r(/;r"rf f«”:-'(
» Ahsorved ot

Dec. 1978

Interaction Notes
Note 8§88

1l December 1971

On the Singularity Expansion Method for the
Solution of Electromagnetic Interaction Problems

Carl E. Baum
Air Force Weapons Laboratory

Abstract

This note develops a new method for the solution of EMP in-
teraction problems. Basically it involves expanding the solu-
tion in terms of its singularities in the Laplace transform or
complex frequency (or s) plane. In the time domain each term
comes from an inverse transform of the corresponding term in the
singularity expansion. Pinite size objects with well behaved
media have only poles in the finite s plane for their delta
function response. These factor into terms involving the class-
ical natural frequencies and modes but in addition bring out
factors which we call coupling coefficients as well as the pos-
sibility of higher order poles besides simple poles, but still
of finite order in the finite s plane. 1If the incident waveform
has singularities in the finite s plane the response can be gen-
erally split into an object part (containing object poles) and a
waveform part containing the waveform singularities. The object
poles directly give amplitudes, frequencies, damping constants,
and phases for the damped sinusoidal waveforms seen so commonly
in EMP tests using pulsed waveforms. There is some latitude in
the calculation of coupling coefficients and some difficulties
are discussed. '
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Foreword

Approximately this last summer I started looking at this
singularity expansion method. Based on physical arguments the
general form of the expansion and how the terms factored for
finite objects to exhibit dependénce on separate variables of
the EMP interaction problem soon became apparent to me. In par-
ticular some physical observations generalized from many EMP
tests in time domain led to the pole expansion concept in fre-
guency domain. This forms the starting point for what follows
in this note.

Next chronologically I started some discussion going on
this subject, in particular with some of my colleagues at North-
rop Corporate Labs in Pasadena. I certainly wish to thank them,
in particular Dr. L. Marin, Dr. K. S. H. Lee, Dr. R. W. Latham,
and Dr. F. Tesche (who is now with Dikewood) for many very stim-
ulating conversations about this technique. They certainly
helped me test and refine some of the concepts. They are also
presently working on reports to further refine the method and
calculate some example problems. In particular Drs. Marin and
Latham have rather far advanced some analytic solutions of the
magnetic-field integral equation for finite size perfectly con-
dugting objects in terms of the singularity expansion.

In September there was a meeting in Pasadena with some sig-
nificant attention given to this subject. I would like to thank
everyone who came to that meeting for the stimulating discussion
on this subject. On various occasions both at this meeting and
on other occasions I have had occasion to discuss this matter
with various people. In particular I would like to thank Prof.
R. J. Garbacz of Ohio State U., Prof. C. T. Tai of U. of Michi-
gan, Prof. S. W. Lee of U. of Illinois, Prof. C. Taylor of U. of

" Miss., and Dr. A. Poggio of Cornell Aeronautical Lab. Some of

these people are already beginning studies on various aspects
and specific problems concerned with the singularity expansion
method.

«...when suddenly a white rabbit with pink eyes ran close by
her,

There was nothing so remarkable in that; noxr did Alice
think so very much out of the way to hear the Rabbit say to it-
self, "Oh, dear! Oh, dear! I shall be too late!" (when she
thought it over afterward it occurred to her that she ought to
have wondered at this, but at the time it all seemed quite nat-
ural); but when the Rabbit actually took a watch out of its
waistcoat pocket, and looked at it, and then hurried on, Alice
started to her feet, for it flashed across her mind that she had
never before seen a rabbit with either a waistcoat pocket or a
watch to take out of it, and, burning with curiosity, she ran



across the field after it, and was just in time to see it pop
down a large rabbit hole under the hedge.

- In another moment down went Alice after it, never once con-
sidering how in the world she was to get out again.

(Lewis Carroll, Alice in Wonderland)
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I.: Introduction

This note takes off on a new course in the treatment of the
interaction of electromagnetic fields with bodies located in
free space or in other simple media, including the effects of
the proximity of one body with respect to another (such as a
body in an EMP simulator).

By way of introduction some physical observations are in
order. Suppose one excites an object such as a missile, an air-
craft, a building with various conductor geometries, etc. with a
fast electromagnetic pulse. What are the general characteris-
tics of the resulting waveforms for the various electromagnetic
quantities (such as current, charge, etc.) associated with this
object? Someone with much experience in EMP testing of such ob-
jects in EMP simulators could observe that an extremely common
characteristic of such waveforms is the presence of one or more
exponentially damped sinusoidal oscillations. This is the case
not only in the excitation of the internal circuitry but also
for the body geometry as well. This electromagnetic resonance
phenomenon is particularly pronounced for long and comparatively
slender conductors such as the main body resonance of a missile
or the body and wing resonances of various aircraft. These
damped sinusoids in the response are observed not only in EMP
inceraction studies (both experimental and theoretical) but also
in fast pulse time-domain-type radar scattering studies.

Not all aspects of the electromagnetic response of objects
look like damped sinusoids. Parts of the time domain response
may look like the incident waveform, or perhaps its time deriva-
tive or time integral. It would also appear that in some cases
even more complex types of responses occur.

Looking at the forms of the observed responses one might
ask if there is some way that these observable features of the
waveform can be found directly when one calculates the object -
electromagnetic response. Can the amplitude, fregquency, damp-
ing constant, phase, etc. of each damped sinusoid be directly
calculated? How do they depend on the incident wave? Can other
kinds of response which give waveforms related to the incident
waveform be directly calculated? ' '

The purpose of this note is to begin to characterize elec-
tromagnetic interaction with objects in terms of guantities di-
rectly identifiable with various characteristics of resulting
interaction waveforms. Some characteristics are associated with
the object characteristics including the presence of neighboring
objects. Other characteristics are associated with the waveform

of the incident field. Yet others are associated with the spa-

tial distribution of the incident fields, such as specified by
direction of incidence and polarization. What is in effect ac-
complished here is a decomposition of the interaction problem
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into various quantities which depend on different variables of
the problem. The dependence of the interaction on different
variables can then be separately considered resulting in a con-
siderable simplification in understanding how the resulting
electromagnetic interaction can vary over all possible varia-
tions of the parameters of a particular problem being considered.
This effectively extends the complexity of the object geometries
one may be willing to consider for detailed calculations.

HaV1ng identified what appear to be exponentially decaying
sinusoids in typical interaction experimental data one might use
this as a clue toward finding a mathematical representation of
the electromagnetic interaction which has these terms as part of
the decomposition. Consider the Laplace transform of the var-
ious waveforms. (The two-sided Laplace transform is used
throughout the note.) The Laplace transform of an exponentially
damped sinusoid gives a pair of complex conjugate poles in the
complex s plane of the form 1/(s - sqgj) and 1/(s - Sag) where s
is the Laplace transform variable, where Sy = Sgp with the bar
above a quantity indicates complex conjugate, and where o3 and
Gy are sets of indices to label the poles being considered. If
one could find these poles with their coefficients in the com-
plex s plane from an integral equation or other form of the so-
lution (such as from an eigenfunction expansion of the solution)
then not only would he have a representation of part of the fre-
quency or Laplace domain solution, but also of a part of the
time domain waveform (damped sinusoids) as well. Such poles in
the complex s plane are termed natural frequencies of the object
since they are frequencies for which the object can have a re-
sponse (in Laplace or complex frequency domain) with no excita-
tion in the form of an incident wave. If the body is excited at
a natural frequency then its response is infinite at that com-
plex frequency.

Suppose one were to take a solution for some interaction
problem expressed in the Laplace domain either explicitly or im=-
plicitly (such as in the form of an integral equation). Fur-
thermore suppose one wishes to convert this into a time domain
solution. This can be done using the inverse Laplace transform

integral, a contour integral in the complex plane. This contour
can be deformed in the complex s plane, passing it through re-
gions where the response is an analytic function of s. On

reaching singularities such as poles and branch points the con-
tour can be deformed around the poles and branch cuts to obtain
terms associated with each separate pole and branch cut and per=-
haps a contribution from a portion of the contour for |s| =+ =,
Our basic approach then in expressing the 'solution to electro—
magnetic interaction problems is to express it as a sum of such
terms in both Laplace (frequency) domain and time domain. Dif-
ferent types of terms will have different properties and we wish
to understand these properties in detail so as to take advantage

of the decomposition of the 1nteractlon problem 1nto 1ts varlous

parts. -
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. Not only are the natural frequencies of the object of con-
cern because there can be other singularities in the response.
Associated with certain kinds of object geometries one may also
need to consider branch cuts in the complex s plane. An example
of such a body is an infinite length perfectly conducting cir-
cular cylinder for which the branch cuts can be associated with
cylindrical Hankel functions. This note is mostly concerned
- with cases that the object response does not have branch cut
contributions associated with the object characteristics. How-
) ever the same approach as for the case of poles may be used by
~ including terms for the branch cut integrals in the general ex-
pansion for the inverse Laplace transform integral. Back in
Laplace domain the individuwal branch cut terms can be found by
first subtracting all the pole contributions and then treating
what is left. Since the only important contribution at the
branch cut is the change in the function across it, then in cal-
culating the branch cut integral one could use this change to
define an appropriate term only associated with this change
(along the entire branch cut). Such problems are not considered
in this note but it is determined that for a class of objects of
interest there are no branch cut contributions associated with
the object geometry.

. The incident waveform will also typically have singulari-

ties in its Laplace transform and there are terms in the object
f.‘ response which correspond to these. The object response can
then be split to some extent into terms associated with the
geometry and other electromagnetic characteristics of the object
on the one hand, and the incident waveform characteristics (in-
cluding how they couple to the object) on the other hand. In
many cases the waveform contributions will be through rather
simple singularities such as simple poles associated with expo-
nential waveforms.

of
£
g

Having decomposed the object response into various terms in
this manner, one can then see how accurately the first so many
terms describe the complete object response in various of its
characteristics in both frequency and time domains. It is not
apparent that all interaction problems can be most conveniently
characterized using the natural frequencies and modes and other
singularities. However, for highly resonant structures it ap-
pears to considerably simplify the comprehension of the impor-
tant features of electromagnetic interaction with the structure.
Other techniques will continue to be valuable and waveform and
frequency-response detailed calculations will still be needed.
In some cases the waveforms, for example, will be useful in de-
termining how many natural modes etc. are needed for the object
\ and over what range of the object parameters the incomplete sum

of modes is adequate.

et

‘ This note first considers the general form of these solu-
éfﬁ tions which separates out various aspects of the object response.
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Then based on finite matrix formulation of integral equations in
a form such as used for numerical solutions various properties
of. the solution can be found based on the analyticity properties
of the matrix elements and vector components. For instance, the
conclusion that only poles of finite order appear in the object
response for finite size objects applies not only to perfectly
conducting objects but ones of finite conduvctivity as well.
Numerous topics are then briefly discussed to point out many
areas for further investigation. Finally an appendix discusses
the special "natural frequency" s = 0 and another appendix works

out the object response for a perfectly conducting sphere as an
illustration of natural frequency, mode, and coupling coeffici=-
‘ent calculation and indexing.,.

In addition to what is discussed in this note many refine-
ments of the singularity expansion method are possible and var-
ious extensions of the results would seem possible, In solving
specific boundary value problems with this approach some other
general results may be suggested by the data, thereby focusing
attention on the proof or disproof of these conjectures and the
consideration of other boundary value problems which better ex-
hibit the same general results or test their validity.

While this note considers the solution of electromagnetic
boundary value problems in terms of natural frequencies and
other singularities the technique can be applied to experimental
data as well. From frequency or time domain data one should be
able to determine natural frequencies and modes and other sin-=
gularity characteristics by extending the data to the remainder
of the complex s plane using Laplace transform techniques or
even analytic continuation. Of course there are numerical error
problems as in other data reduction processes and this will also
require guantitative understanding.

Since this is a new approach to the solution of electromag-

netic boundary value problems there is clearly much work to be
done to fully understand its many ramifications.
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II. . The Form and Some General Characteristics of the Singular-

“. ity Expansion for Some of the Simpler Cases

Let us now look at some of the advantages associated with
the 51ngular1ty expansion method because of the form of the ex-
panSLOn in simple cases. '

" FPirst we write the complex Laplace transform variahle in
terms of its real and imaginary parts for notational purposes as

s = Q + o , (2.1)

R

An arbltrary functlon of time f£(t) which could be in general a
scalar, vector, or tensor of arbitrary rank has a Laplace trans-
form (bilateral or two sided) assuming the_integral of |f(t) |
over any finite interval exists defined byl

- 7L'[f(t)] = f(s) = f f(t)e-Stdt (2.2)

-00

where the integration is taken on the real t axis. This is the
two sided Laplace transform (indicated by a tilde ~ over the
function) where f(t) is required to have a behavior such that
f(s) exists and is analytic in some strip Q. < Re[s] < Q4 in the
s plane. The inverse transform (where £(t) is of bounded varia-
tion near t) is given by

r Q +ie }
MES)] = £(0) = ooy £(s)eStas o (2.3)

211 Qo-im_

where the limits to +iv can be interpreted in a Cauchy principal
value sense and where Q. < R < Q4 unless f(t) is discontinuous
at t in which case the inversion gives [f(t-) + £(t+)]/2. 1In

our cases of interest f(t) = 0 for t < ty in which case {4 = «
and the transform effectively reverts to a one sided Laplace
transform with the lower limit as tp. Typically also Q. = 0 as

long as f£(t) does not grow as fast as an increasing exponential
for t » +~., 'Thus we normally have f(s) an analytic function of
s for Re[s] > 0, the right half of the s plane, and the inver-

sion integral is defined along Re[s] = QO > 0.

The essence of the singularity expan51on method involves
evaluating f(s) (which may be surface current density or various
other electromagnetic quantities) by evaluating f(s) in terms of
the left half plane singularities (Re(s] < 0). Express the time
domain form f£(t) in terms of these same singularities as would
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be done by deforming the contour for the inversion integral
(equation 2.3) into the left half plane and splitting the inte-
gral into parts associated with each singularity. Note auto-
matically that since we are only concerned with f(t) real for
real t then the Laplace transformed f(t) has some symmetry which
can be found by splitting the transform integral into real and
imaginary parts. Denoting the complex conjugate by a bar - over
the quantity we have

£(5) = £(s) _ (2.4)

Singularities are then automatically symmetrically placed with
respect to the 8 axis except that branch cuts can be moved
around as long as the branch points stay symmetrically placed
with respect to the Q axis. For convenience we constrain the
branch cuts to also be symmetrically placed with respect to the
Q axis so that equation 2.4 always holds except of course right
at the singularities. Having found the term associated with one
singularity we then automatically have the result for the conju-
gate singularity. Of course this does not help us for those
singularities on the  axis. When we index the terms associated
with each singularity with a set of integers we can also adopt
the convention of a sign reversal on one of the integer indices
corresponding to conjugate positioned singularities. For such
an index positive integers can be associated by convention with
w > 0 (upper half plane) a zero integer for w = 0 (the Q axis)
and a negative integer for w < 0 (the lower half plane). Alter-
nately another symbol can be introduced to indicate which of a
conjugate pair is meant.

While there are various forms of incident waves that one
might use we choose the commonly used plane wave for our exam-
ples. 1If one wishes, more complex field distribution can be
found by superposition of many plane waves.2 For our present
purposes we consider an incident plane wave propagating in the
el direction (independent of s) with electric field polgrlzatlon
in some combination of the ey and ej3 directions. Here e is used
for a unit vector. The three unit vectors for our plane wave
are all mutually orthogonal and form a right handed system of
unit vectors as

-+ > -+ <
e X e, = e, (2.5)

As shown in flgure 2.1 this plane wave isalnc1dent on some ob-

ject of fln;te linear dimensions. Let r denote the observer po- .

sition and r' coordinates on the object. Then by ap object of
finite dimensions we can require |r'| < ro for all r' where rg
is some finite radius. (Note that all dimensions are rational-
ized MKSA throughout the note.) Typically the coordinate origin
(r = 5) would be chosen near or even inside the object. If we

it st TR AR e kol
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FIGURE 2.1 PLANE WAVE INCIDENT ON OBJECT

10



)
-
o
gy W

define some refergnce axis (as shown in figure 2.1) then given
e] we,can choose ep parallel to the plane which is parallel to
both ej] and the reference axis; e3 will be perpendicular to this
plane. If the object has an axis of symmetry this would nor-
mally be chosen as the reference axis. In spherical coordinates
as in one the appendices the 2z axis (or 6 = 0, m) would be
chosen as the reference axis for convenience.

Our incident plane wave is assumed to propagate in free
space with a propagation constant

- ik = S
y = ik = = (2.6)
where the speed of light in vacuum is

c = 1 (2.7)

The wave impedance of free space is

. .
z_ = VS—O , (2.8)
0] .

.

The permeability of free space is ug and the permittivity of
free space is €5. It is not strictly necessary for the medium
to be free space; lg and gg can be regarded as-parameters of the
large volume (ideally infinite in size) of the medium in which
the object of interest is placed. However for some results it
may be necessary that this medium have zero conductivity (be
lossless) so zero conductivity is specified for the infinite
medium for considerations in this note.

The general form of our incident plane wave can now be
written as3,4,5

e, T e, 7
- -> 1 - 1 +]
Einclr t) = Eo[fz(t S )ez * f3(t 3 )e3
. > o > > (2.9)
E e, r v €.°T
-> - _ _9_ _ 1 - _ — 1 +]
Hinc(r,t) = 3 [fz(t S )e3 f3(t = )e2

0]

where E5 is a scale factor with dimensions volts/m. The two in-
cident fields are related by

11




- -+ . 1 - - -+
Hinc(r’t) - 7; ey X Einc(r’t) o
(2.10)
-> T ~» > -+
Einc(r,t) = -Zoel X Hinc(r,t)
In Laplace form the incident plane wave 1is
Yo, ¥
3 > _ ~ + o > . Y&
Einc(r,s) = Eo[fz(s)e2 + f3(s)e3]e
PN ' (2.11)

> ->
H.nc(r,s)

o.~ ~ ->
i z;{fz(s)e3 - f3(s)e2]e

Note that for each of the two independent polarizations we can
have separate waveform functions f5(t*) and f3(t*) where the re-
tarded time is defined by

L4 t* = t - = . (2.12)

The waveform functions have subscripts which relate them to the
polarization vector for the electric field. For the magnetic
field 2 and 3 are interchanged with a sign reversal in one cage.
No evanescent waves are allowed for our present purposes, so e]
(even when associated with the Laplace form) is taken as a real
unit vector although for some purposes it need not be. This

plane wave can be expanded in terms of the vector wave function
for various other coordinate systems such as spherical coordi-
nates4 (which is used in appendix B) and cylindrical coordinates.5

For convenience one may introduce a unit dyadic plane wave
for Laplace domain purposes as '

Ima 23
i

(6 e = {010

001

(2.13)

—Ygl-; 100 -Ygl-;
b (052

1P
(with bj, by indicating in this case a pair of indices each
ranging from 1 to 3) which in the time domain is a dyadic delta
function plane wave as :

( él-f 100 ( el-§) ' ’
1= (abl,bz)a £~ = ) = (o 1 0)5 £ - (2.14)

i+

12




The subscript 1 indicates propagation in the 31 direction. Mul-
tiplying (in a dot product sense) this unit dyadic plane wave by
a waveform and polarization gives our incident plane wave as

- F

= _ > ~ . >

' lnc(r,s) = Eo[fz(s)e2 + f3(s)e3] Il
o -i' , Eo . R \ 3 (2.15)

Hinc(rrs) - 'Z-;[ 2(S)e3 - 3(S)e2] Il

In the time domain convolution is also needed which we might in-

dicate by
- : . >
B, (T,8) = E_[£,(t)8, + £o(t)eql* « I,
| - S . \ (2.16)
H, _(£,t) = -Zf[fz(t)é3 - fy(0)8,1% « 1,

Note that the_ dyadic plane wave "contains" both lgngitudinal
waves in the ej] part and transverse waves in the ep and e3 parts.
.“?-‘ Only the transverse waves satisfy Maxwell's eguations in source
- free media and so the 2 and 3 components giye the most general
uniform plane wave propagating parallel to ej.

¥
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The first problem in the solution of our electromagnetic
interaction problem is then to find the object response to two
incident waves

4

-5
e .

e
1

(2.17)

where these can be taken as either electric or magnetic fields:
because of the way they interchange with one another (with a
sign reversal in one case). Knowing the response to these two
waves (taken as both electric or both magnetic) then the re-
sponse to a general plane wave incident in direction e1 can be
formed in Laplace domain simply by reintroduction of the wave-
form functions f5 and f3 and other scale factors just as they

- appear in the incident plane wave as above. In time domain the
response to u and u3 can be separately convoluted with £3 and
f3 and scale factors reintroduced to obtaih the general solution.

What then is the object response to ﬁl and to ﬁg taken for
: convenience as the electric field components to correspond di-
4. rectly to polarization? Here all the waveform characteristics
Y : are factored out leaving two problems, each of which has an

13
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*incident field function" which has no singularities in the en-
tire s plane. These are termed entire functions; they are ana-
lytic for all finite s although in this case they each have an
essential singularity at «. These are the simplest plane waves
for our purposes.

