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Abstract

The field inside a dielectric cylinder coated with N identical perfectly
conducting strips is calculated for two cases where (1) the electric field of
the incident plane wave is polarized along the cylinder:s axis, and (i1) the
magnetic field of the incident plane wave 1s polarized q;ong the cylinder's
axis. Simple, and easily interpretable, expressions are obtained for the field
inside the cylinder from the variational principle and the low-frequency
approximations. These field expressions are related to a function depending
on only one parameter which defines the "optical coverage" of the shield.

This function 1is tabulated as well as plotted in this note.



I. Introduction

This note reports the findings of our first attempt toward developing an

adequate theory of a braided shield.
A braided shield is used mostly for providing shielding for a cable inside

the shield. There are two theoretical aspects concerning a braided cable. One
is that the shield is part of the cable, forming a transmission line with the

cable as a core conductor. This aspect has been partially treated in the
N
literature, and the most comprehensive treatment up to now is the forthcoming

publication of Vance and Chang.(l) The other aspect is that the braid acts

purely as a shield, providing shielding for a cable inside the shield against

external disturbances. It is the latter aspect that we will consider in this

note. The 1mpoftant quantity to be calculated is the "effective' field that
the cable will "see" when the braided cable is exposed to an external electro-

magnetic wave. In calculating the "effective" field insjide the shield, the

presence of the cable will be assumed to have no effects and, hence, the cable

can be removed in the calculation.
The model chosen for the present study is one limiting case of a braided

shield, in which the pitch angle is zero and each belt of wires is taken as a

perfectly conducting strip. Thus, we are actually considering the problem of

a plane electromagnetic wave stiiking a dielectric cylinder coated with perfectly
conducting strips (see Fig. 1), and we will calculate the transmitted field
inside the cylinder as a function of the number and the width of the strips as
well as the dielectric constant. The basic assumption in the calculation is

that the wavelengths inside and outside the cylinder are much greater than the

radius of the cylinder.
In section 11 we consider the case of E-polarization in which the electric

field vector is parallel to the axis of the cylinder. A simple analytic

expression is found for the transmitted field. The case of H-polarization is

discussed in section III, the treatment of which parallels that of section II.
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Figure lA. Dielectric cylinder coated with perfectly conducting strips.
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Figure 1B. Cross section of the coated cylinder.



II. E-Polarization

Consider the situation depicted in Fig. 1 where a time~harmonic plane

wave with the electric field vector given by (general incidence will be discussed

on p. 15) - iklx
E-1nc - Eone
m —
= Eon Z emi Jm(klp)cos mo, €, = 1
m=0
e =2 1if m> 0
m

strikes the dielectric cylinder coated with N identical, perfectly conducting

strips of width 2a. We wish to calculate the electric field on the axis of

the cylinder.

We write

o 1
(1) inc r Hé )(klp)
E = E + E + a ——FZT<—— CcO0S m¢, p > a
z z z Z m H(l)(k a)
0 m 1

Z“ J (ko)
(2) - m- 2
Ez Ez + bm E;YKZEY cos mo, 0o < a

0

(1)

where E: and E: are, respectively, the reflected and transmitted fields in the

absence of the metallic strips. Therefore, they satisfy the following boundary

conditions:
gine 4, g - gt (2a)
2 z z
for p = a, 0 < ¢ < 2n,
d inc ry 9 .t
dp (Ez + E:z) B ap Ez (2b)

When p = a, we must have

Eél) = E:Z), ¢ € A (apertures)
(3a)
E(l) = E(z) = 0, ¢ ¢ S (strips)
z z
gD - g(® o€ A (3b)

¢ ¢
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where ¢ € A means that ¢ belongs to A. Applying (2a) and (3a) to (1) we get

a = b (4)
Z bm cos m¢ = - E;, ¢ €S (5)
0

where E; can be easily found to be

0

¢ 2Eo emim Jm(kzp)cos mé
B, ~ 7k,a RGN ) m
1 I (k,2)H (kla)-(kz/kl)Jt;l(kZa)Hm (k,a)

~ E , for kla and k2a << 1 (6)

Applying (2b) and (3b) to (1) we get, in conjunction with (4),

o0

z Ymbm cos m¢p = 0, ¢ € A (7)
® i
where

(n' '
lem (kla) ) szm(kza)

Yy = -
m (1) J (k,a)
Hm (kla) m: 2
~ - 23 s m>0
a
for k,a and k,a << 1 (8)
1 1 2

m= 0

~ a 1n(k,a) ’

Equations (5) and (7) constitute the formulation of our mixed boundary-value
problem which we now proceed to solve. The quantity of interest is the electric

field on the axis, which is, according to (1), given by

b

(2) _ o t
E,7(0) = I Gpa) * E (0
€))

t
~ b0 + EZ(O), for kla and k2a << 1



Starting from (7) we have

il
o

g Ymbm cos m¢ ¢ € A

(10)
- iwpJ(e) €8S

Here J is an unknown function on the strips and turns out to be just the induced

current density. Equation (10) immediately gives

iwpe

_ m
bm = anm JSJ(¢)cos m¢d¢ (1)

Substitution of (11) in (5) yields

%%%; ISJ(¢)d¢ - ig:a fsd¢'J(¢') % m_1 cos m¢ cos mp' = Eo’ $ €S (12)

where we have used the low-frequency approximations on Ym(m > 0) and E;. Since

we are dealing with strips symmetrically located on the dielectric cylinder

(Fig. 1), we can add

m—1 sin m¢ sin m¢'’

=18

to the cosine series in (12) without affecting the solution J(¢). From Ref.

