e
n=-oo
and
I I LT 1 . t ind)
ZOH¢ = i E i Jn(kp) + 1 E ran(kp)e

ZOHiI =i :E: tnXg(kp)ein¢
The above representations of the fields already satisfy the boundary

conditions at infinity and at the surface of the inner cylinder. For each ¢
mode, there are four remaining undetermined coefficients, T tn’ ré, and té.
These constants can be determined by imposing the following four conditions

at the surface of the shield. The two components of electric field are con-
tinuous through the shield, Thecomponent of electric field along the conduction
direction of the shield is zero. The component of magnetic field along the
conduction direction of the shield is comtinuous through the shield. These

conditions give the following four equations.

t 1 — \ \}
ran(kb) = tnzn(kb)
1 1 + —
tan(kb)cos Yo+ tnzn(kb)31n Py =0
.n -
i Jn(kb) + ran(kb) = tan(kb)

t ' . ot Ly ' s
thn(kb)cos v+ tan(kb)51n Y = ran(kb)cos v+ [i Jn(kb) + ran(kb)151n ¥

33



The above four equations may be reduced to give the following equation for tn .

H (kb)  Z_(kb) X_(kb)H' (kb) o+l
2 n n ' n n _ =24
tn{COt Il’Xn(kT")[:HI'l(kb) - Z;(kb)] + [Xn(kb) R ]}‘ TRbH_(Kb)

but it is easy to show that

9 Hﬁ(ka)
] -— t E
Zn(kb)Hn(kb) Zn(kb)Hn(kb) 5 J;(ka)Y;(ka)
and
9 H_(ka)
' - 1 = —
Hn(kb)xn(kb) Xn(kb)Hn<kb) mkb Jn(ka)Yn(ka) *
Thus,
1
. [FOtzw Xn(kb)Hn(kb)Hn(ka) . Hn(ka) ] ) in+1
1 14 T 1 -
n Hn(kb)zn(kb)Jn(ka)Yn(ka)_ Jn(ka)Yn(ka)
Now the total current in the z direction on the innmer cylinder, I, is
given by

2m I
= = 1 '
ZoI JO H¢ (a)ad¢ 2n1atoxo(ka)

while the total current in the z direction on the unidirectionally conducting

shield is

I

I
s (b) Jbdo

Z
o

=
1

27
J [Hi(b) - H
(o]

Zﬂib[Jé(kb) + roﬂé(kb) - tox;(kb)]

The ratio of the total axial current on the inner conductor to the total
axial conduction current on the inner conductor plus the shield is thus
1
R tOXO(ka)
= - T (ka )+ T + g i+ vt .
T+ tOXO( ) (b/a)[Jo(kb) r 1’ (kb) toxo(kb)]
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But since
. toXo(kb)—Jo(kb)
o Ho(kb) ’

one can rewrite F as

tOX8(ka)Ho(kb)

. 2 Ho(ka) 2i
& Xo(ka)Ho(kb)+<b/a)[nkb Jo(ka)Yo(ka)] +<b/a)["¥£€]

where the Wronskin relation

F =

[H_ (kb)J! (kb) = J_(kb)H! (k5)] = - %%E
has been used. Now from the previous work
1
t_l ) oty Xo(kb)Ho(kb)Ho(ka) . Ho(ka)
= = 1 [] [ 1 s
o Ho(kb)zo(kb)Jo(ka)Yo(ka) Jo(ka)YO(ka)
thus
X;(ka)
F = )
o (a) 4 2 i, (ka) a5
o) tka J (ka)Y (ka)H (kb) rka H (kb)
o o o o
\
) X, (ka)
cot?yx_ (kb)H! (ka)
X' (ka) - [ [ t 1
o mka Ho(kb)ZO(kb)Jo(ka)Yo(ka)
But

2 1
rka JO (ka)YO (ka)

X (ka) =

Therefore, one may write
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1
X (kb)Hé(ka)Jo(ka)Yo(ka)

Hg(kb)Zé(kb)Jé(ka)Yé(ka)

l+cot™ ¢

1
l+cot2¢G(ka,b/a)

where

Xo(xb/a)Hl(x)Jo(x)Yo(x)
= Zé(xb/a)Hl(xb/a)Jl(x)Yl(x)

G(x,b/a)

HI(X) YO(x)Jo(xb/a)—Jo(x)YO(Xb/a)
- fob/a) Yl(x)Jl(xb/a)—Jl(x)Yl(xb/a)

Using the small argument expansions for the Bessel functions in the above

equations, it is easy to arrive at the limiting value of G

2
G(0,b/a) = 22-2nibla) én(g/a) :
bT-a
In the low frequency limit, then,
F = 12 ’
Lteot?y 2 1n(/a)
b -a

in complete agreement with equation (20).
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Appendix D

Justification of the Form of the Helix Potentials

In this appendix, a brief discussion will be given of the forms chosen
for ¢ and @ in the fifth section of the note. In particular, a justification
will be given of equations (22), (23), (32), and (33).

Since it is shown in the text that the potential representations in
question can be made to satisfy all required boundary conditions, all that it
is really necessary to show is that they satisfy Laplace's equation. From
linearity, it is sufficient to show that each term in the sums satisfy Laplace's

equation. That is to say, if
v, (psd,2) = cos n(¢ - ¢ - tz/b)f (ntp/b),

then

3P
+i._n+l§
30 e <P 0 36 3z

<]
<=
w

must be zero., But, by direct substitution,

2 32fn 1 an nzfn n2t2
v wn = 5 + % "3 "3 fn cos n(p = ¢o - tz/b)
ap p P
or, if
£ = ntp/b
then
2 nt 2 a2fn 1 afn n2
v ¢n = (T;) 3£2 +-€ 3 <l + ;E)fn cos n(p - ¢o - tz/b)

Thus wn satisfies Laplace's equation as long as fn, as a function of &,
is a linear combination of modified Bessel functions. The fn's of equations

(22), (23), (32), and (33) fulfill this requirement.
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