There are many kinds of objects which one might consider.
They can be of finite size or infinite size in various shapes.
They can be composed of various media arranged in various dis-
tributions. In this note we concentrate our attention on a cer-
tain kind of such objects and work out some general results for
this class of objects. Other kinds of objects can also be con-
sidered in this way and some comments are made regarding such
other classes of objects. Ag shown in figure 2.1 we consider
finite bodies described by |r'| < ro for all points on the body.
Furthermore for some of the considerations and the example in
appendix B we take this object as perfectly conducting which re-
duces our considerations to the body surface which has surface
charge and current densities as quantities of primary interest
for describing the electromagnetic interaction. This body is
not necessarily continuous but may be composed of several sepa-
rate parts.

In a later section of this note it is demonstrated that
cufrent density (either surface or volume) for a finite object
has its delta function response corresponding to any singulari-
ties in the finite s plane expressed in terms of poles of finite
order. We identify these poles as sy where o is some index set
which indicates which pole is meant. This result is of funda-
mental importance for our general representation of the solution

to the interaction problem. We have
for no, = 1, 2, 3, ... as a factor in
now is the rest of the expression at
plete the expansion of the two delta
sponses in Laplace domain. If there

a series with (s - sg) "R
each term. What we need
each of these poles to com-
function plane wave re-

is more than one order of

pole at s = sy the a index set can have a number to designate
each term in the expansion corresponding to each order pole;

clearly this number could be just ng4.

These poles sy are the natural fréquencies of the object.
By a natural frequency is meant a value of s for which the ob-

ject has a response without an incident field exciting it.

natural freqguencies are generally in
plane (Re[s] < 0)

quencies can be on the iw axis (Q =

for lossless situations such as for interior cavity modes.

The
the left half of the s R

because of energy loss (to radiation in the
- case of a perfectly conducting body)

except that natural fre-

0) with first order poles

How=-

ever in the time domain such simple poles on the iw axis corres-

pond to undamped sinusoids which, if

they can be excited by the

incident wave, must continue to radiate power to infinity indef-

initely by reciprocity.

Since this would violate conservation

of energy the residues of such poles must be zero and we drop

them from consideration.
14
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If the object responds at 8 = sg with no incident fjield
then such response must be indepgndent of polarization (e3 and
e3) and direction of incidence (e]) since they determine no in-
cident fields for this ideal case. This leads to the concept of
a natural mode. By a natural mode we mean a current, charge,
field, etc. distribution associated with a body self oscillation
at a c%mp;ex natural frequency sq. _We desi nate natural modes
by U4 (F) (r') for a vector quantity F and vy (F) (r') for a scalar
quantity F. A scalar quantity F could be a surface charge den-
sity %S and a vector quantity F could be a surface current den-
sity Jg parallel to the object surface.

There is of course the question of the uniqueness of_the
natural modes. Clearly the natural modes can be modified by a
scale factor, but this is just a problem of an appropriate nor-
malization of the natural modes. Depending on the problem of
concern there may be various appropriate normalizations. Ap-
pendix B considers the case of a perfectly conducting sphere for
which all the natural frequencies correspond to first order
poles (nyg = 1 only). For the perfectly conducting sphere the
natural modes are types of spherical harmonics and here we use
definitions which fit naturally with common usage.

The perfectly conducting sphere is an interesting example
inm that all the natural modes, coupling coefficients, and natu-
ral frequencies can be more readily calculated. Any general re-
sults for perfectly conducting finite sized objects must be true
for the perfectly conducting sphere. Thus the sphere (and
other shapes such as prolate and oblate spheriods and disks) can
be used to test general results. Moreover they can be used to
form a basis for conjecture for new general results. For ex-
ample the perfectly conducting sphere has only simple poles (ng
= 1 only) which completely describe its response to a delta
function plane wave.

Aside from the scale factor there is another problem in de-
fining the natural modes. This is the possible degeneracy of
the modes. As can be seen for the sphere problem for example
(appendix B) the modes can be degenerate in which case associ-
ated with each natural frequency there may be several modes.
This problem can easily be handled by the o index set to desig-
nate separate independent modes. There are variocus different
ways to define the different modes and what 1s needed is a con-
venient set of modes with the minimum number of modes necessary
to span the space of all possible distributions of the quantity
of interest associated with the particular natural frequency.

—0f course the sphere has a high degree of 'symmetry and one would
. expect degeneracy of the natural modes associated with symmetry.

Bodies with a symmetry axis will also have a degeneracy of the
form cos(n¢) or sin(n¢) as a factor in the natural modes (except
for n = 0) giving at least two independent natural modes (for
n > 1) for each natural frequency. Note that it is also
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possible (at least in the case of the sphere) to define the nat-
ural modes so that more than one natural frequency can have the

same natural mode or even set of modes. In many cases this de-

generacy problem may be unimportant, especially for irregularly

shaped objects.

Further on in this note some calculational techniques for
finding the natural frequencies and modes from general integral
equation formulations of electromagnetic interaction problems
are discussed. In performing such calculations one can observe
for each natural frequency being considered whether other than
first order poles are present and if more than one natural mode
is needed for that natural frequency. Thus the form of the sin-
gularity representation can be checked in a problem being worked
out and the results compared to more conventional numerical so-
lutions at other frequencies in the s plane and/or in the time
domain. ’

Having the natural modes 3a(§') which depend only on the
object coordinates and the natural frequencies sy which are
fixed cgmplex numbers we next need the coefficients which multi~-
ply vg(r') (s - sg) R8¢ to give the response to our incident plane
waves. For the surface current density on the body we write

[~

e

3 (;',s) =

5 Fr,s) + 3 (F,s) | (2.18)

S2 3

where p = 2, 3 as a subscript designates the part associated
with each polarization of the incident wave. Each part can now
be written as

E

- ( :
) - Q9 F S’ 7, .
. (£',s) 7o fp(&)0p ° (Fe) | (2.19)

s
p

where ﬁp is the response of the surface current density to the

plane wave (Laplace transformed delta_function wave) taken as
the incident electric field. Note that Up is dimensionless.
For cases with volume current densities other normalizations
would be appropriate. Our surface current density response
functions (two of them, one for each incident glectric polariza-
tion) are functions of the object coordinates r' and the complex
frequency s (or of time t when inverse transgormed) and of :
course depend on the direction of incidence ej.

Now we can write the surface current density response func-

tions for finite sized perfectly conducting bodies as
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~ (3) -n N
5 (Z',s) ={2a:n (E,9)%, 5 () (s = 5 * + 7

(2.20)

where ny has dimensions of (time) ™0 and where the sum is taken
over all the indices in the index set o except for p which is
one index for n. Were ¢ written as say two or three indices
then a double or triple sum would be used in this expansion.
Note that the coupling to the incident plane wave depends on
frequency because there is at least a time delay or advance in
when the mode is "turned on."

The coupling coefficients na(gl,s) are entire functions of
8 (no singularities in the finite s plane) with values at sg
which give the proper pole cocefficients. ©Note that for ng > 1
the derivatives of ng with respect to s at sq take a pole of
order ng and give coefficients to terms of order ng - 1, ng - 2,
etc. until a first order pole is reached. Then there is some
flexibility in our definition of ng as long as at each natural
frequency na(el,sa) gives the proper coefficient to the highest
order pole there. The lower order poles at sy then can be par-
tially (if not entirely) included in the terms for the poles of
higher order depending on the choice of the form of ng for such
higher order poles. This points out what might be termed the
non uniqueness of the form of the singularity expansion. Cer-
tain features of the singularity expansion are fixed, but others
have some flexibility. One might then ask what is the best def-
inition of ny consistent with the pole requirements? This might
involve such criteria as simplicity of the resulting functions
in frequency and/or time domain, asymptotic behavior for |s| + «
so as to avoid poles at infinity as separate terms which compli-
cate the form of the time domain expansion, etc.

Also in equation 2.20 we include W (JS)(el r',s) as an en-
tire function of s containing none of tﬁe poles of the response
in the finite s plane. This entire function is connected with
the choice of the ng and has similar flex1b111ty in its choice.
Only the resulting sum need be the unigue solution for the cur-
rent density etc. We have some flexibility in how we arrange
the terms. In what follows in this section we consider ng and a
special form for the coupling coefficient as cge~Sto in develop-
ing some of the consequenceg for the singularity expansion. The
additional entire function Wp is only included in some of the
expressions; it is usually dropped; it is not needed for the
perfectly conducting sphere discussed in appendix B. This func-
tion is further considered in section 3. For perfectly conduct-
ing finite sized bodies the perfectly conducting sphere results
suggest that a delay can be factored out so that a coupling co-
efficient cy can be written as
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l,s) = C (zl)e © (2.21)

How general this result applies is not presently clear. My con-
jecture is that it applies to perfectly conducting finite ob-
jects if not more general objects such as lossy objects, perhaps
with some nuances based on the order of the pole being considered.
Here to is the time that a delta function plane wave first

touches the object and is given by

e

- e,*r'
t (e,) = min[ ] (2.22)
o'l ;' c

which is illustrated in figure 2.2. For the perfectly conduct=-
ing sphere this result is immediately apparent as in appendix B,

Let us call ng and cg coupling coefficients and to the turn
on time. In any event the object response for each and every
mode is zero for t < 0. Note that if (as is often the case) the
coordinate origin is inside the object of interest then to is a
negative time (an advance). The allowable forms for ng, the re-
sulting individual terms in the series (all forms giving the
same sum), 1is a very important question in the singularity ex-
pansion method. Any entire function of s times (s - sy)0l@ for
example can be added to ng without introducing any new poles in
the finite s plane. This question is considered further in the
next section.

Now that the surface current density response functions for
finite size objects are expressed in terms of natural modes,
other quantities can be similarly expanded through their rela-
tionship to the surface current density. This includes scattered
fields. However, for electromagnetic interaction questions we
concentrate in this note on the surface current density and sur-
face charge density. From the continuity equation

veJd+22=0, v-T+sp=o0 (2.23)

we can find the charge density from the curr§nt density. When
we are dealing with surface current density Jg and surface

charge density ps the divergence has to be interpreted as a sur-

face divergence with the spatial derivatives being taken with

respect to two coordinates required to describe a position on o
the surface. Thus we can still write without ambiguity LT
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V' « T (r',t) + == p (r',t) =0
€§ s t 7s ’
~® f
' ' (2.24)
T . * ) ~
AN Js(r ys) + spglr',s) =0

where the prime on the
the object coordinates

indicates derivatives with respect to

v
i.*l
As before split the surface charge density as

B (T',s) = B, (E',s) + p_ (T',s) (2.25)

52 3
to correspond to the two polarizations. Write each part as

. Sy .
psp(r ,8) = eoEofp(s)Up (r',s) (2.26)

where the normalization using egEg is again chosen to make U
dimensionless. From the surface current density natural modes

s construct a set of surface charge density natural modes as
,3\);
. -
(pg) (J_)
8 +' = - ' O > s -*l
Vo (x') aaV Vg, (r'") , (2.27)

where ag is a scale factor with dimension of length which we can
choose for convenience, such as to allow some desired normaliza=-
tion condition on the vyg. If desired the ayg could be all the
same and perhaps chosen as some characteristic dimension of the
object. Note that some vg for the surface charge density might
be identically zero for some index sets o. This is possible be-
cause current density can be split into two parts, one with zero
divergence but nonzero curl and one with zero curl but nonzero
divergence if the current density is confined to a volume of
finite dimensions.®

All the above definitions for surface current and charge
density modes can be directly extended to volume modes or com-
bined modes for volume and surface densities.

\

Taking out common factors the continuity equation allows us
to write the surface charge density response functions (using
equation 2.20) as

Yo
Q-'.
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L) N (o) sa -n Lpg) oo
Up s (;"S):{;ﬁa(el’s)“a S (r')(—cﬁ) (s -s,) * +wp S (e r'ys)
(2.28)

where the splitting of ng can be done as before. All our pre-
vious results for the surface current density then carry over to
the surface charge density. The same set of natural frequencies
and coupling coefficients apply to both (and even fo gcattered
fields if you like). Note that Wp Ps) comes from Wp( s) via
equations 2.23.

However, there is what looks like a new pole at s = 0 in-
troduced into the surface charge density response function. Us-

ing a relation for separating poles at separate frequencies we
have

-1 “1 _ -1, =1 _ -1.-1
s (s - Sa) = s, (s sa) s, S
(2.29)
-n -n -n _+1
. s-l(s - s,) o . s&l(s - s ) % s;Z(s - 5y) &
boeee 4 (-1) ¥ s %s - syt 4 (-5 %71

By this expansion we can write the surface charge density re-
sponse functions as

) ghe _ . (p.) -n_+m-1
G, % (Fus) = 20 2, (0™ ST @ e)v, T (E (s msy) ©
a m=1l o
1 Ny e o~ s (pg) ' Jpg) o >,
+ E;("Sa) 5; na(el,s)va (r") +Wp (el,r ;' S)
(2.30)

" where the second summation could also be inclﬁded in o,

Consider for a moment the static respbnse characteristics
(s + 0) of a body of finite dimensions. For a plane wave of
unit amplitude as s =+ 0 the object response goes to the static
limit in which both current density and charge density are pro-
portional to the field strength. For small |s| the response is
negligibly changed from the s = 0 case. Thus there is no




o

singularity at s = 0 in the s plane for either current density
or charge density. As discussed before for the current density
there are no poles with nonzero residue on the iw axis for

lw] > 0 because of the restriction of conservation of energy to-
gether with reciprocity when considering the time domain re-
sponse. The static response characteristics rule out poles in
the response at s = 0 so that all poles sqg lie in the left half
plane Re[s] < 0. Thus without loss of generality in our expan-
sions we can require

Re[sa] < 0 ' (2.31)

Cavity modes or any other modes which do not couple to the inci-
dent field are excluded from our consideration.

Note that there are static current density and/or charge
density distributions which can exist on finite sized objects in
the absence of any incident wave. However, such static distri-
butions do not couple to the incident wave and can be included
as an additive term in the surface current density and surface
charge density response, but with no dependence on the incident
waveform. As the response to the incident wave does not depend
on. these modes we do not include them in our expansion. We can
call this case the natural frequency at s = 0 and this is
briefly considered in appendix A. This case is like the inter-
nal cavity modes which have natural frequencies on the axis
s = iw; these also do not couple to the incident wave and have
no dependence on the incident waveform; they can be added into
the results at the end if desired. '

Referring back to equation 2.30 for the surface charge den-
sity response functions note that a pole at s = 0 is not allowed.
Thus we have letting s + 0 in the limit

~-n ~(p )
(-s ) %S5 2.,00v. S (F'y +w_ S (2,,¥',0) = 0 (2.32)
Z; a a, o 1 a p ) A

For cases that ny can be made to factor (such as for the sphere)
as in equation 2.21 then we can write (also dropping Wp)

-Nn > (p

Z (-s4) ¥
a

This constrains a relation among the natural modes and their
coupling coefficients. :

)
S +' = o 2-
. ca(el)va (r') 0 : (2.33)
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For the case that ng = 1 for all o (which is the case for
the perfectly conducting sphere, and perhaps for all finite
size, perfectly conducting objects) and that the coupling fac-
tors as in equation 2.21, the response functions for surface
current density and surface charge den51ty can be written as
(dropping the W functions).

S (3 -st (J) )
Gp S (Fr,s) = e O;ca(el)vas ') (s - s) 1

‘ : : o (2.34)
leg) -st_ c »~  (pg) |
Up (r',s) = e Z;Saaa ca(el)va (r")

This is a rather simple looking result with each term quite fac-
tored. This also points out the importance of understanding
under what circumstances (as for the sphere) the delay factoring
of the coupling coefficient can be used.

Now the waveform functions fx(s) can be reintroduced and
multiplied on both sides of equations 2.34 or equations 2.20 and
2.30. Recombining the polarizations as in equations 2.18, 2.19,
2.25, and 2.26 gives complete representations of the solutions

f"”‘:?t_’é' for surface current density and surface charge density. This

o would give 1nd1v1dual terms with frequency dependence in the
form f (s)npa(el,s)(s - sg) ~hotm-1 yhich, for the case as before
that 7p factors, has the frequency dependence in the form
”StOfp(s)(s - s )—na+m—l which for ng = 1 reduces to

e Stof (s) (s - sa)‘

However, why stop here? The behavior of f (s) may allow us
to conveniently express it in terms of waveform singularities,
just as we have been considering the object delta function re-
sponse in terms of object singularities. The general idea then
is to expand fp(s) in terms of its singularities and separate
the waveform and object singularities into separate terms. We
might call the resulting separate terms as the waveform part and
object part of the response for convenience. Consider an ex-
ample by letting

s. t
e v u(t) (2.35)

\

r 1
£ = '
o () =5 fpl®)

S

so that the waveform is a decaying exponential with a simple
pole at sy (a waveform pole). Note that the commonly used

_ double exponential waveform for EMP environments is nothing more
’ than the sum of two terms such as this.
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Taking the surface current density first we have (for sy #
Sq for any a)

L (3.) G | } F.) -n
v, S @Ee 2R (el S E e = 3R, (B0, T (Esms ) s
o2
> >
s(3) L(3)
= ?;p ST (Fr,s) + \7P S (',s) (2.36)
(e} w
where the object part is
> Ny > ' )
~(J.) (J) -n_+m=-1
Uy S@Ee = 20 2L (-1 s s )R BT S Eems )
° o m=1
. (2.37)

where the second sum could also be included in o and where the
waveform part is

Ty n (3 )
> Vgl o> 1 o~ > +>' g '
pr (r',s) = E’..-:_S_“;EOL-_:(sw - Sa) na(el,s)va (r') (2.38)

Note that here and for most of what follows the W functions are
not included but can be included in a convenient way in the ob-
ject-waveform split. For the special case of ng = 1 this re-
duces to

5 (F,) 1 _
ﬁpos (;',s) = :%:(sa—sw) lna(gl’s)za S (;‘)(S_Sa) 1
.' | ' (2.39)
- .
<(F) (F_) -
F s’ >, 1 _ -1~ >Ygl o,
pr (r',s) = S_Sw;(sW s,) Tngleqss)v, (r")

For more general waveforms (but still ng = 1) this suggests o
a definition of the splitting as - ' ' o
3 !
~ (J.) '
> [ >, _ ~ ~ -»> -> [ >, _ -1
v, 5 Ee) = Za:fp(sa)na(el,s)va (Z') (s-s,)

N“24 : ,  ) 7 4: L fN‘h’i'j?:f };
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As long as the waveform singularities are separate from all sqy
then no object poles appear in the waveform part of the response.
If the sqg do lie on waveform singularities then special treat-
ment is needed but the general idea of equations 2.40 would

still seem appropriate. For ng more than just 1 the object part
can be defined through a Taylor expansion of fp around each sqy
giving

(m-l) *

~( £ ) (J) -n_+m-1
=+ s _ > > s, Q
Vp "¢8) = Z Z (= 1). na(el,S)va (r')(s-s,)

| ' (2.41)
< (J) L (T) ~(3 )
VS (Tr,s) =V_ % (Tr,s) - V_ 5 (¥',s)
Py, P Pg

As a special case consider the unit step waveform by léttihg o
Ssw-= 0. Then the waveform part of the response we write as

-
S (3 (J.) :
1 ~ > > Mg > _ -1
if* /s) = g;na(el,swa (F') (-5 ) (2.42)

With‘ﬁa factored as before and assuming ng = i'the results re-
duce to

- -5t ->
~(J_) o x(J_)
V_ S (r',s) = ¢ U S (2,0
Py, S P
(2.43)
- >
5 (J.) - (J.) .. -
VS e =e O site 3DV, % (E(s-sp
Po a
where the static surface current density response is
() (3 2
> s > _ - -1 -> -> s -> -
o, % @0 = };( s,) e, BT, 5 EN | (2.44)

The step function response of the object is readily constructed

- from the delta function response. A factor of (- Sa)" is

e TR SR A e s AR A




“ . waveform is reintroduced as

included with each object pole, and then a new term is added
which is nothing more than the static response time a step func-
tion with turn-on time of tg. Thus beside tabulating the natu-
ral frequencies, modes, and coupling coefficients of finite size
objects we can tabulate the static response so as to readily
construct the step response of the object in both Laplace and
time domalns.

Now the neat thing about the static response is that we
need not consider it in terms of direction of incidence and pol-
arization. For the static surface current density response we
can solve for the magnetic field using the Laplace equation with
a uniform magnetic field incident on the object. The exponen-
tial factor in the incident plane wave (equations '.1ll) becomes
irrelevant, going to 1. Thus we need only consider three sepa-~
rate cases of the incident magnetic field, corresponding to
three orthogonal direction such as the cart§51an axes (X, y, 2).
For a unit incident static H field we have Jg response functions
Usx etc. for each of the three axes giving a dyadic surface cur-
rent density response function as B

>
>(J_) (J.) (J.) (J)
] (¥') =0 S (¥ne. + 0. S (Fne_ + 0 % (Fd. (2.45)
s S X y Yy 2 z
[ - .
Since the H field is in the direction el X ep for p = 2, 3 we
can write
(3 ) >(J.)
> g’ , > _ > g’ = . -> ->
Up (r'.O)—US (r") [elxep]
> ' > >
(J.) (J_) (J ) ' o
_>x'gl > +.++ > gl > > T T =T R PR R GV
—Qs (r')[eX (el><ep)]+US (r')[ey (el><ep)]+US (r')[ez (elxep)]

X T Y Tz ,
' ' (2.46)

showing a set of direction cosines for three static solutions.
The static response dyadic for the surface current density is
then a useful tool for directly extending the delta function re-
sponse to the step function response. One could go to other
types of "static" terms for s~2 (ramp) and higher order such
waveforms. The step function waveform is a useful tool because
of its fast rise time to a finite amplltude making the static
response correspondingly important.