2, we have

_ a4t
m 1(cos m¢ cos mé' + sin m¢ sin mo') = - 1n]2 sin(ijf—dl (13)

=018

Using (13) and (11) in (12) we get

21
iwpa

- \J
J 1n|2 sin(‘le)IJ(q;')dcp' = (Eo + bo), €8 (14)
S
Now we note that for low frequencies it is permissible to assume J to be
the same on all the strips. This means that if N is the number of strips, B
the period, and 2o the strip's width (see Fig. 1), then J(¢) = «-« = J[¢ + (N - 1)B8].

Thus, we can write




' o N-1 e
Js ln|2 sin(¢——§—)]J(¢')d¢' = j_ad‘b"](‘b') Z 1n12 sin(——¢ ¢2 nB)I

n=0

Q

o
=1n 2 J J(¢)do + J 1n|sin-% b - ¢")]I"de', [¢] < a (15)
~-a

-a
The last step in (15) follows from formula 1.392 of Ref. 3. Using (15) in (14)
together with (11) we get
o N 2m
0N — At ' v &1

f_a 1n|sin 5 (6 - ¢ JARLCIDLT) Toua [E, +b (1 +y,aln 2/N)], |¢] <a (16)

Since the quantity of interest is b0 which is proportional to IgaJ(¢)d¢,
one can obtain a reliable result via the variational principle without first
solving (16). The variational expression of interest can be easily constructed

from (16) and is given by

a o 2
iwpa . if“q£¢)d¢ - . ﬁﬂfigj(¢)d¢] a7n
2n E +b (1+ 1n 2 -
TEgthy Hrga In 2/N) po 18 g(g,47)3(6)3(8")deds"
where K(¢,¢') is the kernel in (16). Using (1l1) and setting the right-hand
side of (17) equal to C_1 we have
Yt b |1
N Eo+bo(1+yoa In 2/N) C
Solving this for bO we get
E
b = - °
o 1+(C+1ln 2)Yoa/N
Substituting this into (9) we obtain, for kla << 1,
(2)
Ez (0) _ f
E 1+f
o
(18)
£ = C+1ln 2 F

N 1n(k a) Y In(17k a)

where we have used Y,a ™ 1/ln(k1a) and, of course, -F = C + 1n 2.



To evaluate C we take J = constant as our trial function in (17). Then

1o N
C=— J J 1n|sin-§ (¢ - ¢')|deds’
4a ~0° =

1 JNG/Z fN(!/Z

N2a2

lnlsin(x - x')]dxdx'

~Na/2¢-Na/2

Let

Na/m, 0O<sv<l

<
n

We can then easily reduce the double integral to a single omne:

2 v
C = 2 f (vr = u)ln(sin u)du
(vr)~ 70
1
= 2 J (1 - x)1In sin(vrx)dx (19)
0

With (19) we can show that F(v) in (18) has the following properties:

F(1) =0

F(v) ~ 3/2 - 1n(2vn), as v > 0

Now it is obvious from (18) that (i) when v = 1 (i.e., 100% optical coverage)
Eéz)(O) = 0, and (ii) when v = 0 (i.e., no metallic strips) Eiz)(O) = Eo' These
are, of course, the expected results for these two limiting cases. Equation (18)
also shows that for a given optical coverage (i.e., for a fixed v) one should
make N large for better shielding effectiveness. This conclusion agrees with

Kaden.(é) The function F, which is a function only of v, is graphed in Fig. 2

and also tabulated below.
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Table 1

4.2627
3.5696
3.1643
2.8768
2.6539
2.4719
2.3181
2.1850

1 2.0676

1.9628
1.8681
1.7817
1.7023
1.6290
1.5608
1.4971
1.4374
1.3812
1.3282
1.2779
.8864
.6186
4216
.2724
.1590
.0755
.0196
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Figure 2.
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Besides the quantity E( )(0)/E given by (18), another interesting quantity
to calculate is E(z)(O)/I 1 being the total induced current in the shield
(i.e., in the metallic strips). Naturally, I is related to J by

I= J J(¢)ad¢ = Na Iﬁ J(¢)dd,
S

-Q

whereas bo is related to I by (11) as

1wy J 1wy
b =~ J(@)dd = = 5—/—— 1
o 2wyo 5 2ﬂy°a

Using these two expressions in the variational expression (17) we get, after

some simple algebra,

Eg _ iwy | C+1ln 2 + 1
1 2m N Yoa
Thus,

bo +E = ijwp C+ln 2 I = iwpF (v)

o  2m N - TN ¢

Substituting this into (9) we finally have, for kla << 1,

£(2 (0)