The surface charge density has similar properties'when the
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- As before the idea is to assoc1ate the object poles w1th the ob- '
Jject part of the response Vpo and the rest with the waveform- .
-part Vpw. If ng takes on more values than one the double sum as

“”ents fp(s) and the flrst ng - l derlvatlves all evaluated at sd.

- factorable as above so that we have the simple surface charge

o) TR o L ey e
v S (¥r,s) =f (s)U_ 5 (¥',s) =V % (¥',s) +V, B (Es) o (2.47)

p P P 7 ! PO 7 Py

in equation 2.30 extends into a triple sum including coeffici-

For 51mpllc1ty just con51der the case of ng = l w1th ﬂu

density response function as in equations 2.34. The object and fa
waveform parts of the response may then be wrltten as :

(o) - S I
Vpos (£',s) = Ojilf (s Js s ¢ (el)v S (?')(s—sa):l K
(b)) . et AN £ (s)' 3 (é')'é'
ST (Z1,8) =e °% .< ,“;;-fl)v (r')-B p_o
Py _ a °uan o L e 8T8y

. Y g oa . .,_-a}' B - E.(\L -
The response to an exponentlal waveform as in equatloi 2.
takes the forms

_(py) Ston 1w SR
7% (Ers) =e OZQ:‘(s'a—.;V;.) TS v, ® (i*')(s-sa)

P s a o' "1 Ta
o} o a

o | (249

(p_) st, I (p._)
S Es) =2 Z (847S¢) l“;fia o é T E

=S
pw W a W58

For sy = 0 we have the step respons

(o) - (g .
vpcs (F',s) =e OZ S o v, % @) (sms )7t
' a ' i AT
, : : (2.50) .
- t :
_(p.) Yo _(p.) .
v s (;',S) =e U S (-f|’0) .
Py, s P

where the static surface charge density is given by

ﬂelhl‘lir;'T‘f“j';:;”l;;} s 27..
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L(pg) -1 > (py) A
6% (F,0 = D s )T S c v, S (E) (2.51)

The step function surface charge density response is then also
constructed from the delta function response in the same way as
the surface charge density with the same form of the results, at
least for nyg = 1 and a common delay factorable from ny.

For the static surface charge density response we need con-
. : sider only the response to three orthogonal incident static elec-
tric fields, directly analogous to the relationship of the
. static incident magnetic field and surface current density. For
a unit incident static E field we have pg response functions
(scalars) as Ug, etc. for each of the three axes giving a vector
surface charge density response function as

{p.) (p_) (p.) {p.)
- s’ > _ s’ > . s’ > s’ > ,
US' (r') = st e, + Usy_ ey + USz e, (2.52)

Since the E field is in the dlrectlon ep for p = 2, 3 we can

write -
*. (p.) (p.) :
C._.) ~ gl >, _ 822 . .
Up (x',0) = US (r') ep
(p.) (p) N (p.) ;
=y S [é e 1+U_ 5[ .8 1+Uu_ S8 3 1 (2.53)
S¢ X P s, Y P s, "z p

showing a set of direction cosines to weight the three static
~solutions. Thus for step response purposes it is useful to tab-
ulate the vector surface charge density response and the dyadic
surface current density response which can be multiplied in a
dot or inner product sense with an appropriate scale factor
times the static field of interest to obtain the static response.
This applied in both frequency domain for small |s| and in time
domain for an important term in the step function response.

As discussed near the beginning of this section the fact
that we are dealing with real valued time functions makes the
Laplace transformed functions have certain symmetry properties
with respect to the  axis as expressed by equation 2.4. Bas-
ically £(f + iw) has its real part symmetric with respect to a
- . sign reversal of w while its imaginary part is antisymmetric
: "with respect to a sign reversal of w. Also as discussed before
. all object poles with nonzero coupling to the incident wave lie L
~in the left half plane © < 0. These two results tell something S
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about the object pole pattern in the complex s plane. For con-
venience then let us split the o index set into three parts.
For w > 0 (the upper half plane) use o4, for w = 0 (the @ axis)
use dq, and for w < 0 (the lower half plane) use d-. Since
poles come in conjugate pairs for those not on the 2 axis then.
we can relate o- to o4 as

s, =S (2.54)
a_ a, |
{
which specifies which a¢- goes with which a4+ except for the case
of multiple poles at sy in which case we make the identification

of the o- set to the a4+ set with the value of ng in each case
the same so that we require

n =n 7 , . (2.55)

Equations 2.54 and 2.55 define a one to one correspondence be-
tween d- and ¢+ index sets, unless we have mode degeneracy in
which case we also require o~ and a4+ correspond to conjugate
modes with conjugate coupling coefficients as well.
«

From the conjugate symmetry requirement the natural modes
and coupling coefficients can be made to have the same conjugate
relations. Thus we set

(3) -(F) F)
'Ga_s (F') = ‘6a+s (') , Im[‘\iaos (‘r*-)] =3
(p.) _(p) (p.)
va_s (?') = va+s (?') ’ Im[}aos (;')] = 0
_ = - _ (2.56)
aa_ = aO‘+ . Im[aaO] =0
Ry (8108) = ﬁa+<‘él,§> ' ﬁao‘31'5> = ﬁaoél,'s')
c, 3 =7c, G Imfc, (ep)]1 =0

+ . o

With these relations we can now write the surface current den-
sity response functions as
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&) a
noo(&,,8)v. S (E')Ns-s. ) T
% o 1 o, o,

(F,)

o,

+ F} (el,s)3 (;')(s-§a+) +

-st (3 ) -n
= e Ozca (31)3 S (Fr)s-s ) ¢
(@]

c_ (e;)v (¥')Y(s-s_ ) (2.57)
f‘f”f’ o, 1" ", o

where the case where ng factors out a simple delay is also in-
cluded. Note now that each term in the sum has the conjugate
symmetry of equation 2.4, is real on the 2 axis, and corresponds
to real valued time function. Similar properties apply to the
surface charge density response functions. Taking the simpler
form with ng factored as in equations 2.34 with only ng =

= 1 we
can write
(p ) -st (p)
= o] __E__~ -> s’,>, - -1
G, S(Es) = e OLZ 5 Ca_ (1) Ve (F1(s7sy)
(@] (@]
~-st
O C -> -1
te ;[Sa A °a+‘ l)\)a+ (r')(s-s +)
- + + T+ 7
.
_(p) _
+ :"9':—' Cy (gl)va S (§')(s-sa ) 1 (2,58)
- - s _;Sa aa + + +

{f_‘;.
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The same idea is readily applied to the more complex forms.

. If ny factors as in equation 2.21 then the s dependence of
each term is a delay with a term of the form (s = sgy) “n' yhere
n' might be ng or other more complicated exponents. Converting
this term to the time domain through the well known Laplace
transform pair gives

-1

-st (-t ) o s (t-t_) |
-1 o -n'l _ o a o} _
L [e (s—sa) ] = =171 e u(t to) (2.59)
For the extremely interesting case of n' = 1 this is
_1[ -st _ s (t-t 5_
L l[e °(s-sa) l] =e © u(t-t ) (2.60)

This is a damped sinusoidal waveform like that which suggested
looking at the natural frequencies in the first place. The
damping constant is just Qy = Rel[sg] (plus or minus as one
wishes) and the radian oscillation frequency is just wyg = Im[sg]
where o would be taken as o4+ or ag for this frequency to make

wg > 0. Since Qg < 0 for all poles of interest then each term
in the response function goes to zero for large time as we would
expect. Writing out the real and imaginary parts gives

n'-1
Qa(t—to)

_ -st . (t-t )
Ll[e O(S_Sa) n]= (n'(-)l)! €

[cos(wa(t-to))+isin(wa(t-to))]u(t—to) (2.61)

If the ny terms do not factor as above then we need their in-
verse transforms to convolute with terms similar to these.

Consider then the surface current density delta function

response (for n factored). From equation 2.57 we have
> > n,-1
(Jg) L(3) (t-t_)) % ° Qg (t-t )
a s’ (2> o o o _
G, % (@0 = Z c, (e ), o G rmEompTe u(t-ty)
o \
. ( n, -1 )
_ , + w t-t ) + (t-t
+ Y 2Relc, (3 )G(Js)(?)e a* ot e * ult-t )
& o, 1 o, (n -l)' o
* ' * (2.62)
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For the surface charge density for ny = 1 we have the delta
function response as

‘ a Q. (t-t)
(p.) (p.) o o
s’ = c > 8,3+, o - -
v, S(E = g: sa cao(el)va (F') e ult-t,)
‘o o o °©
- (p) 1wa'<t5to)’ Qg (t-t,) o
+ ZZRe -é—-?ja——-cu (—él)\’a S (;')e * e T u(t-to) (2.63)
a a+ a+ + +

From the way that the terms are split up we have separated the
damped exponential parts of the response from the damped oscil-
latory parts. Depending on the real and imaginary parts of the
natural modes, natural frequencies, and coupling coefficients
the initial "phase angle" of_ the sinusoidal oscillation may vary

ith direction of incidence el, polarization p, and/or position
r' on the object. If one wished he might consider the real and
imaginary parts of a natural mode as separate modes and consider
the coupling to each part with different distributions perhaps '
over the object.

With the incident waveforms reintroduced we can_also di-
rectly write down response waveforms for cases that ny factors
as before. Consider the case that no waveform singularities are
at any of the sg. In particular consider the step function re-
sponse for all ng = 1. For the surface current density the ob-
ject and waveform parts from equations 2.43 and 2.46 are

Q (t-t )

( _ &) a o |

VoSE = Yostle, GBI, S ENe © ult-t)
o3 o] o]

3 ) iwg, (t-to) 2, (t—td)
v T e T ult-ty)  (2.64)

For the surface charge density the object and waveform parts of

7" the step response functions from equations 2.50 and 2.53 are
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(p.) (p) o o
) s’ ,r, _ C > s’ ., o
v, % e = E-S-z-—— cy (e)v, ° (EMe u(t-t )

(@] G.o a aa (@] (o]

(@] (@]
: ip) i (E-t )7 9, (t-—to)

L EZRe __2_c_____ Cy (-él)va S (?')e + e + u(t—to)

a+ Sa aa + +

+ T4
(2.65)

() L) o

pr (r',t) = U (rr)-epu(t—to)

In the time domain only one term is added to the delta function
response, namely a step function. The coefficients of the
damped sinusoidal (and siniple exponential) terms are rather
simply altered.

The response functions for other kinds of incident wave-
forms can be readily found for the object part by introducing
coefficients fp(sg) in the time domain waveforms in the same
forms as introguced in the Laplace versions such as in equations
2.41 and 2.48. The waveform part can be more difficult if only
because of the many possibilities one might choose for incident
waveforms. Different incident waveforms give different types of
time domain waveforms when combined with the terms arising from
the object poles. Note that the response to an incident wave-
form cannot always be simply split into object and waveform
parts. As a trivial example suppose fp(s) itself has a pole at
some Sg. In such a’case the contribution from sy to the re-
sponse has a higher order pole than the delta function response.
However the response associated with sy is then easily treated
separately and the same type of time domain function as in equa-
tion 2.59 results.

In this section we have tried to give some insight into the
power of the singularity expansion method for representing solu-
tions in both frequency and time domains, at least for finite
sized objects. While many variations of this problem have been
considered, complicating the notation somewhat, the solution of
specific problems may be expressed somewhat simpler with the no-
tation adapted to the results of the problem at hand. Specific
convenient choices of the o index set are needed for each prob-
lem and the possibilities for ny can be limited. The natural
modes and/or coefficients may be expressible as purely real
quantities in some cases, even for natural frequencies off the
axis. A basic question concerng the coupling coefficients ng
and the other entire functions Wp. These need to be optimally
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chosen for the different problems at hand depending on early
times, late times, etc. .

There are still types of problems which have singularity
expansions with terms such as branches which have not been con-
sidered here. Infinite sized objects have object responses with
such terms. However the reader should have a general idea by
now of what the singularity expansion method is all about. What
has been done for expanding in terms of natural frequencies for
object response plus another term for waveform response can be
carried over to natural frequencies and branches for the object
response with perhaps increased complexity associated with the
branches.
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III. Properties of the Singularity Expansion of the Object
Response for Finite Size Objects Viewed from the Finite
Matrix Formulation of Integral Equations

There are two somewhat complementary ways to view some of
the questions regarding the form of the singularity expansion
for objects of finite size. One approach involves consideration
of the properties of an integral equation formulation for the
continuous object geometry. Various types of integral equations
such as those classed as electric field formulation, magnetic
field formulation, extended boundary condition formulation, etc.
can be investigated to obtain mathematical theorems concerning
the properties of the singularity expansion for various kinds of
object classes. This might be termed the continuous integral
operator approach. Drs. Marin and Latham are presently using
the magnetic field integral equation to consider the question of
there being only poles in the finite s plane in the object re-
sponse for finite size perfectly conducting object from this
viewpoint. Clearly this kind of approach is needed for consid-
ering many such questions so as to establish general theorems
applying for all frequencies and time and stated exactly in an_
analytical form. This could be considered a viewpoint which is
based on the continuous nature of the object geometries. Eigen-
function expansions can also be used for such considerations but
the tabulated cases of such expansions are limited. Eigenfunc-
tion expansions are possible for general kinds of object geom-
etries but they must be numerically calculated.’ However the
analytic properties of such eigenfunction expansions can still
be used to investigate the singularity expansion. Viewed an-
other way such eigenfunction expansions are representations of
the integral operators defined over the object characteristics.

The second and complementary approach might be termed the
discrete approach. This refers to zoning the object into many
discrete zones and treating each zone as a position with a par-
ticular current density etc. associated with it. The integral
equation then takes the form of a vector-matrix eguation which
has the general form

(g m(s)) - (Sm(s)) = (in(s)) n,m=1, 2, «++, N (3.1)

where N is some typically large integer. Here the vectors (Jp)
and (Ip) each have N components and are not the same as th
three component space vectors. The index n refers to the r co-
ordinates for the "incident"” quantities shown here in general as
(In) which might come from an electric or magnetic field that is
incident and therefore specified. Note that in forming the 1lin-
ear equations summarized as equation 3.1 each spatial zone can

- have one, two, or three nonzero current density components_and

this influences how the indices+n and m are set up. The (Jp)
refers to the unknown current (r' coordinates) with one, two, or
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three components in each zone. The matrix (gp,m) has elements
which couple the n zone-component with the m zone-component; it
is basically a spatially discrete form of the integral operator.
While equation 3.1 is shown in a form suggesting that it is in-
tended for solving for the current density this is not necessar-
ily the case; it could be solving for another quantity from
which the current density would be obtained by a subsequent cal-
culation. For our present discussion, however, consider it the
current density.

Considering the current density components in each zone as
our unknowns is not the only way to obtain a set of linear equa-
tions from a given integral equation. The current density can
be expanded in a more general set of expansion functions and a
matrix-vector equation formed to obtain the coefficients in this
expansion. Of course, only a finite set is used to obtain a fi-
nite N X N matrix and the sets of functions involved should be
in some sense complete in the limit of large N. This general
approach is often termed the method of moments.8 Both the zon-
ing approach and more general function expansions are valuable
from the viewpoint of numerical calculations. In terms of the
singularity expansion method there is clearly much work to be
done in refining the numerical techniques to find natural fre-
quencies, modes, etc. most efficiently and most accurately.

Much that has been done for other numerical problems can likely
be applied here.

Besides the practical aspect of numerical computations the
matrix-vector formulation can be used as a theoretical technique
for establishing some of the general characteristics of singular-
ity expansions. If in the limit of large N the solution for the
current density '

(7,(s)) = (g ) * (I)) ' (3.2)

converges to the exact solution of the integral equation then by
understanding general properties of (Jp) we can find general
properties for the continuous case, i.e. 3(?', s). ©Only where
the matrix elements are not uniquely defined or the inverse ma-
trix '

N = -1
F2o(£, 0 = (g, ) (3.3)
does not exist is (Jp) not uniquely defineﬁ or non existent.
Let us then look at the singularity expansion characteris-

tics of the approximate numerical solution (Jp). In the limit
of large N for convergent matrix-vector formulations the
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singularity expansion of (Jy) will be that of J(¥', s}. Con-
sider the case that some zoning technique is used to convert the
integral equation to a matrix-vector equation by dividing the
body surface or volume as appropriate into discrete zones of fi-
nite linear dimensions. The number of zones is then less than
or equal to N. Clearly then we are only considering finite
sized objects here because an infinite surface area or infinite
volume cannot be divided up into a finite number of areas and/or
volumes with finite linear dimensions unless some very strange
extensions to infinity with finite volume and/or surface area
are included. Let us congider only finite sized objects here so
that all distancgs |[rn - rm| between zgnes are finite. The co~
ordinates r and r' go over the rp and rm and are centered on
each zone in some sense. The incident quantities and resulting
current density are evaluated in an appropriate average sense at
each zone center,

Let f(;, s) be based on an incident delta function plane
wave, It might come from the electric and/or magnetic field or
some spatial projection of these on the object. Since this is
an entirg function of s (analytic in the entire finite s plane
for all r on the finite size object) then the discrete formula-
tion (Ip) has each element (In(s)) as an entire function of s.
In this formulation let the current density bg the sum of all
terms representing charge motion, including 0E (conduction cur-
rent density), s(e - £o)E (displacement current density), and
Vv x [(u - uo)ﬁ] (magnetization current density). Split electric
and magnetic fields each into the sum of incident plus scattered
parts. The incident parts are given in the problem definition.
The scattered parts can then be represented as integrals over
the current density with kernels involving the free space
Green's function which uses y = s/c instead of some propagation
constant involving local medium parameters which may vary with
position.,

Thus we have a pair of volume integral equations (which may
reduce to surface integral equations say for perfectly conduct-
ing bodies) which equate scattered electric and magnetic fields
(which could be thought of as a six component vector or even a
four tensor in relativistic formulation) to integrals involving
incident plus scattered fields. Move the terms involving inci-
dent fields to one side of the equations and use these to form
the N component vector (Ip). Note that o, €, and U are assumed
to be single valued analytic functions of s except possibly for
poles which can be removed by multiplying through the equations
by an appropriate zero to make each In(s) an entire function.
The scattered parts are used to form (gn,m) and (Jm) which 1s an
appropriate scattered field vector or the current density vector
less that part directly proportional to the incident fields.
Note that o, €, and u enter the coefficients on the scattered

-side and are analytic single valued here then as well while the

eXponential terms use Y = s/c which is an entire function.

37




SSES R R A sk

lating current density and/or surface current density as appro-
priate to the incident fields involving.only analytic single
valued functions as long as the media are suitably well behaved.
By various manipulations such a pair of integral equations can
be converted into various more desirable forms. Then the in-
tegral equations can be converted into a single matrix-vector
equation which can have various forms.

& Through this procedure we can construct an integral equation re-

One advantage of a zoning formulation for these considera-
tions is the somewhat physical picture one can associate with
the discrete zones. Infinitesimal differential line, surface,
and volume elements become discrete ones of small size. As long
as complex radian wavelengths have magnitude large compared to
zone size then the interaction between adjacent zones and one
zone on itself are described by statics. We can start thinking
of the zoned object as a big circuit with simple elements con-
necting adjacent zones but more complex ones connecting distant
zones. In each zone there are a few equivalent sources associ-
ated with the discrete source elements Ip.

The kernels of the various integral equations are based on
the scalar Green's function (for free space) as

c -‘Y|;—;'|
~@ SINEE I i (5.4

am|E-F'|

with

(3.5)

ajn

Y =

This scalar Green's function is an analytic function of s for
finite |[r-r'| with |r-r'| # 0. This function forms the basis
for the various kernels used in the various types of integral
equation formulations of general interaction or scattering prob-
lems. The dyadic Green's function can be written in the form9,10

3 -> 1 > > Y 3 1 > >
a(s,|r—f'|)= [L-~§ VV-][G(s,|r-r'|)f]==[I-——7 Vi]G(s,[r—r'I)
Y Y

(3.6)

with the identity dyadic

100
= (0 1 O) for b
001

¥

=((S

PS o bl,bz) 1'Pp =

"'j38_7“ B




Note that the dyadic Green's function is formed from the scalar
Green's function by multiplication by y~2 (which contajns s-2)
and spatial derivatives as in VV. Thus for finite |r-r'| (but
not zero) the dyadic Green's function is also an analytic func-
tion of s, except at s = 0. However in going to static limits
the s=2 term combines with other terms in s to avoid an object
pole at s = 0 as discussed before. Similarly terms like VG etc.
appear in the kernels and the same analyticity properties with
respect to s apply.

Now in forming, the elements of the matrix (gn,m) for ?n #
rm the coordinates rp and rp are used in the various Green's
function type terms. In such cases then the matrix element must
be an analytic function of s except possibly for poles which
don't bother us. The spatial derivatives can be replaced by fi-
nite difference operators based on the spacing between nearby
zones_ in the zoning system defined to segment the body. For
rg = rh (including the case g = h) the problem is basically a
static one. The scalar Green's function can be written as

2 B . ,
SR AN, A i 3
= * 37 |z-'| + o(s”) (3.8)

1

G(s,|T-¥'|) =
' Am|T-7 |

[ 4

Taking thg firgt few terms as needed then the matrix elements
dn,m for rn = ryp (including gn,n) can be defined and they too
are analytic functions of s. Thus the matrix (gp,m) can be de-
fined as an analytic function of s except for possible poles of
finite order. Note that finite zone size is important here be-
cause zone size contributes to the matrix elements and vector
components and we want to avoid infinite values for these.

One should be careful of various approximate formulations
so that the resulting matrix elements are analytic in s without
branch cuts. For example it is common in various thin wire type
formulations to obtain terms containing functions like 1ln(yw)
where here w is the wire radius. Such terms result from inte-
grating the Green's function to remove a coordinate such as the
azimuthal angle around the wire, perhaps approximating the re-
sult and then integrating say along the wire in the process of
finding an asymptotic form for small wire radius. Such thin
wire formulations are important and perhaps even useful in de-
veloping singularity expansions but for finite size bodies they
do have this limitation which needs to be recognized. For our
present purposes we do not use such types of formulations.

\
The cofactor matrix D for (gp,m) 1is -

- | >; _“rn+m N
D= (d, ) = ((-1)"""det Gn'm]




where Gph,m is the N - 1 by N ~ 1 matrix formed by deleting the
nth row and mth column from (gn,m) . The determinant of (9n,m)
we. indicate by '

A s'det(gn o) , | (3.10)

Note that the transpose is

DT = Cg (3.11)

The solution of our matrix equation can then be written

(Fals)) = (£, (s)) = (F (s)) . (3.12)

where . ‘

¢ ) (3.13)
d = (-1)?M3et G
m,n n,m

.

Now since the gnp,m are analytic functions of s except pos-
51bly for poles, then the same is true of both the dp,n and A
since the determinant is a polynomial function of the "matrix
elements. Therefore since the Ip(s) are entire functions of s
and the fy, n(s) are analytic except for poles, then the Jm(s)
must also be analytic functions of s except for poles. Further-
more any poles of the gp,m elements are associated with poles in
the medium parameters or with the Green's function with various
operators on it. Poles associated with the Green's function are
at s = 0 and do not concern us because they give no resulting
poles with non zero coefficients based on physical grounds if
the media are passive. Poles in the medium parameters o, £, H
can be troublesome so for our present discussion we restrict
ourselves to the case of no such medium poles. Such poles in
passive medium parameters could, however, be included in the ex-
pan51on technique if desired. With this restriction then the
poles in (Jm(s)) are the zeros of A and the order of each pole
is less than or equal to the order of the corresponding zero of
A, .

The order of the zero at sy must be finite since if A and
all its derivatives are zero at sq then as an analytic function
A must be 1dcntlcally zero implying no unique solution for (Jm)
violating the uniqueness theorem for the solution of Maxwell's
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equations. Furthermore the zeros of A in the finite s plane
must be isolated, i.e. only a finite number are allowed in a fi-
nite region of the s plane. This again is a property of ana-
lytic functions. As an example suppose that there were a line
of zeros for A. Then by analytic continuation A would be zero
in the entire s plane, again not allowed.

This result is of course of fundamental importance to the
singularity expansion for finite objects. It relies on restric-
tions on the form of the medium parameters and the convergence
of the particular matrix-vector formulation of various possible
integral equations. The response has only pole singularities of
finite order and isolated in the finite s plane. Since we also
restrict the object to be passive then these poles cannot be in
the right half plane. Furthermore as discussed previously (and
in appendix A) any poles on the iw axis must have zero coupling
coefficients and so we can state for our purposes for passive
objects that all poles in the finite s plane have negative real
part (£ < 0). Stated another way how can the (Jy) have branches
(removing multiple values) when the elements gp,m are chosen to
have no branches because they are single valued?

Another way to view this question of only poles for the
singularities in the finite s plane concerns the numerical re-
sults per se. Matrix-vector formulation of various integral
equations has been common for a long time and has been used to
obtain many accurate solutions for finite size objects. For
formulations which have used analytic matrix elements and inci-
dent vector components (except for poles in the finite s plane)
the numerical results obtained (usually on the iw axis and some-
times converted to time domain) must be representable by a sin-
gularity expansion which has only poles in the finite s plane by
our previous discussion., Thus in cases where accurate results
have been obtained such results are accurately representable by
such a singularity expansion. The accuracy of such a singular-
ity expansion for finite size objects is thus related to the ac-
curacy of the corresponding matrix-vector representation of the
integral equation from which it is derived.

Knowing that the inverse matrix (fm,n) has only poles in
the finite s plane this still leaves open the question of sin-
gularities at infinity associated with an entire function such
as e~Sto, One might argue that this matrix is like an admit-
tance matrix for a large circuit composed of inductors, resis-
tors, and capacitors and like such cases might have only ratios
of polynomials in s for matrix elements. However for large N
the degree of such polynomials could get arbitrarily large.
Thus for completeness at the moment let us write

bt 8

(£ (8D =¥Z (smsg) “(Ep ) |+ (£ o (s)) " (3.14)




where the (fm,n)y are constant matrices which are the coeffici-
ents of each pole of order nyg > 1 and (fy,n(s))e is an entire
matrix function of s. An interesting questlon for further in-
vestigation concerns the properties of (fm,n(s))e for some ma-
trix size N by N and in the limit of large N; perhaps it is zero
for many cases of interest.

Written in matrix~vector form the curreni. density expansion
as in equation 2.20 for the delta function reusponse with polar-
ization p is then

-n
(3 () =D (B ,8) (v) (s=s ) &+ (H (3],9)) (3.15)
P o G p

At each sy we can expand each 7y in a power sceries since each fiy
is an entire function. The successive terms in such an expan-
sion produce poles of order ng - 1, ng ~ 2, etc. associated with
each nyg > 2. Note that fer each sy there may be several ng
whlle each ng can have several Va (degeneracy) each of which has
an Ng. Expanding the inverse matrix (fm,n(s)) as in equation
3.14, substltutlng this in equation 3.12, and multiplying by

(s~ sa) 0 we then obtain for each polarlzatlon

4

~
n (e 1S4 )(v ) = (f ) « (I _(eq,s.)) (3.16)
n:;% 1 m,n’, i n 1'"7a P

(all modes) o o

where Ny is the maximum pole order ny at the sy of interest.
Note that the number of independent Vg for this case need not be
infinite because the coefficient matrices (fnp ,n)g come from the

inversion of (gn,m(s)) near the sy where A = O. Similarly we
can expand (Ip) near sq to obtain the coefficients of the next
higher order pole contribution (order Ny - 1) as
- ->
Z na(el,sa)(vm) + Z [gs (el,S)] (vy,)
=N_-1 o n =N s=s o
o o a ]

. ->
. (In(el’sa))p + (f )a
na=Na—l

By

[(In(el,s)) ] (3.17)
P S=SC!
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Knowing the Gu and the choice for ﬁa(gl,s) then the terms for

ng = Np can be calculated to leave this last equation as one for
the ng = Ng - 1 terms. This can be repeated to obtain all the
terms for the poles of all orders at sg. If the vy are degener-
ate for a given ng and are constructed to give an orthogonal set
for this case in the sense

(v_)

0 0 for o # a' (3.18)

<
=]
St
I

ol o

then the coupling coefficients have the relation for ng = Ny as

ot P = - . -l- [} . T >
nd(el.sa)—[(vm)a (vm)a] (vm)a (fm’n)a (I, (ey,s5,))(3.19)

For purposes of calculation with the inverse matrix suppose
A has a zero at sy of order Ny, the maximum pole order of
(fm,n(s)) at sy. Say that near sy

, N, N +1
- A(s) = (s-s)) TAg + (s-s) By 4p * ° |
¢ e o
-@ (3.20)
ot X N 41 . _
1 = - @ - o ] e N
A(s) (s-s,) §_y *+ (s SOL) Sy +1 *
o a
with the coefficients related as
' 1 N ANa-Fl
S'N Tk ’ 6-N +1 -~ 2 ' (3.21)
o N o A
o Na

and so on by inverting the series for A(s) to one for A-l(s).
Then the (fm,n)y can be calculated from

1l
. '(fm,n(s)) = m(dm(n(é)) ) - (3.22)
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and so on by collecting terms in expanding the series for A(s)
around sy into a series for 1/A(s). Note that there is a dif-
ferent set of (dm,n) g coefficient matrices at each sy so they
can also use the general o subscript set.

Instead of using the inverse matrix approach we can set up
an eigenvector equation, factoring out the coupling coefficient,
by first expanding (gp,m(s)) in a Taylor series around sy as

2y 2
(9 () = g:(s-sa) G

1 |4
(g ) = T [——Q(Qn,m(S))]

Note again that there is a separate set of coefficient matrices
for each sy so the (gn,m)g can also use the o set. Substitute
this series together with equation 3.15 into equation 3.1 to ob~-
tain

-n

> (s-s,)" (g 1) i °§2 Ry (€1,8) (v) (s=s) %+ (F_(8),8))
2:=0 2 o a

= (I (s)) (3.25)

Since the right side has no poles at sy then collect the coef-
ficients of each pole on the left side and equate them to zero
beginning with the highest order pole at g4 for ny = Ny as

.(gn.'m)o . (\Jm)a = (0) = (gn'm(sa)) . (vm)a ] {3.26)
Mo Ny ™Na
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where the coupling coefficient is assumed non zero and factored
out and (0) is an N component vector with all zero elements.
There may be several natural modes for ng = Ng perhaps associ-
ated with symmetry. If there is mode degeneracy for ng = Ny
then construct an orthogonal set which spans the space of such
modes so that the property in equation 3.18 applies. Going to
the ng = Ng - 1 term we have (for Ny > 2)

.E: ﬁa(gl’sa)(gn,mz_' (v) + 2: [%g ﬁa(gl,s)] (9

na=Na o na=Na—l s=35 o
* (v) = (0) . (3.27)

At this point let us consider the form of fy to simplify some of
these terms.

Suppose that we restrict f to have the form

1
T(s)

- - >
na(el,s) = ca(el) (3.28)

[4

where we have factored out the complex frequency dependence as a
common factor for all «. This common factor %(s)~is specified
to be an entire function in the complex s plane; T(s) may even
have zeros in the finite s plane if we wish to remove some poles
before making a singularity expansion. The new or modified set
of coupling coefficients cq(e1) are specified to be constants
and are the same type of constant coupling coefficients as used
in section 2 as for example in equation 2.21. One choice of
T(s) is clearly eSto as used in section 2.

Now multiply the matrix-vector equation 3.1 by T(s) to ob-
tain

gy (8 + IEE) (T 1)) = i) (F(s)) (3.29)

The right hand side is still an entire function. Then restrict
for our present analysis the coupling coefficients to have the
form in equation 3.28. Solve for the cg and divide the results
by T(s). \

Equation 3.25 can now be rewritten as

s
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{!L}__“(,)(s-sa)" (gn,m)z} -{Zcu('él) (o) (s-2y) Y+ E(s) (F_(21,8))

o

= T(s) (I (s)) ‘ (3.30)

The s derivatives of the coupling coefficients as in equation
3.27 now do not appear. Equation 3.26 can then be generalized
for noy = 1, 2, +++, Ny as

(In,m! * V) = (0) (3.31)
* * n =N_-%

from which natural modes can be calculated in the form of orth-
ogonal natural modes constructed for each ny for which there is
modal degeneracy.

£

Similarly using the expansion of the inverse matrix we can
write

Ny

T(%)(ﬁm(s)) ==§;§:(S-S&) (fn“rga + (fm’n(s))e -[T(s)(in(s))]

' -n
PILNCY () (s=sg) 4T (a) (i By ) (3.32)

Around s, make the Taylor expansion

F(s) (E(s)) = g:%(s-sa) (Ty),
(3.33)
1 [a* o~ s
(T ) = —[—[T(sm (sm]
n, 21 dsz n

=8
S o

where the coefficient vectors (Tp)y can also use the o index
set. Then for the pole at sy of order M we have
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# Do B = Do (g ) - (T) (3.34)

n
’
n,= o £=0 o na=M+5L 2

from which we can obtain both the natural modes (constructed as
orthogonal set) and the coupling coefficients. Note that the
- - dependence on e] is contained in the vectors (Tp)y. If we let

‘ M > Ng then we can relate the entirg functions as well. Alter-
nately having found all the cy and vy these can be subtracted
from equation 3.32 to leave_the entire function T(s) (Wp(e1,s))
expressed in terms of T(s) (In(s)) together with the inverse ma-
trix coefficients.

With the natural modes known equation 3.34 gives an expres-
sion for the coupling coefficients for a = a' as

. Ng-M
-+ - -1 - '
c.,(e;) = [(V) © (V) (v_) < (F ) « (T.)
a' ‘Tl N m ot m oc'] é} m ocf m,na na=M+2 n’y
(3.35)

[

The coefficient matrices for the inverse matrix can be related
oz to the Taylor expansion of (gp,m(s)) through

“®

(9, me(sSN = (£ {8 = (s )= (fn'm.CS)i . (qm;’m(S)i

(3.36)

-~ ‘ w R N o
8 = s- . -s ) + (f S
(8, ) l,§)< s,) (gn’m.)k} {O;(s s) q(fm,’m)q e
where now the coefficient matrices (fn',n)g apply for the par-
ticular sy of interest; the remaining terms at other sy can be
included with the remainder function for present purposes.

Equating the resulting singular terms to zero gives for the
highest order pole

(gn m.) . (£

] | ) )= O ) = G (3.37)

)
n,m'
! N o
a a
\

where (On,m) is an N X N matrix with zero elements. From this
.. result the columns (fixed m) of (fp',m)Ng must be eigenvectors

‘ of (9n,m')o and the rows (fixed n) of (gn,m')o must be eigenvec-
) tors of the transpose of (gn,m')o. Also the rows of (fn,m')Ng
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are eigenvectors of the transpose of (gm',m)o and the columns of
(gm',m) o are eigenvectors of (fn,m')Na- For poles of order n!
in equation 3.36 we have the general result

q;n'(gn'm')l . (fm' 'n) - (On’m) ) q—§‘=n|(fnrm')n'_2, . (gm' Im)z

(3.38)

where 1 < n' < Ng.

‘Consider the special but practically important case that
the pole at sg is simple (Ng = 1). Then the natural modes are
the eigenvectors from

(9n,m(se)) * () = (O (3.39)

<

The coupling coefficients are

- - 1, -
cyfey) = [“’m) © ) ]‘ () * () (T
¢ o o o 1 o
o= 9 . -l_ 3 . T T !
= [(\)m)a <vm>a] )+ () * [T sg) (T (s0)) ] (3.40)
where
(£ ) = lim (s-s ) (f_ _(s))
m,n 1 Siz S Sa m,n
o
tim 9@ sy = La (s (3.41)
= im : s = S .
[s+s A s)] m,n "o Al m,n "o

with the relation

,fgn,m'(sa)) .(fm',m)l==(0n,m)==(fn,m')l .(gm',m(sa)) (3.42)
. \ k

In another form the natural modes and coupling coefficients are
found from :
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[T (sy) (I (s ))] (3.43)

which for the case of no modal degeneracy reduces to

3 ~ ~
eq (B (o) = (£ ) o [F(sg) (s (3.44)

There is an alternate way of calculating the coupling co-

efficients. Again let Ny = 1 at the sy pole. From equation

3.42 the columns of (fm,n); are eigenvectors of (9p,m(sqg)). As-
sume no degeneracy of the natural modes at Sqy . Then the columns
of (fm,n)l are all the same except for a scalar factor since
(Vm) 4 1s unique except for a scalar factor. Call these constants
Um SO we can write

A

(fm’n)1= (ul(vm)a,r uz(vm)a, secs, un(vm)a. reeey, uN(Ym)a) (3.45)

Then we have

.

() = (E ) = 16 « (vl (3. 46)

m
m,ny o

deflnlng a new N component vector so that (fp, n)l can be written
in dyadic form as

(£ ) = (v) (u) N (3.47)

where the outer vector product or dyadic product is used here.
Thus we also have

(£ )« (@) =[Gy o« ) 1o (3.48)
m,ny ny [ Ny nu] My

Now from equation 3.42 the rows of (fgy,n)y are elgenvectors of
the transpose of (gnp,m(sg)) so that we have

) - (gﬁlm

(s )) = (0) o - | (3.49)
o Q
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From equation 3.40 we can then write the coupling coefficient as

n

cy (&) = (u ) v tEey) (i (sg))] (3.50)

giving a simpler form of the result in termsjof the eigenvector
of the transpose of (gn,m(sg)). Note that since we have assumed
only one independent (Vm)a there is only one independent (up)g.

Now similar statements can be made about the eigenvectors
of (fm,n)1 from equation 3.42, Specifically the columns of
(gn,m) must be eigenvectors of (fy,n)1 and the rows of (gp,m)
must be eigenvectors of the transpose of (fm,n)1. From equatlon
3.47 the eigenvectors of (fy,n); are orthogonal to (in) o and the
eigenvectors of the transpose of (fm,n)1 are orthogonal to (vpm)gs

We can calculate the transpose eigenvector (Un) g from equa-
tion 3.49 except for a scale factor. To find this scale factor
we can use equation 3.46 to give

[(Gm>a- (vm>u] [(ﬂn)a- (un>u] (Gm)a-(fm ) e (uy)

'y o

) =8 (5 -+ (@ (s )+ () (3.51)
o ! o

If we have found a (up)y from equation 3.49 then

(u)) = B(u!)
a o

(3.52)

1 r= “1p,- “1,- o -~
B = 1(v.) * (v ) (u') = (u!) (v_ ) < (d (s )= (u')
Al[ ™ mot] [ Ny nu] ™ men - o Ny

Another powerful result comes from taking the constant term
in equation 3.36 as ‘

(6 _ )

n,m

(g (£ © (£ (s,)

+
m',nﬁl (gn,m')o e

n,m')l

¢ ) + (£ ' (s))) - (g ', ) (3.53)

(£ (gm',nll m',n' "o

n,m')l

Dot multiply on the right by the elgenvector (vm) o Of (gm ,m) o
to make the second term vanish giving
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) ¢ (g v ) vy) (3.54)

This deflnes a matrix which maps (vp)y back into itself. Having
some (Un>u solving equation 3.49 we also have from dot multiply-
ing on the left of equation 3.53., the result

(b)) = W) (gn,m') A ) (3.55)

o o 1

Thus multiplying equation 3.44 on the left by (up)g * (gn,m)] °
we have after rearranging terms

2 "y . . I (u') « [T I
ca(el)=[(un)a (95, m), (Vm)a](un)a [T(s,) (I (s )] (3.56)

n,m

so that we can construct (up)y as

(v ) = (') * (g Y ¢ (v ) | (uh) (3.57)
Ny [ Ny n,my ma] Ny

giving the additional result

(w.) « (g ) ¢« (v.) =1 (3.58)

Thus (un), can be explicitly constructed from (gn,m)o
through its eigenvector and the eigenvector of its transpose
plus another matrix (gp,m); which also comes directly from
(9n,m(s)). Thus after one finds Sqg as a zero of A(s) then if
thls zero of A(s) is simple and the natural mode nondegenerate,
both the natural mode and the coupling coefficient can be found
from (gp,m(s)) through the special formulas above without having
to calculate the coefficients in the expansion of the inverse
matrix. If the zero of A(s) is not simple but of second order,
third order, etc. then the formulas are somewhat more complex.
Thus given an integral equation for the currents on the object
and some matrix-vector representation of this which uses ana-
lytic elements with at most poles and assuming the approximate
solution converges in the limit of large N, then there are var-
ious techniques to calculate the natural frequencies, natural
modes, and coupling coefficients. Furthermore the coupling co-
efficients can have many forms, all of which give the correct
contributions at the poles but can have various behavior as .
|s| + =; this also affects the form of the entire function which
is '‘an additional term in the solution,
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Let us now list some of the alternate forms that the cou-
pling coefficients can take. While all forms give the correct
damped sinusoid parts of the waveform at late times there is
still the question of convergence, particularly at early times.
We need to know more general results for the behavior of the en-
tire functions (or behavior at infinity) for various types of
objects as they enter into the singularity expansion. Of course
convergence to the correct result can be determined in part by
calculating the entire functions. One can observe the result
for the matrlx inversion times the incident vector for particu-
lar cases of el and p in frequency and/or time domains and com-
pare to the sum of the first several poles to see where there is
or is not convergence and what it takes to remedy the situation.

Consider then several types of coupling coefficients.
Type l: Factor out the turn on time of the object.

This type of coupling coefficient is defined by

€

st
e © (3.59)

T (s)

so, that the coupling coefficients factor as restricted by equa-
tion 3.28 in the form

—St . '3
. o >
e ca(el) (3.60)

Al (31,8)

This form is used in many cases in section 2. .In appendix B the
perfectly conducting sphere is shown to have this form of result
with no entire function in addition to the pole expansion.