Z

1 = iwLS

(18")

Ls == 2nN F(v)

Lshas the dimension of henries per unit length and may be called the inductive

(or magnetic) coupling coefficient.
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II1. H-Polarization

‘

the axis of the cylinder (see Fig. l:; general incidence will be discussed on p. 15),

When the magnetic field vector of the incident plane wave is parallel to

i.e., e iklx
Hln = e He
— —z o

we start with the following field representations:

) ¢))
H " (k.p)
H(l) = Hinc +H + E A —E——T—l——— cos m¢, p > a
z z z m H(1)
m

5 (kla)
(20)
:E?: J (k,p)
(2) _ .t m 2
Hz = Hz + Bm ET?E~;$-COS mo, p < a
0 m 2

where H; and Hz are, respectively, the reflected and transmitted fields in the

absence of the strips. Proceeding in the same manner as in section II, one can

easily arrive at the following:

o

- &_ t
g Bm cos m¢ = Z $ €S (21)

By

oo

) T_B_ cos mé =0, ¢ € A (22)
0

where

E;— ) 2H0 i Eml- J! (kzp)cos m¢
2 TR e (i, (e a)- Gy 1)) (ya)n (D ()

0
ikza
~ Ho, for kla and kza << 1 (23)
(1)
r = (e,/¢ );i n ot - Jm(kza)
m 172 (1)(k a) Jm(kza)

12



"For k,a and k

1 g8 << 1, we have

k.a

2
Fm =~ - (1 + 21/52) o m>0

(24)
S
b4
kza
The quantity that we are seeking is the magnetic field on the axis of the cylinder,
which is given by (20) as

B

(2) _ o t
HZ 0) = ~———J(.)(kza) + Hz(O)

N~ —2>+ H , for k.,a and kza << 1 (25)

k,a o 1

To solve (21) and (22) for the Bm’ we write

s i .t
Z B cos mo -—E , ¢ € S
0 m Z2 0]
(26)

i s
=—E , ¢ € A
Z2 ¢

s . . .
Here E, is an unknown function and turns out to be just the scattered electric

¢

field in the ébertures.
We now proceed as in section II. First, we solve (26) for Bm in terms of

the unknown function E Then, we substitute the result into (22) to obtain an

s
*s
integral equation for E¢.

arrive at the following integral equation for E

After making the low-frequency approximations we
s

o}
2niZzBo

(1+51/e:2)(k2a)2 ’

f 1n|2 sin(iizﬁ)l}zzw')dcp‘ = ¢ € A 27
A

Assuming E$ to be the same in all the apertures, as we have done for the
current density on the strips in section II, one can easily deduce from (27)

the following equation:

13



! 27iZ.B
o]

(s
J 1n|sin-§ (¢ - ¢')|EZ(¢')d¢' = 2
—a'

5 s l¢]| < o (28)
(1+€1/€2)(k2a)

where 2a' is the width of one aperture.
A ]
To find B° from (28), which is related to Iga.Ezd¢, we invoke the variational

principle. Defining

RO N
rre. 9 (29)

1
cC' T o' paf +aS S, txaiiiy
Sl R (8:0E (HE (8")dodo
we find from (28) that
. 2 2
2B . (C'/N) (14n )(kla) s

- Sy (30)
k,a 1+(C'/N)(1+n2)(k1a)2 r "o

where n2 = Ez/el, S = total arc length of the strips, and K(¢,¢') is the kernel

in (28). If we take E° = constant to be our trial function in (29), then

¢
C' = C when o = o' (where C has been defined in section II) and we have, after
using (30) in (25),
(2)
HZ (O) _ l _ (l—V')f'
H B 1+£°7
o
' -1 Y 2 2
f'' = N [F(»") - 1n 2](1 + n )(kla) (31)
NLRRSIp . SR BN

T

where F has been graphed and tabulated in section II. Several points regarding
(31) will now be made in order. In deducing (31) we have made low-frequency
approximations to the integral equation for Ez in the apertures. By keeping
only the dominant terms in the approximations we have arrived at (28). Then,
using the variational principle and a constant for the trial function we have
finally obtained (31). In conformity with the low-frequency approximations we
should have expanded the result (31) in powers of kla and discarded terms of the

same order as those being neglected in the process of deriving (28). However,

14
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equation (3l),as it is, has the desirable feature that it tends to zero as v'
(2)
z

the shielding effectiveness increases with decreasing N for a given optical

goes to zero. From (31) one can also see that H = Ho when v' = 1 and that
coverage.

So far we have restircted our consideration to normal incidence only.
But our results can easily be extended to general incidence. Let eo be the

angle between k and_gz, and let wo be the angle betweeng1nc [orlﬂinc] and

1
its projection onto the plane formed by_g1 and‘gz. Then we simply make the
following changes in the equations: (1) replace E0 [or HO] by

Eo cos wo sin 60 exp(lklz cos 60) [or by Ho cos wo sin eo exp(lklz cos 60)],

and (2) replace k1 and k2 by kl sin eo and k2 sin eo, respectively.
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