" There 1is an entire function e~sto which is common to all cou-

pling coefficients. However whether we need an entire function
as a separate term in the sum is not at all clear for more gen-
eral objects. In time domain as discussed in section 2 the re-
sulting pole terms go over to damped sinusoids (including cases
of no oscillation) for simple poles with powers of t appearing
for higher order poles. For t < tg there are no currents on the
objects which is physically correct. At t = to all modes turn
on all over the object. Before any fields can reach a particu-
lar position on the object (associated with propagation by the
shortest possible path which is not always a straight line) the
modes with the transformed entire function must all add to zero
(1f the sum converges) at that position, so this is a test for
this type of coupling coefficient representation.




Type 2: Factor out the time the incident wave function first
turns on at the observer position.

This type of coupling coefficient is defined by

'f‘(s) = st!
(3.61)
F(2.,8) = eS¢ (@)
nu 1! - cU. el
where
+> >,
' el.r

with T' as the particular observer position on the object where

the current, charge, etc. 'is to be calculated. For this type of

definition then cg(él) is not the same for the whole object be-
cause the definition is changed to apply to each observer posi-
tion separately. However the natural frequencies and natural
modes are still the same for the whole object. For t < t!' at
the observation position the fields, etc. must be zero and for
most positions t' > to for general objects. This form of cou-
pling coefficient then may have some advantages for early time
calculations. For the_ numerical problem the observation posi-
tion is discrete, say rﬁ. Thus we would use

> >
. &1ty - B
k= S | | ) (3.63)

Note the tp is the first time that the vector component Ip in
the incident vector (Ip) turns on. This c¢g is as easy to calcu-
late as the one in equation 3.60 but it is calculated as many
times as there are observer positions. In fact for t > t' the
two forms give exactly the same time domain waveform for simple
poles. For tp < t < tj type 1 gives a non zero waveform for the
particular pole contribution. Thus we can calculate the type 1
coefficient but just wait until time tj to turn it on.

To see this in general form take an arbitrary time tz and
make

f(s) =e 2 _, R . (3.64)

Then
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i (8108) =e e (B)) =e ) e (I (s ) (3.65)

o

which when combined with the simple pole (s - sy)~! gives a time
domain form as '

) . i s e stk
L l[ﬁa(el.s)(s—sa) “]==e > a(“nix' (f (s ))e ® Fu(e-t)
. st
= ()« (F (s ))e Pult-t) (3.66)
4

Thus for a simple pole the chosen starting time only shifts the
turn on in the unit step. The waveform it multiplies stays the
same. Therefore for t > t3 all simple pole waveforms are the
same independent of t;. For higher order poles a term

(t - t3)00~1 enters in but this can be expanded to leave gha=1
as the leading power invariant. Furthermore considering all the
pole contributions at sy for ny = 2, 3, <++¢ the results can be
manipulated to cancel some terms but we do not go into this here.

Type 3: Factor out the time that resultant fields can first
exist at the observer position.

One can choose tz as in equation 3.64 such that+1t is the
first time that any field can reach the observer at rpj. This
can be longer than the time tp. It can be calculated from geo-
metrical optics. For example if the gbserver is on the surface
of a perfectly conducting object and el is such that it must
point through the object to reach the observer then the wave
must come around the object and arrive at a time greater than tn.
As another example a dielectric object with propagation velocity
less than ¢ may still have the wave propagating through the ob-
ject reach an observer on a "shadowed" side first; this time is
still greater than tpj. Also for example the expansion of the
response of the perfectly conducting sphere need not be started
at time t = to but tp can be replaced by a more appropriate tj
in all the step functions.

Clearly 'if one chooses tz to be greater than the time a
signal first begins at an observer then there must be an entire
function contribution for t < tz because the pole contributions
would all be zero. Such a choice would not seem very useful,
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Type 4: Expand the inverse matrix in poles but leave the entire
function for the incident wave as a coefficient.

This approach is attractive for the case that the expansion
of the inverse matrix (fm,n(s)) as in equation 3.14 needs no ad-
ditional entire function (fp,n(s))e in the expansion or at least
that this entire function is known and preferably has a simple
form. Define a time '

e, 7!
> _ 1
tl(el) = Tax[ = ] . (3.67)
rl

While the time to is the turn on time this new time tj; is the
time when the incident wave has reached every position on the
object neglecting any scattered fields from the object. As such
t] might be called the turn off time. Suppose we write the in-
cident vector as

.

~ -> 5> "St;1
(I (8),8)) = (bn(el)e ) (3.68)

so that the time delay in each component is explicitly displayed.

Consider a special excitation function consisting of the nth
component of this vector being as above but all other components
zero. Then we would calculate an fign(e1,s) with e~Stn as a fdc-
tor. Repeat this for all n and add up the results on the basis
that the equations are linear and superposition can thus be ap-
plied. We would then calculate our coupling coefficients for
the case of simple poles as )

- : -st!
fi (88 = (u) + (I (B,8)) =) - (bn<é’l)e n) (3.69)
a o3 :

For higher order poles derivatives of the incident vector with
respect to s also come in. Now in the time .domain we have for a
simple pole

RS : > > '
N (Br®) = Gug) = (I By 80) = (up) = (b (B 8(e-t))  (3.70)

The pole_gives a damped sinusoid eSat for a simple:pole and

a factor tPa~l for higher order poles. This is convoluted with
Ng where each element of the incident vector makes its contribu-
tion at a time t;. As discussed before for t < ty where ta can

be arbitrary the time domain waveform, at least for simple poles, o
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is the same regardless of tz. This applies to our case of con-
g‘;& sidering each component of the incident vector as separately non
# zero and adding up the results at the end. Thus for t < tg the
pole contributions are zero., For to < t < t]1 the convolution as
above is required which consists of turning on the contribution
of each component of the incident vector at time ty and in time
domain we have

1] S L, s, (t=t!)
v, @ e (sms ™Y =) (bn<Zl)u(t—tI;)e * n)

o]

-s t! s t
(un) . (bn(gl)e o nu(t—tr'l))e @ (3.71)
o

For t1 < t this result goes to the form as in equation 3.66 giv-
ing the same late time behavior as the other types of coupling
coefficient definition. This type 4 coupling coefficient gives
a type of early time behavior which is different from the three
previous types and thus gives another form of pole contribution
from a convergence viewpoint.

¢ We have shown several possible ways to define coupling co-~

m. efficients. Any of these or combinations of them can be used to
Qﬁ? obtain the best representation in the sense of the fewest number

of terms required in some region of fregquency or time of inter-
est. There are clearly many other cases one might consider.

The ones discussed here are some that rather directly follow
from physical considerations and/or give simpler results consis-
tent with the requirement of having the correct coefficients at
the poles. ©Note that types 1 through 3 for the coupling coeffi-
cients can all be calculated on a common basis. A cg can be
found for any choice of T(s) in the form of a time advance. 1In
particular T(s) can be 1, The resulting cq then applies to
every position on the object. It is just the turn on time in
the unit step which is shifted in types 1 through 3 based on a
physical time of interest either for the whole object or for a
local observation position on the object. Type 4 gives more
complicated waveforms.

The considerations about the expansions in this section

have been based on incident delta function plane waves. They
- can be carried over to other incident waveforms directly by the
. techniques outlined in section 2. The type of the incident wave
may influence what one considers as the best form for the cou-
pling coefficients. This is because the early time convergence
of the expansion will be affected by the high frequency content
of the incident waveform. As an example supposc¢ we have an in-
cident step function waveform. Then we can invort a term of the
form fig{e1,s)/[sa(s-sq)] into the time domain and add a static

‘
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term or we can invert a term of the form ﬁu(gl,s)/[s(s»su)] into
the time domain which has a form like the time integral of the
first form. This should give different convergence characteris-
tics for early times and thus another form to be looked at in
combination with types 1 through 4 coupling coefficients.

The remaining entire function in the general expansion is
clearly a subject of much interest. Depending on which form of
coupling coefficient is used this entire function clearly has a
form which is different for different forms of coupling coeffi-
cients., If tz is chosen as in type 3 but made later than the
time a signal first begins (resultant field signal) at the ob-
server then such an additional function must be non zero to give
the only possible fields at early times before tz. If tz is
chosen less than the first time resultant fields reach the ob-
server then the pole terms must either sum to zero (if conver-
gent) or have their sum cancelled by such a function. If, in
specific problems being calculated, the sum does not go to zero
for such early times then this other function must be non zero
for such a case. An optimum choice of coupling coefficients
might be one in which the remaining function is identically zero.
This would have the beginning time for each mode no later than
the first time resultant fields reach the observer, perhaps even
at exactly this time. The "best" coupling coefficients may have
more complicated forms for Ny than those used here. Perhaps us-
ing geometrical diffraction theory to consider asymptotic forms
for [s| » « one can investigate the properties of the remaining
entire function and/or impose tighter restrictions on the "best”
form for the coupling coefficients.
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IV. Some Possible Extensions of the Sinqgularity Expansion
Method and Some Areas for Further Investigation

Let us now consider some of the implications of the singu-
larity expansion method for some general classes of objects.
Most of the attention in this note has been given to objects
with finite linear dimensions. This is clearly an important
class of objects for electromagnetic interaction and scattering.
The perfectly conducting sphere in appendix B is an example of
this class of objects and can be used to suggest various general
results for this class of objects. 1In fact some of the results
and conjectures discussed in other sections were originally sug-
gested to me from this example. The possible factorization of
the coupling coefficients fy(e1,s) into cylejl)e~Sto for per-
fectly conducting objects of finite linear dimensions is a good
example of such a conjecture. The fact that the perfectly con=-
ducting sphere has only poles in the singularity expansion while
the perfectly conducting infinite length circular cylinder has
branch cuts in its singularity expansion (associated with the
cylindrical Hankel functicns in its eigenfunction expansion)
suggested that the expansion only in poles is associated with
the finite dimensions of the object.

There are other finite sized perfectly conducting objects
which can be studied analytically for their singularity expan-
sions. Some examples might be the prolate spheroid, oblate
spheroid, circular disk, etc. Such examples have less symmetry
than the sphere and one would then expect less degeneracy of the
natural modes. With the circular disk an edge would be intro-
duced and one could see how this affected the natural modes.

For finite sized perfectly conducting objects with an axis
of symmetry (objects of rotation) one can base 'a cylindrical (Y,
¢, 2) coordinate system on this axis and decompose the natural
modes based on cos(m¢') and sin(m¢') for integer m while the
coupling coefficients have factors cos(m¢1) and sin(m¢1) based
on one of the angles of incidence. The integral equation over
the surface reduces to a one dimensional integral equation for
each m making the numerical solution simpler and the indexing of

" the natural modes also simpler. Drs. L. Marin and R. W. Latham

(private communication) are already putting together numerical
techniques to handle this case.

As suggested by Prof. C. Taylor (private communication) one
can also look at thin wire approximations to simplify the singu-
larity expansion analysis for such cases and perhaps obtain ap-
proximate analytic expressions for the natural frequencies, nat-
ural modes, and coupling coefficients. This would have the ad-
vantage of determining the approximate values of these qguanti-
ties and suggesting an appropriate indexing system for the fre-~
guencies, modes, and coefficients for some rather complex object
shapes, such as thin wire models of aircraft structures. Then
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in more detailed calculations of "fatter" structures one can use
the thin wire results to help locate all the natural frequencies
etc. because one expects the singularity expansion quantities to
vary somewhat continuously as the object shape and dimensions

are changed. Furthermore one could develop numerical techniques
in which the approximate thin wire results are used as first

terms in an iterative solution for the corresponding fat objects.

While we have been viewing the singularity expansion method
from the viewpoint of the interaction or scattering problem
there is no reason to expect this method to be limited to such
problems. This method is fundamentally based on the expansion
of analytic functions of the complex frequency s in terms of
their singularities in the complex s plane. For example antenna
problems in transmission and reception can be considered from
this viewpoint. Prof. S. W. Lee {(private communication) has
looked at some features of the cylindrical antenna and this
method appears to give some insight here and can even be used to
relate this antenna problem to the interaction problem for a fi-
nite length perfectly conducting cylinder.

The results for finite sized perfectly conducting objects
can be applied to other types of objects as well. Consider an
aperture in a perfectly conducting plane as shown in figure 4.1A.
By the Babinet principle this_can be related to a complementary
perfectly conducting disk.l1l,12 Essentially by interchanging
the roles of the electric and magnetic fields (rotating the po-
larization) and including a plane wave term for the reflection
from the infinite plane the solution for the aperture scattering
can be found from that for the disk scattering. Thus one can
describe the deviation of the currents, fields, etc. from the
continuous plane case by means of the natural frequencies, modes,
and coupling coefficients of the complementary disk. Then these
results can be applied to define natural frequencies, modes, and
coupling coefficients; the modes can be formulated for change in
fields in the aperture and/or changes in surface current and
surface charge densities on the remainder of the perfectly con-
ducting plane. Thus it is quite possible to define the singular-
ity expansion for the lack of an object, i.e. a hole, at least
in the case of a perfectly conducting plane.

Similar conclusions apply to a protrusion on a perfectly
conducting plane as shown in figure 4.1B. This follows from
image considerations. With the image of the protrusion included
then the incident field can be split into symmetric and antisym-
metric parts with respect to the perfectly conducting plane.3
The interaction of each part with the equivalent object with a
symmetry plane in place of the perfectly conducting plane can
then be studied separately. However, due to the reflection of
the incident wave at the perfectly conducting plane only an
antisymmetric field distribution can exist and thus contribute
to the result. Thus the change in the fields, currents, etc.
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can be described by the natural frequencies etc. of the protru-
é sion with its image but only the antisymmetric natural modes are
% needed. This is in contrast to the aperture problem in a per-
fectly conducting plane where only the symmetric part of the in-
cident wave interacts with the aperture making the aperture nat-
ural modes also symmetric.

This reasoning can be carried a little further in consider-
S ing two finite size objects which are mirror images of each
other with respect to a symmetry plane as shown in figure 4.1C.
Such a pair of objects can be considered as one object for an
expansion in natural frequencies, natural modes, and coupling
coefficients. If the objects are far apart then the scattering
from one will not be very large at the second when compared to
the incident field. For large separation there is not very much
interaction between the two and we can treat them as two sepa-
rate objects with the same natural frequencies and the same nat-
ural modes except that the modes on the two bodies would be mir-
ror images of one another. Now natural modes can be multiplied
by any scalar merely in changing their normalization. Thus for
the two objects considered as one we can define natural modes as
symmetric and antisymmetric modes by taking sums and differences
of the mirror modes. Now the symmetric and antisymmetric parts
give an exact division of the natural modes on an object with a
symmetry plane; there is no interaction between the two. Even
for the two objects close together this is the case. As the ob-

{“. jects are brought together one may typically expect a splitting
oy of the natural frequencies in two, one with the symmetric and |
the other with the antisymmetric modes. This is analogous to

. the energy level splitting in quantum mechanics, say as two
identical atoms are brought together. For a single finite size
object near a perfectly conducting plane only antisymmetric
modes contribute and so only natural frequencies associated with
the antisymmetric modes are present. As the object nears the
perfectly conducting plane one might typically expect a shift of
the natural frequencies and not a splitting unless some symmetry
in the object is destroyed in the process or there is some other
degeneracy in the natural frequencies. T

These results with perfectly conducting infinite planes
suggest yet further results might be obtained for various per-
turbations on infinitely large perfectly conducting objects.
The perturbation is regarded as the "object" and what is calcu-
lated is the change in the electromagnetic quantities associated
with the introduction of this "object." If the perturbation is
of finite size then we might expect its singularity expansion to
comprise of natural frequencies, natural modes, and coupling co-
efficients. However more development is needed to understand
this thoroughly. One might even extend this perturbation con-
cept to perturbations on finite sized objects. Particularly if

: , . the perturbation is small compared to the object dimensions then
(. one could make a singularity expansion for the object and use
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the results to define the incident fields for the perturbation
which might in turn be approximately solved by another singular-
ity expansion.

Of course there is the question of the singularity expan=-
sion for infinite or semi infinite objects. We know that the
perfectly conducting circular cylinder has branch cut contribu-
tions in its singularity expansion. There are many other shapes
besides spheres and cylinders which can be treated from the
viewpoint of eigenfunction expansions.l3 This can be used to
help divide up the terms in the singularity expansion by treat-
ing each term in the eigenfunction expansion separately for its
singularity characteristics. Prof. Garbacz has developed a
method for calculating eigenfunctions associated with general
geometries for lossless objects.’  Perhaps these expansions can
be used by studying each term to determine its singularity ex-
pansion and thereby aid in developing or even indexing the terms
in a singularity expansion for such objects. In studying infi-
nite objects such as general cylinders (say irregular but of
some maximum "radius") or semi infinite objects such as general
cones (say contained within some maximum "half cone angle") one
may find some general properties of the singularity expansion
associated with certain features of the general geometries.
This in turn may give some guidance on how to approach the sin-
gularity expansions (and index them) for specific cases of such
objects.

Note that some objects which are finite in size may have
properties of infinite bodies such as branch cuts in the singu-
larity expansion. For example take a perfectly conducting ob-
ject of finite size located between two infinite parallel per- }
fectly conducting plates. This can be replaced by an equivalent
problem involving an infinite humber of images extending infi-
nitely far away. This 1s basically a segmented infinite object.
For the case of a thin wire of finite length between parallel
plates some frequency domain results (on the iw axis of_the s
plane) exhibit peculiar step and slope discontinuities.l4 This

‘may be associated with new terms such as branch contributions in
" the singularity expansion. Perhaps the case of infinitely re-

peated objects (and/or images) in one, two, and three directions

~can be specially treated so as to obtain some general results

for the singularity expansions for such problems. Since trans-
lational symmetry is present for such repeated objects perhaps
group theory considerations can be applied to obtain general re-
sults for this type of problem. ’

Other important classes of objects involve lossy media of
infinite size, such as half spaces with finite non zero conduc-
tivity. Objects of finite size may be close enough to such
media to affect their response characteristics, thereby altering
their singularity expansions. Furthermore, infinite objects
such as wires may be in proximity to semi infinite lossy half




gpaces; thig could introduce yet additional features in the sin-
gularity expansion,

Another whole class of problems concerns the analysis of
experimental data, say from tests using EMP simulators. Using
numerical Laplace transforms, numerical Hilbert transforms, etc.
features of the singularity expansion of the experimental data
can be found within the limits of accuracy of the experimental
data and the numerical techniques. It would seem that various
approaches to this problem are possible depending on the kind of
experimental data and type of object being considered.

Clearly there are numerous topics in the singularity expan-
sion method involving classes of objects, numerical techniques,
etc. which need extensive development. 1In this note we have for
the most part considered finite size objects. Even for this im-
portant though limited class of objects much needs to be done.
For example the natural modes come from the coefficients of the
poles in the expansion. The natural modes may be orthogonal
over the volume or surface of the object. Such is the case for
the sphere but what about in general? Perhaps the topology of
the object can be used to help index the singularity expansion
guantities and can be used to identify whether or not certain
kinds of terms are present. The object symmetries have much in-
fliuence on the degeneracy of natural frequencies and modes.
Group theory should then be useful in understanding the degener-
acy and splitting up the resulting modes as well as indexing the
natural frequencies, natural modes, and coupling coefficients.

A finite size object need not be perfectly conducting.
Suppose that it is composed of linear passive media. Prof.
C. T. Tai has suggested (private communication) that the types
of theoretical considerations applied in circuit theory can be
applied to the singularity expansion to obtain new general re-
sults., Considerations like conservation of energy are important
here in constraining the allowable forms of the solutions., Per-
haps some properties of the pole expansion can be deduced such
as the permissable order of the poles. The perfectly conducting
sphere has only simple poles. It seems safe to conjecture that
this 1is true of all finite size perfectly conducting objects; as
of yet I have not found any case to the contrary. The case of
lossy objects may admit more general pole types. The properties
of the coupling coefficients also need investigation for these
more general finite size objects. Whether or not the linear
passive media are also reciprocal should also have important im-

" pact on the properties of the singularity expansion.

E \

Numerical calculations for objects such as finite length
perfectly conducting cylinders can be used to test various nu-
merical techniques for calculating the singularity expansion
quantities and suggest improvement on them. Dr. F. Tesche is
already doing such calculations showing some cases of very rapid
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convergence for the step function response. Furthermore such
calculations can test conjectures of a general nature and if
calculations are performed for various different objects in the
class of interest and the conjecture proves correct in all cases
then one has high confidence in the general validity of the con-
jecture. Consideration of various example objects has been very
useful to me in suggesting new results and testing old conjec-
tures. It would seem that one important driving force in the
future development of this technique will be the calculation of
the object response of various important objects of practical
interest.

An interesting and important question for finite objects

concerns the uniqueness of the form of the singularitT expansion.

Clearly the natural frequencies and modes for finite Sa' are

well deflned but there are some possible alternatives in defin=-
ing na(el,s) and cg(e1), the forms of the coupling coefficients,
Specifically ny can be an entire function of s (no singularities

“in the finite s plane). This gives some flexibility in choosing

the form of the coupling coefficients. Of course the choice is
not completely arbitrary. The final resulting current density,
charge density, etc. are unigque quantities and all exact repre-
sentations of them must amount to the same thing. The individ-
ual terms in a series expansion can be altered as long as the
sum remains the same. This then raises the gquestion of what is
the "best" form in which to express the coupling coefficients.

A form like cy(€1)e~Sto clearly has much to recommend it for its
simplicity., However there may be other terms needed if such a
form is used. This problem is associated with the time during
which the incident delta function wave i1s sweeping over the
body. Since the object response must be zero before a field can
reach any particular point on the object (with this time calcul-
able from geometrical diffraction theory considerations) and
since to is the time the first point on the object is excited,
then all the terms in the expansion must sum to zero (if the sum
converges) for times between tp and the time that an excitation
can reach a point of interest on the object. 1In order to best
define the expansion for early times so as to obtain the most
rapid convergence then some other definition of the coupling co-
efficients may be appropriate. The possible alternative forms
of the coupling coefficients seems to me to be an issue of
fundamental importdnce in the whole theory and practical utility
of the singularity expansion for finite size objects, especially
for early times. For infinite bodies the terms analogous to
these coupling coefficients may also have similar gquestions as-
sociated with them. Much research is needed then on coupling

‘coeff1c1ent representation both in terms qf general considera-

tlons and specific examples. .

In past years there has been some consideration of the nat-

ural frequencies of some simple objects and to some extent the

natural modes have also been investigated for such objects. _Let:_   A

A
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us mention some examples. Thin wire natural frequencies have
received some attention.l5 Natural frequencies have been dis-
cussed in the context of antenna resonances.l6 Natural frequen~
cies and modes of a sphere have been discussed;l7 this forms a
starting point for our discussion of the singularity expansion
of the perfectly conducting sphere in appendix B. Prolate
spheroidal geometry has also been considered for natural fre-
quencies and modes.l8 Since the perfectly conducting sphere has
shown so many interesting results it would seem a good idea to
look at the prolate and oblate spheroids to see to what extent
the general form of the results carries over to these geometries.
For example spheroidal geometries can allow one to look at some
analytic results for forms of the coupling coefficients. These
and other investigations, even though limited in some respects,
at least solve some portions of terms in the singularity expan-
sion for some objects. As such they can shed some light on some
details of the singularity expansion for such objects and give a
start for obtaining the full singularity expansions. They also
give some guidance about what problems can be profitably consid-
ered for examples to develop general results for the solution
representations in the singuvlarity expansion method.
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V. Summarz

This note is intended to introduce a new way of looking at
many kinds of EMP interaction problems, although it has bearing
on scattering problems as well. From an EMP time domain inter-
action viewpoint this approach has the potential for directly
calculating the amplitudes, freqtencies, damping constants, and
phases of the damped sinusoidal oscillations that are commonly
seen as major portions of interaction waveforms on systems under
test. The idea is to then construct a large portion or even all
of such waveforms as a sum of such damped sinusoids.

The general technique can aptly be called the singularity
expansion method because it is based on representing the func-
tions of the complex frequency s in terms of their singularities
in the complex s plane. In the time domain the individual terms
are the inverse Laplace transforms of the singularity terms.
While for general objects we can expect branch cut contributions
the results for finite size objects using well behaved media in=-
clude only poles for the singularities in the finite s plane.
This simplifies the form of the terms considerably and allows
one to factor the terms into natural frequencies, natural modes,
and coupling coefficients. The natural frequencies and modes
are independent of the incident wave parameters while the inci-
dent wave parameters enter into the coupling coefficients for
the delta function response. The incident wave can also have
singularities in the finite s plane but these can be separated
out so that the response can be generally written as the sum of
an object part and a waveform part.

There are various matrix techniques for solving integral
equations numerically. In this note we have considered these
from a general viewpoint, not specifying which integral equation
is being approximated. This shows some general ways to calcu-
late natural frequencies, natural modes, and coupling coeffici-
ents. The actual numerical procedures that one could use are
numerous and need to be considered for various problems to de-
termine the most efficient and accurate techniques. ST

There are various theoretical problems associated with the
convergence of the matrix representations which need to be con-
sidered for the integral equations for finite objects. Prefer-
ably continuous operators over the body geometry can be developed
to analytically represent the terms in the singularity expansion.
The question of the singularities at infinity or additional en-
tire functions for finite objects needs treatment. Of course
the completeness of the singularity expansion with some allow-
able chosen form for the coupling coefficients can be readily
checked for any given boundary value problem by comparison to
the solution by standard numerical techniques. This method can
be used to determine better forms of coupling coefficients.
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There has been some work done in the past on the natural
frequencies of objects and less work done on natural modes.
This work can serve as useful starting points for the singular-
ity expansions of some classical geometries which can be used
for test problems. There are the essentially new gquestions of
the pole order and coupling coefficients for finite size bodies.,
This note has included a common object of past investigations,
the perfectly conducting sphere. There are analytic forms for
coupling coefficients and there are only simple poles in the fi-
nite s plane with no additional entire function required for the
delta function response. Investigation of other common objects
considered previously should also give some valuable insight
into appropriate forms for coupling coefficients and questions
such as pole order.

I hope that this note has given the reader some insight into
what the singularity expansion method is all about, particularly
with regard to finite size objects. It appears to be quite
powerful for some kinds of EMP interaction problems. Several
investigators are already performing some studies of both gen-
eral problems and specific examples using this type of expansion.
I would hope then that the near future will see some significant
additions both to the theory of the method and problems solved
using the method. ' N

L4

"Off with her head!" the Queen shouted at.Ehe top of her.
voice. Nobody moved.

"Who cares for you?" said Alice (she had grown to her full
size by this time). "You're nothing but a pack of cards!"

At this the whole pack rose up into the air, and came fly-
ing down upon her; ...

"Wake up, Alice dear!" said her sister. "Why, what a long _
sleep you've had!"

"Oh, I've had such a curious dream!" said Alice, and she
told her sister, as well as she could remember them, all these
strange Adventures of hers that you have just been reading
about; ...

(Lewis Carroll, Alice in Wonderland)
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Appendix A: The Natural Frequency s = 0

As mentioned in section 2 it is possible for finite sized
bodies to have static current and/or charge distributions. How-
ever these do not couple to the incident wave and thus do not
start or stop at a time such as tg. These kind of static solu-
tions can be added as separate terms to any response of the ob-
ject to the incident wave. This is not the same term as the
static response of the object as in equations 2.46 and 2.52,

The natural modes for s = 0 are similar to others on the iuw
axis in that they correspond to no power going to infinite
radius. For static current and charge distributions the fields
at large r for dipole and higher terms decay like r-3 (no radi-
ated power); the r-1 electric monopole term is a radial electric
field (no radiated power). For other poles on the iw axis not
at s = 0 any radiation field like r~l at infinity would consti-
tute radiated power and thus damping the mode (i.e. making
Q@ < 0). Thus such modes when expanded over some sphere contain-
ing the object in terms of divergenceless spherical wave func-
tions must give no terms behaving like r-l at infinity, whereas
all such functions do for s # 0 on the iw axis. Thus the fields
for such modes are contained in some volume of finite dimensions
and might logically be called the cavity modes.
®  What are some of the characteristics of these static natu-
ral modes? Since we are dealing with the case of s = 0 the wave
equation reduces to the Laplace equation and the electric and
magnetic fields are decoupled. Thus we first distinguish be-
tween electrostatic natural modes and magnetostatic natural
modes. As shown in figure AlA there are various types of ex-
amples as in 1 a perfectly conducting object with net charge Qi;
this gives rise to an electrostatic natural mode surface charge
density psj. As in 2 an insulating dielectric can have a net
charge Q2 giving rise to the same kind of field at large r as in
1l; the charge distribution throughout the body is not constrained
by the surface shape as in 1 and static electric fields in the
body are possible so that the distribution is arbitrary to some -
extent, As in 3 conductors (perfect or imperfect) can be com=-
bined with insulating dielectrics to allow not only a net charge
but allow a volume charge distribution in some parts but not in
others. Of course all the above mentioned cases can be combined
together, say as laid out in figure AlA as multiple objects in a
volume of finite dimensions so that the whole ensemble has a net
charge Q1 + Q2 + -.. and an associated volume and surface charge
distribution. It is not necessary,K for there to be a net charge,
or even for there to be any fields for large r. The charged ob-
jects could be contained in a closed conducting shell and the
net charge of all (including the shell) made zero; the natural
electrostatic mode would still have a non trivial charge distri-
bution.
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In figure AlB we illustrate some magnetostatic natural
modes, Excluding magnetic charge from Maxwell's equations we
have no magnetic monopole term to give an r-1l magnetic field at
large r. However, we can do next best and get a magnetic dipole
term from a closed perfectly conducting loop as in 1. TIf the
loop is perfectly conducting then the total magnetic flux
through the loop cannot change because this would imply an elec-
tric field tangential to the perfect conductors which is impos-
sible by hypothesis. A perfectly conducting object as in 2 can
have a surface current density 352 when immersed in a maghnetic
field such as from the loop 1. A permeable object as in 3 can
have a magnetization (with an equivalent volume current density
distribution) induced by a magnetic field from the loop 1. One
might also consider permanent magnets but since we wish to remain
with linear Maxwell's equations we may wish to exclude such
things.

Practically speaking we do not normally deal with perfect
conductors but they still make a useful idealization for many
problems. Thus the magnetostatic natural modes still are useful
concepts. In a practical case these would not be exactly at
s = 0 but have @ slightly negative. Of course for the case of
superconductors such magnetostatic modes do exist and have been
observed; they are even quantized. This leads to another phe-
nomenon in which the magnetostatic fields are excluded from
superconductors except for a thin surface layer. This is analo-
gous to the case of magnetostatic fields excluded from perfectly
conducting objects as discussed above. However, there may be
cases of highly conducting objects for which it is useful to
think of a magnetostatic mode with magnetic field penetrating
what is thought of as a perfect conductor for purposes at hand.

Having considered the electrostatic and magnetostatic natu-

‘ral modes there is no reason why one cannot combine them and

have both associated with some object or collection of objects
contained in some volume of finite dimensions. Note that the
static natural modes can easily be degenerate. For example one
can change total charge (Q1, Q2, etc.) on each of several dis-
crete conductors as well as change the currents (I, I2, etc.)
circulating around perfectly conducting loops (or equivalently

separate holes through perfectly conducting objects). All of
these apply at the natural frequency s = 0. Stated briefly the
natural modes for s = 0 are any electrostatic and/or magneto-

static modes which are not associated with any incident field.
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Appendix B: Example to Illustrate the Slngularltygﬁxpan51on
The Perfectly Conducting Sphere

As an aid to understanding the form of the actual singular-
ity expansions we consider an example chosen so that the various
terms 1in the expansion may be more readily expressed in terms of
common functions. For this purpose we choose the perfectly con-
ducting sphere. This example shows all simple poles in the ex-
pansion and poles on both the negative @ axis and in conjugate
pairs with 2 < 0; the internal cavity modes and an electrostatic
mode with poles on the iw axis which have zero coupling coeffi-
cients are not included. The natural modes are degenerate and
we choose those for the surface current and charge densities to
correspond to an appropriate set of spherical harmonics. The
coupling coefficients have a time advance which factors out
leaving dependence only on direction of incidence and polariza-
tion. Again this example is directed toward explicitly exhibit-
ing the form of the singularity expansion and the kinds of gen-
eral results that ensue. For numerical purposes the singularity
expansion may not be the mose useful in the case of the sphere.
However it can be used to more readily suggest general results
which also apply to more complex shapes. Other interesting re-
sults can be found from considering other spherical problems in-
volving surface resistance and finite volume conductivity, per-
mittivity, and permeability but we do not go into these varia-
ﬁ:. tions in this note.

Consider then the problem of a plane wave incident on a
perfectly conducting sphere as illustrated in figure Bl. We
have_a sgherlcal (r, 6, ¢) coordinate system and unit vectors
er, ee, e¢ which can also be listed with a prime to indicate the
object coordinates. Let the sphere have radius a and let the
incident plane wave be described as in section 2. The unit vec-
tors for the incident plane wave are illustrated in figure Bl.

As in an earlier note4 the unit vectors for the plane wave are
expanded as

31==sin(Q1)cos(¢l)gx-+sin(el)sin(¢l)gy-?cos(eiféz

&, =-cos(8;)cos(¢;) & - cos(6,)sin (d>1) 3y +sin(8,)e, (B1)

33 = sin(¢l)gx -~ cos (d)l)gy

- where 81 is the angle of el w1th respect to the reference z axis
(argltrarily chosen) and ¢1 is the orientation of the projection
, ] of e] on the x, y plane with respgct to the x axis (arbitrarily
& '~ chosen) The second unit vectoy e is chosen in a plane paral-
. - lel to e1 and the z axis while ej is then parallel to the x, Yy
ti% .. plane. _
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The cartesian (x, y, z) and spherical (r, 6, ¢) coordinate

systems are related as

r sin(G) cos (¢)

X =
y = r sin(8) sin(¢)
z = r cos(6)

(B2)

and similarly for primed coordinates. Expanding the plane wave

unit vectors in spherical coordinates gives

31==[cos(61)cos(6)+sin(el)sin(9)cos(qb-d>l)]gr

+[—cos(61)sin(6)+sin(el)co.s(e)cos(ctJ—le)]é*8

—sin(el)sinw—qal)‘é¢
32==[sin(61)cos(9)-cos(el)sin(e)cos(¢—¢l)]gr
-[sin(el)sin(e)-+cos(61)cos(e)cos(¢—¢l)]3e
+cos(el)sin(¢-¢l)§¢
-+ . . >
e3==—sz.n(8)s1n(¢—¢1)er
-cos (8) sin($-d;) ey

—cos(¢—¢l)3¢

where we can expand some of the terms in the forms

CQS(¢-¢1)

cos(¢l)cQS(¢) + sin(¢l)sin(¢)

cos(4;)sin(¢4) - sin(9;)cos(9)

i

sin(¢—¢1)

Having the direction of incidence and two polarizations ex-
pressed in spherical coordinates we can go on to express the

(B3)

(B4)




response of the perfectly conducting sphere to the two delta
function plane waves Up as in equations 2.17. This can be fol-
lowed by finding the delta function responses for the surface
current density and surface charge density.

For the incident delta function plane wave we first need
spherical harmonics and vector wave functions in ‘hich to ex-
press the expansion in spherical coordinates. In spherical co-
ordinates we have the common differential operators as

(o4

) > 138 .+ 1 3.
VF—er—?F'Fee-r-a—F'Fe(bE—sma—(b-F

pol_3 2 1B g S S
VE=3 F(cF ) + r=imrey 39(sin(OFg) + =TareT 35 o

+ > 1 3 . 1 3 " (B5)
vxF"er[r sin(o) §§(Sln(e)F¢)"r sin(6) 0¢ FB}
> 1 3 l 35
*eg [r Sin(8) 56 fr % _r(rFq:)]

where F is a general vector and F _a general scalar. Other oper-
ator such as Laplacian (V2F and V2F) can be constructed using
the three in equations B5. These operators are suggestive of
ones that could be defined to operate with respect to the sur-
face coordinates 6, ¢ on a unit sphere. Of course these operate
on scalar and vector guantities which are functions of these
surface coordinates (or considered as only functions of such co-
ordinates). Using a subscript s to denote these operators we

" have — T
V= "ée %—§F+g¢ Ei%fﬁaT%qTF
v_F = 's;‘frlTFé)‘ 2 (sin(0)F,) +'§‘f:la‘<'6)‘ %3 F,

S mey
+ 8, mrre 2 F
€ sin(6) 93¢ "r
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Note that in the process of removing all r factors and deriva-
tives with respect to r the Vg operator leaves the units un-
changed instead of multiplying the units of F or F by meter-1,

Let us now consider the spherical harmonics. The scalar
spherical harmonics can be written as

cos(m¢)2

TS
Y e(e,fb) = Pn(COS(e)) Sin(m¢)

n,m,

m= 0,1,2,***, n (B7)

The subscript § meaning even or odd, indicating that one is to
be chosen corresponding to whether cos(m¢) or sin(m¢) respec-
tively is intended. The Legendre functions are given their
standard definition such that for -1 < & < 1 the PQ(£) have the
definitionl?d -7

m = m 2 m/2 a" ;
_R® = nTasth T T R ()
| (B8)
_ 1 gt o .1
p_(g) = P9(g) = - & _(g%-1)
n n 2%n1 agt

For convenience a subscript ¢ (for symmetry) can be used to in-
dicate e or o or as an index for sums over both, Using the
Kronecker delta notation defined by

1l for 01 = 02 B o

§ = (B9)
1772 0 for gy # g,

we can write the spherical harmonics as

~ . i
Y m,c(enb) =P _(cos(0)) [de

1, cos(m¢)-+60’csin(m¢)] (B10)

Pes
\

where we use letters e, o for the arguments with obvious meaning.
If desired i and - or +1 and -1 could be used to denote even and
odd respectively being some kind of parity value.

75




, -
G« (8,0) =8 as

Having considered the scalar spherical harmonics we now
need the vector spherical harmonics, three kinds of them. 1In a
manner similar to previous usage?0 we define three types of vec-~
tor spherical harmonics. This definition differs slightly from
one of our previous notes? but our present definitions seem more
natural. The first kind have only an r component and are simply
defined as

Bl o (8:0)

n, Y m’c(e,qb)er (B11)

n,

The second kind has only 6 and ¢ components and is defined as

Hi

stn,m,c(e’¢)

-5 .
Opom,o(8r®)

4

- ] - 1 3 \ / \
= ee 35 Yn’m,g(er‘b) +e¢ m 3—5 Yn,m,6(6’¢) (B12)

which can be written out as

-sin(m¢)]
cos (md)

cos (m¢)
sin(mg)

dP?(cos(B)){ : . Pﬁ(cos(e))

tey —=sIn(®)

nrmlo

m m
[n(n—m+l) Pn+l(cos(6)) _{n+1) (n+m) Pn—l(cos(e))}gcos(m¢)}
0

-5
= € 2n+1 sin(8) 2n+1 sin(0) sin(mg)

Pi(cos(e))

sin(9)

+ e,m
¢

-sin(md) o
cos (m¢) ; (B13)

The third kind also has only 6 and ¢ components and is defined
as

Vg x e ¥, o (8,0)]

it

-
Rn,m,6(9,¢)

> 1 3 . » . "
= ®g In(®) 5% Yn,m,o(e’qb)"eq: L) Yn,m,c(e’¢)‘ (Bl4),.
. . \

which can be written out as .
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P?(cos(e))

dpi‘(cos(a))I

> - f=sin(m¢)] _ > cos(m¢)
Rn,m e(e’¢) €p sin(8) mlcos(m¢) } e¢ de [sin(m¢)
"o
N Pﬁ(cos(@)) —sin(mo)
= €gh sin(6) :cos(m¢) }
+3 [_ n(n-m+l) Pn+l(COS(e))+(n+l)(n+m) Pn_l(cos(e))] cos (md)
¢ 2n+1 sin(0) 2n+1l s1n(9) tsin(m¢)

(B15)

..Some useful relations hold among the three kinds of vector

spherical harmonics as

Y

-+ >,
8 o o800) = 3, x Ko (6,8)
> > e .
n,m,c(e'¢) = e *QUnm g(6r0)

Op m,o(8r®) = VB, < B - (8,0)]

n,m,d s r (B16)
= gr % [vs % §n,m,0(e’¢)]
ﬁn,m,c(e’¢) = vs x B ’ c(e’¢)

These also have various relations to the scalar spherical har—
monics as

> +

n,m o(8r9) = e n,m, c(e ¢
6n,m,g(e'¢) = Vgt n,m, (819
=3 x [V, [Erﬂn m, o 8 ¢)]] | .. (B17)
Rpom,o(0r8) = Vg x [E¥ - (6,0)] | V
= -gr X V¥ o, G(9 ¢)
"
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’[; 'lc.) 6 ’m’o(e,(i)) « 0 ,O.(e,¢)sln(9)d¢d6 (Blg)

Note that the three types of vector spherical harmonics are mu-
tually orthogonal at each point on a unit sphere for the same
set of indices. They also are mutually orthogonal in an inte-
gral sense on the unit sphere for any combination of index sets
as

i) 2m, ‘ '

./. ./. Pn’m,0(8,¢) . 6n',m',o'(8’¢)51n(e)d¢de = 0

O (o} |
Ui 27 " ' y |

./; '/O Pn'm'O(B,qb) ‘ n-,m-,O-(9,¢)51n(9)d¢>de =0 (B18)
Ul 2m N -

f f Qn m O(G,fi)) D Rn' m' 0,(9,¢)sin(6)d¢de = 0

O (o] == ’ ’

For the same kinds of vector spherical harmonics we have orth-
ogonality relationships on the unit sphere as

T 27 -
- - . . -
Q: . Pn,m’0(6,¢) . Pn,,m,’o,(8,¢)51n(8)d¢d6.

o _ 27 (n+m)!
= [1+108, Go,clao,m] 53T (oem T on,nSm,m' %o, 0

nl 'ml

" . .
o J£ n,m,c(e’¢) . Rn,,m,lo,(8,¢)51n(6)d¢de

, : ' L n n{n+l) (n+m)!
[14‘[6e,0"60,0]60,m]zw 2n+l (n-m)! “n,n' m,m'ao,o'

As a next step we need vector wave functions for spherical
coordinates. One part of these functions comes from spherical
Bessel functions which are functions of Yy, = ikr = sr/c. It is
from these that the radial and complex frequency dependences are
formed. These are commonly expressed as




i (kr) , (ko)

h£1?<kr) 5 (kr) + iy_(kr)

(B20)

héz)(kr)»

jn(kr) - iyn(kr)

where the jp are used for cases of no singularity at r = 0, hn(l)
are used for incoming waves, and hp(2) are used for outgoing
waves satisfying the radiation condition at infinity. For & =+ 0
we have

n

In(8) = TamemyTrii+o (61))
(B21)
n{? (&) = 16 ™ Han-1)1111+0(E )]
where the double factorial is defined by
m(m=2) *** (4) (2) for m even
m!! =
m(m-2) * -+ (3) (1) for m odd (B2‘2)
1i1 = 011 = (-1)11 =1 |

Now for present purposes we define spherical Bessel func~
tions with argument z = if and we define two kinds

1)

(1) . o
£, (0) = 4 (2) : s
(B23)

(2)
£12) (@)

i

k_(2)

The first kind is used to expand the incident wave (and is like
jn(kr)) and the second to expand the scattered fields (and is
like hp(2) (kr)); the functions like yp and hp(l) can be formed
as a linear combination of the fp(!&) for & = 1, 2. We wish
these functions to be real for real vy so that the complex con-
jugate relationship of equation 2.4 will apply and zeros of the
functions will have complex conjugate symmetry. Let us then
constrain ¢ + 0 the asymptotic forms e




£

n

. ~ r 2
ln(?;) = m[l*‘o('z )]
' ' : (B24)
k (£) = £ (2n-1) 11 1140(2 )]
from which we can make the identification
iy = 1% (&) = i"j (~ip)
_en=2,(2) ., aen=2,(2) . . :

= -1 () (g

For these functions we need a Wronskian relation with re-
spect to the argument g as

2

e Wi (2),k (©)} Ti (2)K!(2) -1t (B)k (2) = -2 (B26)

whére the prime with the Bessel function indicates differentia-
tion with respect to the argument. Another related expression
is

i (o) tek (01" - k () lzi (01" = -g7F (827)

which in Wronskian form is

— L. e . . - A B,

w{cin(c).ckn(c)} = -1 (B28)

These are useful for simplifying coefficients in the field,
current, and charge expansions.

These spherical Bessel functions can be written as combina-
tions of polynomials and exponentials giving them a simpler form
for their exact representation. This is important for finding
the Eoles for our singularity expansion. From a standard refer-
enceld the spherical Hankel functions can be written for n = 0,
l, 2, -+ as .




(i) - 7D 1 —l 1E (n+B) ! ~-B
by (8) = Z Blm-p) T\ 128)

(B29)

(2) _ n+1 -1 -15 (n+R) ! -B
h %' (5) = Z ST (428)

From these we can construct the other spherical Bessel functions
as

3@ = 2N @+ 0P @]
7 (B30)
i 1
78 = -5 @ - 0l @)
With ¢ = if we then can write our k functions as
_ mn=2(2) o o g_i: (n+8) ! -8
ko (0 = 17 0 = S0 g T (29 (B31)
c . .

with the resulting simplification of the expression this last
form for the spherical Bessel functions for outgoing waves has
some useful advantages. Next consider the spherical Bessel
functions which are analytic at ¢ = 0; these can now be written

n _ it
1,00 = 1%, @) = &[n

n

(1) (2)
®) + 02 ()]

n .
_ e (n+B) -8B n+l e (n+B) -8

] | | |
= cosh(z) D, [(-1)F + (-1)“*115—,‘%@%—}—,—(2@ i

i@ Y [eDF o (DR L Bl gy
B T B!(n B) !

Y = L




The finite sums in equations B31 and B32 can be expressed as
g’ ratios of polynomials in Z. For the kp functions the numerator
¢ and denominator both have zeros (in conjugate complex pairs ex-
cept on the Re[g] axis). For the ip functions we only have
zeros in the complex ¢ plane; the ip are then entire functions.
All the inverse powers of { cancel when the exponentials are ex-
panded as power series in g.

- Having the Bessel functions in the forms we desire we now

T consider the spherical vector wave functions. These are closely
related to the spherical harmonics. As a building block we have
the spherical scalar wave functions as

(2)

(Yyr) = E
n,m,c Y - -

—
(2
—

() .
’U(Yrrer¢) = fn (Yr)Yn,m,o(e’¢) (B33)

which can be written out as

cos (m¢)

S0 3 () )
=8 o) = 2P el | Som M)

; m=0,1,2, **+, n (B34)
n,m,o

where = 1, 2 refer to ip and kp respectively. Coefficients
, times this when summed over all possible indices satisfy the
(“'-'. scalar wave equation which for each function we can write in op-
Llir erator form as a .

o2 2. (%
[VE - v©] n,

() .o _ : _ : S
g m,o(Yr) = 0 (B35)

From the solution of the scalar wave equation one con- 7
structs as usual the solutions of the vector wave equation, and
these are of three kinds. The first kind have zero curl but
non zero»divergence and are defined by

>(2) > 1 oo(8) >

Ln,m,o(Yr) Y v”n,m,o(Yr)
_ [z 9 1 ~(2) >
- [er a(yr) + Yr vs]unrer(Yr)
o o N
T : £ (yr)
_-e(2) > n >
= #n (Yripn'mﬁgf?’é) +

e

e T Ll L e T . s ity g maE A e

which can be written out in components as




g

L(R) e(vi) =
O

(2)

Gn o, €
4 Io

L (YT)

(%) *
L¢n m e(Yr)
My o

(2)! m , COS(m¢)Z
£ ‘Yr)Pn‘COS(e’){sin(m¢>

£{*) (yr) ar"(cos(8))

}cos(m¢)§
Z3 ao [sin(m¢)
(R) m
£.7" (yr) P_(cos(8)) ~sin(mé)
Yr sin(8) cos (m¢)

|

(B37)

The prime is used to indicate derivatives of the functions with

respect to the arg
divergence but non
= (%)

Mn,m,c

(Y;)

The components are

ml®
n,m,

' Méz) e(v?)
n’m’O

H

ument (yr here). ‘
zero curl and are defined by

,Mm, 0

-T X V:A%Q’G(Y;)

—gr x VSEA%;,G(Y;)

(-3, x vy, oo 0,018 (o)

£8 (v (-2, * 8y m, o (80)]

(2) (v 2
£ (R (6,0

y

. PM(cos(8))
£{8 (yr) -2

i—siﬁ(m¢)

sin (8) cos (mo)

83

The second kind have zero

(838)




£
@

dP?(cos(e))
de

N C% TR AN 0€S
nlmlo

:cos(m¢)}

sin (mo)

The third kind also have non zero curl but zero divergence and
are defined by

+(2) - _ 1 >(R) >
Nn,m,o(Yr) Y v X Mn,m,c(Yr)
Choefrs [re o))
= -Lo? M) e+ 2@ vt 6,0
2 oo (2)
+ 3 V'n,m,c(e'¢)
= VIR (909 gy Vg (000 + 25T (6,0)
= vl (v wyreelD oy w2e M T [B 6,0
[f£2>(yr)]’ £ (yoy ),
+ 4Yr —~r + 2 —~r Qn,m,0(6'¢)
fr(lm (yr) 5 [err(lm (Yr)]' ,
= nlnth) e By (000 ¢ - Op.m,o(8r0) (B40Y

where we have used the differential equation for the spherical
Bessel functions and some vector calculus identities.l The
components are

(2)

N(Q) (Yr) = n(n+1)——~—£1£l Pm(cos(e)){cos(m¢)
r. m, Yr n sin(m¢)
(2) N [er(ﬂ,) (Yr)-" dPIrI:(COS(e)) COS(deﬂ)
en n (Yr) - Yr de {sin(m¢)

o ’O B




@

A

L)

LT =

@)

[ (L) 'oom
[ern (Yr)] Pn(cos(e)){

_ =gin (m¢)
Yr sin(6) ‘

cos (m¢)

Note that all three kinds of vector wave functions satisfy
the vector wave equation in Laplacian form which we can summar-
ize as

-+
L
(v - y2 it =8 (B42)
-
N
However from the operator identity
Vxyx = Y. - 72 (B43)
and noting from their definitions that
M
AL +} =0
N
' (B44)
VW - T = % VIVZE] = yVE = v3%

we can write a curl curl wave equation for only the second and
third kinds of vector wave functions as

Y

M
+} =0 (B45)
N

-

[VxVx  +y?)

The three kinds of vector wave functions have some interrelations
as ‘

ﬁé%L'U(Y;) = -yT x L(R) 5 (YE)

R e AL M AN CF3 | :

() 1 2(8) 2 L
Nn'm,c(vr) =3 vV x Mn'm,g(vr) -

(B46)

.85
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>{2)

(L)
Na,m, o

nmc

(Y2) = -7 x [r « 1 (Yr)]

Since the vector spherical wave functions have their 6, ¢ de-
pendence expressed in terms of the vector spherical harmonics
then these vector wave functions have certain orthogonality
properties on the unit sphere based on those for the spherical
harmonics (equations B18 and B19) ., Howeyer since two spherical
vector harmonics are used for the L and N functions the orth-
ogonality relations for the vector wave functions on the unit
sphere are not as simple and convenient.

Returning to our dyadic plane wave from equation 2.13 in
Laplace form for propagation in the direction &; as
> > :
e ‘ ' (B47)

il 22

S5
-5
I

ti

1

where % is the unit dyadic which can be expressed many ways such

as
+ 100
e I = (5b b ) = (0 1 0)
17~2 001
_++++++++
T Txox vy T €28z
_ > > > > >
T €181 T S8y * e38;

'(548)

i
(L%
+
(024

This dyadic glane wave is expanded in our spherical vector wave
functions as<0

o n
DD DD DI LRI T SN CSPR = YIS S UL A A e72

t STy [ﬁn,m,o(61'¢1)Mél; o (YE) = QL (8 1r¢ )Nélé G(Y?ﬂ} (B49)

where 07 and ¢; are angles giving the direction of 31 as used i
prEVlOUSl§ Note that for n = 0 the summation is not extended : N
over the and functions which are identically zero.
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This dyadic plane wave expansion is related to integral
represen%gtions for the spherical vector wave functions for
2 = 1 as

_qyh aT 2T -Yg T :
ﬁ(l) (.Y'I*.) = (41) f f a 1 .ﬁn m o(el,¢>l)sin(61)d¢1del
fo) o [4 [4

> > {(B50)

T 2T Ye 7
=—n-j; j; e p Rn’m’d(61,¢>l)51n(61)d¢>1d61

+1 m 2T =ye,*r ,
> > _(-1" 172 -

1]
-
oy

o~
pef
o~
[\]
3
(0]
=<
M
l—-l
=
Oy

(61,9,)sin(8,)d¢, ds

n,m,oc 1

Thus the spherical vector wave functions for 2 = 1 can be con-
sidered as weighted integrals over plane waves travelling all
possible directions of propagation €].

Having an expansion for the dyadic plane wave we can find
the two delta function plane waves for p = 2, 3 as

¥

¥

>
e .

p P 1

(B51)

" For these we need Ep expressed in terms of grlr gel, §¢1 unit

vectors which we can see by referring to figure Bl are

2. =8

1 ry . “;
. . .
€2 % eel
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Then considering the terms in the expansion coefficients we have

> +

e, *P (6,,¢,) =0
2 e 1’71
nlmlo
B aP™ (cos (8,)) (cos(mdy)
gz '3 e(ell¢l) ='-‘—'ag Y e(ell¢l) = - L ae L {sin(mtbi)}
n,m, 1l n,m, 1 1
o) o
1 3

> -+ -
e, *R e (8r07) = Y c(87797)

n,m,0 Sin(el) 8¢l n,m,0
Pi(cos(@l)) —sin(m¢l5
sin(el) m cos(m¢l)
R . (B53)
e3P (81,6,) =0
nlmlo *
> <> 1 3 '
€, *Q (0,,0,) === Y (6,,97)
3 n,mlg 1’71 51n(817’8¢1 n,mlg 1’71
_ Prr‘:(cos(el)) -sin(m¢,)
-7 sin(8;) m cos (m¢ )
de(cos(e )) cés(m¢ )
$30R e =gy (0,6 = Pt { (¢l>f
n,m, 1 n,m, 1 Sin{me,

and for completeness
' \
> ' : om
‘ el ﬁ e(ell¢l) —Y e(ell¢l) —Pn(COS(el))}
o n,m, g

cos(m¢l)
sin(m¢l)}

Bs4)




e

> -+ ‘
2,08 (8,6 =0
nlmlo

-+ -
e, *R e(el’(bl) = 0

1 n,m
g

For p = 2, 3 the delta function plane waves (transformed) can be
written as

-'Y-é -; [ n .
o 17 _ ' (1) > ' (1) >\
Uy = €5¢ - Z Z [an m,c n m, O(yr) +bn,m,0Nn,m,0(Yr)
n=1 m=0 o=e,0 7 -
3 17 _ 7 (1) F) ()
U3 =¢e3¢ "E: 2: [bﬁ,m,oMn,m,o(Yr) n m, R n,m, o(Yr[
n=1 m=0 o=e,0
where
, , PM(cos (6,)) (~sin (mé,)
ale = [2-8 ](_l)n+l (2n+l) (n-m)! ~"n - 1 1 }
n,m,g o,m n(n+l) (n+m)! s1n(81) cos(m¢l)
{(B56)
m
b = [2=6 _](-1yP (2n+1) (n-m)! dp_(cos(6,)) cqs(m¢l)
n’mls o,m n(n+l) (n+m)! del sin(m¢l)

The prime is used with these coefficients to differentiate these
from the a,. Note that we have

, o2 '—f e '-rr
% vV x [Zze €1 ] = g3e €1
BV R 2 (857
- % Vv X [33e 1 ] = —gze 1

which is associated with the curl relations between the M and N
functigns. Furthermore any divergenceless’ electric field expan-
sion (E) can be converted to a magnetic field expansion (H) by
dividing by_the wave impedance Z of the medium and changing

M+ -N and N - +M. To go from H to multiply by 2 and change
M+ +§ and N - -M.

89




N O P B sl - S AR taew s e -2 T . . * M v . . .

Now define two sets of coefficients for g = 1, 2 as

il
|8

'
an,m,o for p
Allhlmlclp - ' for = 3
n,m,oc 'p
(B58)
- ' =
- ‘ bn,m,o for p 2
Azln’mlclp - _a| for == 3.
' n,m,c P

Then for p = 2, 3 we can write our unit incident plane wave as

> _ > l (1) ->
p T epe E E 2 [ 1,n,m0,pn,m,o Y5

n=1l m=0 o=e,0

(1) o
* 2 n,m, o,pNn m o(Yr)] (B59)

Oq; incident plane wave electric field is written as

XY

(r,s) = Eo[fz(s)

3
u

2

A
42

~ 3
inc + £3(s)u,l (B60)

In the presence of our perfectly conducting sphere of radius a
we have a scattered electric field as

~
ire

L(E,s) = Eo[%z(s)ﬁz(s") + E3§§S°)] (B61)

where for p = 2,3 the scattered electric field response func-
tions are

o n i

*(sc) _ (sc) 3 (2) > (sc) >(2) >
4 =3, 2 [Al,n,m,o,pMn,m,o(Yr) +A2,n,m,0,pNn,m,0(Yr)]
(B62)

Constraining the tangential electric field to be zero on r = a
requires for the tangential components )
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> - > (1) > (sc) >(2) > -
ep X Al,n,m,c,pMn,m,c(Yaer)-FAl,n,m,c,pMn,m,c(Yaer)]"3

. (1) (2 (B63)
> 1 > (sc) 2 > 7
er><[ 2,n,m, c,pNn m c(YaerZ-PAZ n,m, G,p n,m c(Yaer)]"3
This gives equations for the coéfficients as

A(s0) _ _talva)

l,n,m,o0,p knzYaS l,n,m,o,p

(B64)
3 1
(sc) _ [yai, (ya)] A
2,n,m,0,p TYakn(Ya)]' 2,n,m,0,p

The surface current and charge densities (equations 2.18,
2.19, 2.25, and 2.26) are written as

5 . E_r. z(J) ~(J Y L
._fs(r',s) =—Z-9[f2(s)U S ( ',s) +f (s)l—f r',s)]
¢ ' (B65)

. (pg) " . (pg)
B (E',8) = e By [f ()8, ° (F',8) +E5(s)0, © (?',s)] :

To find the surface current and charge densities we need to
evaluate just outside r = a the expressions

F (F',s) = &L x H(X',s)
. (B66)
> 3> >
(r',s) = eoeé e E(r',s)

The surface current density response functions are then

3(35) (+' ) ~ 2 o i i [ &»(1) ( ->')

P FrS) =€y l,n,m,0,p n,m,0 Yae,
n=1 m=0 o=e,0 .

_ (sc) > (2) > (1)
Al n,m, o,pNn m, O(Yae ) +A M (Yae )

2 n, m c,p n,m,c
(sc) >(2) ] -
,'+A2 n,m o,pMn m, O(Yae )

- ~ - h : : . - RN " - e —ze

~



[yai (ya)l'

+ ,m 0
=e£" E Z g-Al,n,m,o,p[ sa

i (va) [yak (va)]'
n n 1 [
__kn(ya) Ya :IQn,m,cx(e 19

[Yal (vya)l!
A2,n,m, c,p(} (va) = 133k _ (ya)]*‘k ‘Ya’] Rn,m,o (88"

(B67)

From the Wronskian relations for the spherical Bessel functions
this reduces to

>
~(J_) d n |
EI*ps (;"s)=z Z "Alanpﬁnmo(e"Cb') 2l
n=1 m=0 o=e,o0 A e (ya) "k (ya)
- 3 1) 1
o AZ,n,mwO,an,m,U( Ledl) Ya[Yak (yva) 1" (B68)
The surface charge density response functions are then
5 E =Y Y X 8- HY Gy
? — L]
P n=1 m=0 o=e,o0 l,n,m,0,p T m,0 r
(sc) >y, 5 (2) pg
+Al,n,m,o,p r n,m O(yaer)
>0, +(1) >
+A2,n,m,o,per Nn,m,G(YaeJ‘:)
A
(sc) 5(2) > }
+A2,n,m,o,per n,m, G(yrae]':)
= i > A [n(n+].)l tva)
77777 n=1 m=0 o=e,o0 2,1,m,0,p e
yai (va)]! kn(Ya)] . o
- R L. Y
[Yakn(Ya)]' n(n+1) yYa Ynlmro(6 ¢ ) (BGQ)“
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Note that only the g = 2 terms contribute to the surface charge
density. Using a Wronskian relation we have

(p_)

co n
5 S (Tr,s) = Z Z Z “n(nrD A, om,o,p

e

n=1 m=0 o=e,0 '
1
(Ya) [Yak (ya)l'

(570)

Note that since n =1, 2, 3, +*+ there is no pole at ya = 0 in
either the surface current density or surface charge density re-
sponse functions.

Now that we have explicit representations of the response
functions for surface current and charge densities in terms of
known functions we can identify various terms with the terms in
the singularity expansion. Let us start with the natural fre-
guencies. These are the zeros defined by

kn[sa.%J =0, [ « = k(s ]]' = 0 | (B71)

[ g

oA There are then two classes of natural frequencies which can be
labelled by q = 1, 2 depending on which of equations B71 they
satisfy. Clearly n is another index and for each n there are
some number of natural frequencies which we index by n'. Thus
the index set o as applied to labelling the natural frequencies
can be written as g, n, n' and we have

' ay _ T a 7 2._ " =
kn[sl,n,n' E) =0, [Sz,n,n' c kn[s2,n,n' c)] 0 _
, (B72)
Sa - Sanrn'
B Since from equation B3l we have
ko (2) = ——EZ AL (g) 8 (873)
< _ z 8! (n- B)'

o
Then let us write the spherical Bessel function terms in equa-
tions B68 and B69 as
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1 = eyaB ( ai = e-StOB {va) '
Ya[yakn(ya)]' = 2,n'\Y - 2,n'Y (B74)
' ' -st_ B (ya)
. 5 1 = eYaB n(-ya) = g o .._3_'ﬂ.a___
(vya) " [yak (ya)l' ' !
where
to = l—% (B75)

Since the B functions are all ratios of polynomials in ya then
we can make a pole expansion of them. Note that ty is just the
turn on time when the incident wave first touches the sphere so
that the coupling coefficients are factored as in equation 2.21;
the perfectly conducting sphere is then an example of this fac-
toring.

.

The ratios of polynomials are written as

-1
n
- 1 {n+RB) -B
B1,n®) fe o 'I E Fln-p T (29
Ry} 8=0 .
n -1
N (n+8) ! y=B (n+8) !, \-B-1
n(%) ‘WT‘{ ; Bi(n-g) 1 2% ZE_ZBZ-_;]-BB!(n_B“(ZZ;)
(B76)
. o) = 1 =:B2'n(C) ) 1
3,0t FE T z 2T, (D)

In terms of the spherical Bessel functions these rational func-
tions (i.e. polynomial ratios) can be writFen as
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B2,n'® = o T (B77)
-z
: _ e
B3'n(C) -

2 :
“lgk (2)]

Let us make a pole expansion of these rational functions where
Bj,n has the poles for g = 1 and B2 ,n and B3 n both have poles
for g = 2, Note that B1,n has the form cn-T'divided by a poly-
nomial of degree n. B2,pn has the form ¢n divided by a polynom-
ial of degree n + 1. B3 has the form zn-1l divided by a poly-
nomial of degree n + 1. Slnce n > 1 then B] p and B, n are zero

for £ » 0 while B3 p is a constant (for n = ) or zero (for
n > 2) for g + 0. Thus there are no poles at s = 0 (consistent
with physical requirements). For s + « all three rational func-

tions go to zero; thus there are no poles at s = » and no con-
stant terms in the expansions.

Using the rational functions Ci,n, C2,n, and C3, n we can
then write our pole expansions around the sy = sq,n,n' simple
zeros of the C functions. Since the number of zeros of a poly-
nomial is equal to the degree of the polynomial then for g =1
we have n values for sy and for g = 2 we have n + 1 values of sy.
Define o

A(b) = largest integer < b (B78)

Then we have a range for our index n' as

for g =1
—A(%) < n' < A[%) with n' # 0 ifrn is even | o
o (B79)
for g = 2 '
) \
—X(E%l) < n' < A(Btl) with n' # 0 if n is odd

2

For the sy we then automatically have the convenient relation o
possible between n' and -n' indices as




S = 8
q,n,-n' q,n:n'

Im[?l,n,O] = 0 for n odd (B80)

Im[szln'O] 0 for n even

It is knownld that the zeros of k, lie approximately on an arc
in the left half of the s plane joining sa/c = -in to sa/c = +in
and passing through sa/c = -.66n. The zeros of [zkp(Z)]' behave
similarly. Then a convenient way to identify the sy with spe-
cific n' is to start with the most negative value of n' from
equations B79 and assign it to the sy with the most negative
Im[sq] and progressively work up to the most positive Im[sy].

Thus our pole expansions may be written as

n &
A (3) 5
!
Bl,n('sci) = Z . -s-—i]’_n—r;n_n'— with n' # 0 if n is even
vy (i r 1ty
n'=-x(3)
L ]
ATE n+l
& ) M) D
B, (%)= %‘;with n' # 0 if n is odd o
' |=_A(n+l) Z,n,n' (881)
2
!
n+l
A (=57 5
, ' .
By (B)= X 2D ithn' # 0 if n is odd
r i n+l 2,n,n'
] n ——A(—i— . i
where
-1
=cl{d_ =5
P1,n,n _aLK CLn(m] a_Dlﬂh—n'
’ C=Sl,n,n‘E
1 \
cld - = )
- DZin,n' E[EE,CZ,tscq & a"DZ,n,-n'
C=S2,n,n'5
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, -1 -1 (B82)
_cld _c d
D3'n'n. —a[a"‘c C3,H(C)] a—‘é"[C d—(: CZ]'“] o
“=S2,n,n'c *=%2,n,n'c
- ! c
=D = D
3,!'1,"1’1' 52"n'n|a 2,1’1,1’1'

To see that the poles must be simple poles note that the zeros
of the C functions are all simple zeros because they are the
zeros of kp(Z) and [tkp(Z)]'. Observe the differential equation
for the spherical Bessel functions isl®

(2]) "

2 (2)
[ 8

() + 25f

(@) - e 1£M ) = o (B83)

Suppose § has a zero at g # 0. Then since fp is analytic at
this zero we can write a convergent power series expansion in a
neighborhood of ¢ = Zo. If the zero is higher than first order,
say (£ - fo)2, then both f, and fj are zero at o, but this
forces fp to also be zero at o so the zero had to be at least
( - Zo)3 as the leading term in the power series. Then divide
through by ¢ - Zo, but fp and fp are still zero making fp still
zero. This process continues to make all terms in the power
series zero and the function then identically zero. Thus the
zeros are all simple for r # 0. Similarly zkp(Z) satisfies the
Riccati~Bessel equationl?®

2 -

4 (2) " (2) . .
—— (£ (z) - zf (z) =20 (B84)
C2+n(n+l)[ n ] n

Differentiating gives a differential equation for [zknlZz)i' as

n

—7—‘52—[&(“ (0] +2ERE fe (1 )] - el (@] T =0

Z°+n(n+1) [c2+n(n+1)]

(B85)

Clearing the denominators this egquation has the same form as
equation B83 and so for ¢ # 0 all zeros must be simple. There-
fore the perfectly conducting sphere has only simple poles in
its surface current density and surface charge density response
functions. '

To see some of the numbers we can write out the first few
terms, say for n = 1, from
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) ‘ 1,1
C
C A=._3.Li=—.];[cz+c+l]
d _ d - -2 d_ — o
: atC1,1=tr Flai=7t*t . gl 721

From these results we can construct a table allowing q = 3 for
the surface charge density as

i : a a ,
d 7 n squrnlc c qulrnl
1 0 -1 1
. 1 . V3 I )
2 ! ) 2 "' %
3 1 -% + i lg -i Zg
. (like g=2) (like g=2)
Cﬁ. Table Bl. Pole expansion terms for n =1

If one wishes these natural frequencies and D coefficients can
be generated to obtain any number of terms in the expansions.

For n = 1, 2, 3 the zeros of the Cq,n polynomials can be
found from formulas for the zeros of up to quartic polynomials.l®
There is disagreement in a few cases of the natural frequencies
with the numbers in Stratton.l7 However, the present results
appear to be more accurate and are confirmed by Dr. Marin (pri-
vate communication). The zeros have been substituted in the
polynomials to check that in fact the results are closest to the
true zeros to the number of places listed., Figure B2 shows the
positions in the complex sa/c plane (normalized s plane). The
division of the natural frequencies into g = 1 and q = 2 varie-
ties has a physical basis in that only the g = 2 poles contrib-
ute to the surface charge density. Another way to view this is
from a property of the vector spherical harmonics as

Vo x G o000 =V x vy o (8,4)] =3
- o o . (B87)
T Vg B e,y = Ve IV x 8y (8,0)]] =0 )
@
§ 98 e




COMPLEX PLANE o i =2
sa _ Qo . wa
- = c + i
2,3,2 T 13
X
2,2,I T i2
n,(g,l g
a, INDICESI 230 12 T
Qa
* o]
Qo INDlCES |131° 21210 "I)O —
R T |
& B o 2'3|-| l,2,-l 2,|,-|
a_ INDICES x . © A
® NATURAL FREQUENCIES har 2,2,-1
FOR q = | X )
— NO SURFACE CHARGE DENSITY 1 -i2
x NATURAL FREQUENCIES
FOR q=2 2,3,-2
X
-i3
q,n,n' IS THE INDEX SET
FOR THE NATURAL FREQUENCIES.
NATURAL FREQUENCIES ARE
SHOWN FOR n = I,2,3.
ALL POLES ARE SIMPLE.

&
FIGURE B2. NATURAL FREQUENCIES OF THE PERFECTLY
CONDUCTING SPHERE FOR USE WITH EXTERIOR
~ INCIDENT WAVE
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. ral modes are readily identified in_equatien B68 as

g.,n,n
1 1 0 -1
. 2 l 1 ,'--‘500 +;i.866

1 2 1 -1.500 + i.866
2 2 1 ~-,702 + i1.807

0 ~1,596
1 3 1 -1.839 + il.754

‘ 0 ~-2.322

~.843 + i2.758
-2.157 + i.871

[l 3N

Table B2. ©Natural frequencies for n =1, 2, 3

from which we can divide the surface current density into solen-
oidal terms (precisely g = 1) and irrotational terms (precisely
q = 2). (See ref. 6 for more elaboration of this point in the
general case.) However, the n, n' division may not give the
best indexing. Referring to figure B2 there are various possi-
ble paths through the complex s plane which one might trace to
connect poles with the same g index. For a given n (and q)
there are many modal distributions generated by varying m and J,
all applying to the entire set of natural frequencies generated
by varying n'. This is a very degenerate situation in both nat-
ural frequencies and modes. Perhaps more insight into the divi-
sion of the indices for the natural frequencies and modes can be
gained from a group theory investigation of the symmetry proper-
ties. - Symmetry planes and axes can be used to divide up natural
modes, and thereby natural frequencies as well. A diagram as in
figure B2 is useful in that it can suggest ways of grouping nat- _
ural frequencies, even for objects more complex than a perfectly
conducting sphere. Note that the pattern of the natural fre-
quencies tends to f£ill up the left half of the s plane. This
two dimensional pole distribution may be associated with the
distributed nature of the body; we are dealing with surface cur-
rent and charge densities. For cases that the currents are
idealized as on one dimensional paths then the pole distribution
should be much less dense and localized to "discrete paths" in
the complex s plane; in any event there would be one less index

_needed and not say n and m both for the modes or perhaps not n

and n' both for the frequencies.

Next we consider the natural modes of the sphere. This is
the part of the singularity expansion where the object coordi-
nates are expressed., For the surface current density the natu-
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Ua (r ) Uqrnrmrc(r )
-
Rn,m,c(e"¢') for g = 1
=9, 7 ’ (B88)
Qn’m’d(e',¢') for g = 2

Furthermore the surface charge density natural modes are readily
identified in equation B69 as :

(p_) (o)
Vg (r') = vq,n,m,d(r')
0 for g =1 ,
= (B89)
1 1 —
Yn,m,c(e ") for g = 2

Thus for the surface charge density we can drop the g index in
the summation understanding that only g = 2 is used for the nat-
ural frequencies and-modes. Back in equation 2.27 we observed a
relation between the natural modes for the surface current den-
sity and surface charge density as

(p.) NEAEN
v o= —a V' -V, S (z") (B90)

<+

o

where a, is an arbitrary constant depending on how one has de-
fined the natural modes since the modes can be multiplied by any
non zero complex constant. For the sphere problem we can write
this in terms of the divergence on the unit sphere as

(p.) a (3.)
Vg ST o= -2 v v (r') (B91)

Now we have

T8 R0 01810 =T 1T % By (@t 50
| | o , : DT (B92)
vl (01,6 =V Py (6,40

U;S, n,m,c




so that only g = 2 natural modes have non zero surface charge
density. From the fact that the E functions defined in equation
B34 satisfy the scalar wave equation as in equation B35, then
noting that from the separation equation for the radial functions
in spherical coordinates as

v

L L e M ym) - [v2+ 2 D () 2 o (B93)
2 dr 2 n
r r
equation B35 can then be written as
_ 2254 (2) >
0= [Vo=y ]un,m,c(yr)
o220 008) e
= [Vo-y7I£ " (yo) ¥ o 5 (8,9)
_ n(n+l) (1) ‘ (L) 2 '
= r2 fn (Yr)Yn’m,0(9,¢) + fn ‘(Yr)V Yn,m,c(e’¢) (B24)
frpm which we find
2
® = |
Ve 6n,m, 19") v Yn,m, ¢’
= -n(n+l)Yn,m,G(8',¢’) (B95)
Thus we have
a = a =n(n+l)a | (B96)

« n

where only g 2 is relevant.

Hav1ng the modes we now only need the coupling coeff1c1ents,
these are everything that remains in equations B68 and B69.
Since the poles are all simple the basic equations we are match-
ing come from equatlons 2.34 giving the plane wave response
functions as

".::“\ o
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13 st 2 & &
ﬁp SEe=e L LY T 2 [cq,n,n',m,o,p(°1'¢1’

g=1l n=1 m=0 o=e,0 0= (n+gz-l)
n'#0 for n+q odd
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(J.) B
v S (9';¢')—:;—£———4]
: q,n,n':
(B97)
(n+1]

ﬁ;ps)(;.,s)=e OZ Z Z Z [_____c_'?_

n=1 m=0 o=e,0 n+ly d-ne.n° D
n'=-1 (")
n'#0 for n odd
(p ) 1
] )
2 n,n',m,o p( 1'¢1) 2, n m, c(e ' )s-s

2,n,n']
A R :
The coupling coefflclents are then for q = 1, 2

= a-1,
cq,n,n',m,o,p(el'?l) ( 1 q,n m, o,p q,n,n'

R RPN

a' ‘for q l, p=

n,m,dg q,n,n'

]
= bn m, ch,n n'

!
bn m, o qg,n,n'

for q l, p= .(398)

for g=2, p =

W N W N

)
an m, o qg,n,n'

for g = 2, p =
The D coefficients are evaluated from equations B82 and a few
are listed in table Bl. The ay and by coefficients are found
explicitly in equations B56. Note that the surface charge den-
sity expansion uses only q = 2 for the cyq and the Dg. While we
can calculate D3,n,n' as well it is simply D2,n,n' c/(s2,n,n'a);
using the results for ag with this and the n(n + 1) coefficient
in equation B70 for the surface charge density one can see that
the same answer for the surface charge den51ty expansion results,
thereby giving a check.

Equations B97 then explicitly give the singularity expan-
sion for the surface current and charge densities. The natural
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frequencies are the zeros of the Cy in equation B76; the natural
modes are in equations B88 and B89; the ay are given by equation
B96; the turn-on time tg is given in equation B75; the coupling
coefficients are given by equation B98 together with equations
B82 and B56.

Now that we have the singularity expansions for the delta
function response functions we can consider arbitrary waveforms
by taking their Laplace transforms and splitting the response
into a part associated with the singularities of the perfectly
conducting sphere and a part associated with the waveform singu-
larities as developed in section II. For convenience let the
incident wave be a step function. Then from equations 2.43 the
surface current density expansion is

3, £(3) (3
v, S (r',s) =V, T (Es) 4V T (Eys)
A" (o]

;(ES) . -Sto _';(35) >,
Vp (r',s) = S Up (r',0)

W

¢ -

. , A (2rgLy (B99)
~ (T ) -st © n
>'Tg! >, o 1
v (r',s) =e L——————-
Po g=1 nz:l mz——-:o 0’-'—';,0 Z 1 Sqlnln'

n'=-x(ﬂ‘§'—)

n'#0 for n+gq odd

(3 )
>'"s ' ' 1l
(84,90 (8',¢ )—————————]

C
q,n,n',m,0,p qg,n,m,0 S‘Sq’n’n|

and from equations 2.50 the surface charge density step response
is written as

pl) Lel) e
v_ S (r',s) =V S (r',s) +V S (?',s)
P Py, °
(py) o _(og) , '
¥ % (r',s) = u_ % (¥',0) ‘
Py, s P
| (B100)
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n=1 m=0 o e,o n'=_l[n;l) 2,n,n,an

n'#0 for n odd

" . (pg) Y 1
c \Y S YYY——
: 2,n,n',m,o,p( l’¢l) 2,n,m,0( r9 )S-SZ,n,n'}
The static surface current density response is
> >

5 (J.) 2(J.)

-+ s’ >, - - s >, . R e

U, (r',0) =Ug (r') [elXep]

1 ,
- .
= A R 8! ! B10
mz=:0 ge,0 llllmlo'lp. llmlc( ¢ ( b
where for m = 0, 1 we have
@
L _3 = . _
37 €3°9,q,0 forp=2
A e =
llllml P _:i = 2 —
o 5 €5 Ql,m,o for p = 3
_ _i > -> .2 ;

from which the dyadic surface current density static response
function can be written as

H

(=32

(3.)
LTE =Y T -

m=0 o=e,0

N W

> 1 1 = 1 1
Rl,m,o.(e I¢ )Ql,m,O'(e I¢ )

Nojw

- ' = O[_

> 1
Ry,0,0(8" 19 )51,0,0(61'91)
U e' .

oW

R 13 L.
Rl,l'o_(e',d) )Ql’l'o_(el,d)l)] (B103)
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With the direction of the static magnetic field (which is el X
6’ for our plane wave problem) dot multiplied on the right we
& ogtaln the static surface current density response. The static
surface charge density is

(p.) (o) . |
~ s >, - 5] > L2
UP (r',0) ‘US (r") ep
55
‘ = 2A 8',o") (B104)
. L U;Z: 2,1l,m,0,p l m, o

where for m = 0, 1 we have

>
32, . 51,m,o‘91'¢1) for p = 2
A =
2,1l,m,0,p > A =
. _ 3e3 Ql,m,q(el'¢l) for p = 3
L > ,
- 3ep Ql,m,O(el'¢l) (BlOS)

_ from which the vector surface charge density response function
ﬂ‘ can be written as
Cor g

ol

(pg) 1 S
il E D, 3Y, 1om,o 8 808y L (8,6

m=0 o=e, (o}

— ) | ] ] = . L ¥ = ]
=e,0

Dot multiplying this by gp (the direction of the static electric
field in our plane wave problem) gives the static charge density
response. Thus for the perfectly conducting sphere the plane

wave delta function response can be converted to the plane wave
step function response of both surface current and charge densi-

ties by multiplying each term by l/s ,n,n' and adding a static
S term (consisting of a few simple known functlons) with a unit
- step function turning on at time to.

This basically completes the singularity expansion of the

r response of a perfectly conducting sphere to an incident plane
: wave for simple waveforms. As long as the incident waveform can =

be expressed only in terms of poles the delta function response

‘ as in equations B97 can be combined with the waveform poles and
i??‘ through partial fraction expansion as discussed in section 2
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the response can be split into a waveform part and an object
part. Also as discussed in section II the time domain response
is easily and directly obtained from the pole expansion since
the frequency dependence of the coupling coefficients factors
out as a common delay term e~Sto, For the case of the step
function response the Laplace form as in equations B99 and B100
can be immediately converted to time domain using equations 2.64
and 2.65 respectively since the poles are zall simple poles.

Note also that the natural mode functions are real and the agy
are also real; both of these can then be moved out (together
with c¢) from the Re function in equations 2.64 and 2.65 leaving
only the natural frequencies, coupling coefficients and oscilla-
tory exponentials for n' > 0 as the only complex terms inside
the Re function. Of course the cy coupling coefficients can be
written in the form an,m,oDa or bn,m,oDa and only the Dg coef-
ficients are complex.

As an example of the time domain response consider just a
few terms in the step function response, say for p =2, n= 1,
$1 = 0, and 01 = m/2 so that we have a vertically polarlzed wave
propagating parallel to the x axis. Then we have

(3.) (3
ﬁzts (r',t)==ﬁs S (x) ceju(t-t )
‘ (3 ) Q (t=t )
.1 T +'Ug ' ' 1,1,0 o
* 57 1 S1,1,0,1,0,2(200% 1,1,008 8" )e ult-ty)
14 4
(t-t ) (3 )
1 2 1,1 s
14 4
Q. 5 L (t-t ) '
2;1,1 o)
e “f u(t-toﬂ+ 2: .
: n>1 _ ,
- : : , . : (B107)
(p_.) (p_)
v, © (Ef,t)==ﬁs ST (E) -ézu(t-to)

iw (-t )71 ()
c s 2,1,1 o) s v o
Re[;i‘“‘“; °2,1,1,0,e,2(370)e ]BZ,I,O,e(e 1ot
2,1,1 ‘

(tt).

ou(t—to)]-+ 2:

n>1

Q2 1,1
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where the last terms indicate the remainder terms. Writing
these out we have

(T',t) =~

8| w

-> v oo a
Ry 1 o8 ,¢')u(t'+—5}

_(S_t..+]_

3. (g4 a a
+2Rl,1,o(6 ,0")e u(t+c)

. V3ot l,ct
1—={—+ -+
R o PRI (e N

-1 Y2

3

>

n>1

These can be summarized as

PO _ R L. b

* ct

(3_) [ - -—+.L)]

' s’ > 33 a a
Vy ~ (X',0) =-5Ry 4 (8", 11-e u(t+3)

] sin(—/—g—(%+ 1))u[t+%} + Z

n>1
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n>1

For reference we have

Ry 1,0(8'46") = —cos(¢")&) + cos(8')sin(e")Ey

>

GRS CANE A

-sin(8')cos ($*) &} (B110)

cos(8")

¥1,0,ef0"r0")

For comparison to these results for the step response of a

‘sphere one can consider the numerical results for the step re-

sponse graphed in another note.2l Ccnsider the case in that
note that the perfectly conducting plane is infinitely far away
from the perfectly conducting sphere. Note that the basic ring-
ing period agrees closely with 47//3 (in units of ct/a) and that
in one period_the amplitude of the ringing decays by approxi-
mately e-27m/V3 and that even the coefficients of the ringing
terms in equations B109 and B1ll0 give about the correct ampli-
tudes for the oscillations. In the referenced note only the
total current crossing the equator 6' = w/2 is considered, and
so the comparison has to neglect the first term in equation B109
which gives no contribution in this case. Note that for times
-a/c < t < a/c we do not expect the first terms only to accu-
rately describe the surface current and charge densities because
the terms for n > 1 have not had a chance to decay to zero ampli-
tude. Even so, the first few terms give a simple description
with some features of the surface current and charge densities
even at such early times. As time goes on the first few terms
asymptotically give the exact results.
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