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ABSTRACT

The development of a system of integral equations for a system
of thin conducting wires in an arbitrary geometry is outlined. These
equations are then applied to a set of two perpendicular intersecting
wires. '

FOREWORD

For convenience the figures used in the development of the theory are
included in the text. Figures showing results of the parameter study
are grouped together at the end of the report. We should like to
thank Dr. Carl Baum and Capt. P. R, Barnes for helpful suggestions and
discussions concerning this work. To Mr. T. H. Shumpert and Mr. B. D.
Graves we express our appreciation for their help in the numerical
calculations and preparation of the final report.



1. Introduction

The theoretical study of certain classes of electromagnetic problems
has become feasible with the development of high speed computing techniques.
Various forms of integral equations have been developed for the study of

- electric currents induced on arbitrary configurations of thin conducting
wires by incident electric fields. The development of one such set—-
Hallen's-—is outlined here and follows work previously reported [1,2]. In
general, an N-wire éystem will have N coupled integral equations associated
with it, and, if the wires physically intersect, there will be two
additional constraints; the continuity of the scalar potential at the

junctions and the Kirchhoff current law.
2. The Integral Equations

The well-known equations for the tangential component of the vector

potential and the scalar potential at a point S on the conductor are

ag(s) = Yo fx(s') 8'+8 6(s,8') ds' (1)
47 ‘
L
$(s) = 1 /A(s» G(s,5") ds' (2)
lmeo
L

where G(S,S') is the usual Green's function and I(S') and A(S') the linear
current and charge densities, respectively. With the equation of continuity

and an assumed harmonic time dependence, frequency w, the ¢ equation becomes



o(s) = 3% d1(s') ¢¢s,s') ds' 3)
4k ds'

th

For an N wire system, the scalar potential on the n~ wire becomes

. d 1(s))
6,(8,) = 3% Eﬁs G(Sy,80) — o' (4)
4k d S'

The tangential component of the total electric field at the surface
of the conductor is set equal to zero, i.e.

Bs (8, + Egn (s =0 | (5)

where Eé (Sn) is the incident field and Eg (Sn) is the scattered field.
n n

The E field in terms of ¢ and K becomes

_E: (59) = - 5= 0(Sp) - Ju hs_ (5 (6)
n n

The definition of ¢n(Sn) as

Sn
2
2, Gn) = -3 K f ds; ¢,(s)) : )

0

allows one to work with a set of integral equations (rather than integro-

differential equations) and in the form

a2 2
n o4 k2<p k2 [@n - Ag_ (sn)) -3 -k-&’- Eé (s.) (8)

a s?
n



The formal solution of (8) is

(Pn(Sn) C, cos k Sn + Dn sin kal

n ol
+ kj d s |2, () - ASn (S;l)] sin k(5,-S})

0

ik O ds' EX  (s') sin k(S.-5') 9)
J T n Sn n n"n

o)

The integral equations resulting from (9) are

m

- fd S5 I.(S1) T (8,,55) = C! cos k S_ + D! sin k S
Lm

n

S
- _gn/‘ as! Eén (51) sin k(S,-S!) (10)
0

In this derivation it is assumed that the wires have free ends such that

I,(0) = Im(Lm) 0. The Il term is

s
A A n
(S4°5,) G(S,80) - f d s! cos k(S,-SD¥(S,,85)  (11)

0

TI(s,,80)
and

| ? ~ A
¥(S),S0) = 36(3?’%) + 651,500 2o (5,80
as!

~ A a ' . .
+ (s!1-S!) o O(Sar5p) (12)



The N-wire system to be considered is one in which there is a single common
intersection point. This point of intersection is chosen to be the origin

of the coordinate system. The two boundary conditions become

N
lim I [In +6) - I (-5)] =0 (13)
&0 n=1 '
$;(0) = ¢,(0) n= (2, ——, N) (14)

From equations (7) and (9), the ¢ boundary condition implies

D; =D (n=2, ——, N) (15)

n

3. The Two Wire System

The integral equations (l10) are now applied to a two wire system
aligned as shown in Figure 1, where wire 1 refers to that along the y-

axis and wire 2 to that along the x-axis.

@

Figure 1
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For this system

: ]
1! 1,

f dy' L, s") I (v,3") +/ dx' I,(x") IT (y,x")

y
=Cjcosky+D sinky-j am / dy' gl (y') sin k(y-y")
4 0 y
(16a)
]
1 1,

1
| /' dy' I, 3" IT (x,5") + / dx' I,(x") II (x,x")

-1, -1
x
= C, cos kx + D1 sin kx - j -21 dx' Ei (x') sin k(x-x') (16b)
0
and
2 2
Mna,y" = P [‘jk y-5')® + al] (17a)
Sy + al
_ _w1)2 2
Mex,x') = P [j‘“@ R ] ' (17b)

\/(x-x')2 + a%



y d G(y',x")
11(y,x") = -/ dy' cos k(y-y') — 7
0
X ' '
MNx,y") = —f dx' cos k(x-x"') g—Gé—x—'-!L)-
M
0
where
Gly',x") = &P [‘jk%"z A af]
v/;'z + y'2 + a%
G(x',y') = exp [—jkA'z + y'2 + ag]

Sx'2 4+ y'2 4 a%

and a; and a, are the radii of wires 1 and 2, respectively.

(17¢)

(174)

(18a)

(18b)

The remaining undefined terms in (16a) and (16b) are the integrals

involving the incident electric field. For a single incoming plane wave

directed toward the origin from the z > 0 space and in the (8,¢) direction

- these are the usual polar angles - there are two polarizations to be

>
considered. These are the E and H polarizations; E in the x,y plane and

>
H in the x,y plane, respectively. Figures 2 and 3 indicate the choice

of phase angles for the two polarization states.



E Polarization

Figure 2

H Polarization

Figure 3



For E polarization

Ei(x') = E cos (¢ + m/2) exp -j k sin 6 cos ¢ x{] (19a)

E;(y') = E sin (¢ + 7/2) exp |j k sin 6 sin ¢ y'} (19b)

)

and for H polarization

- . -

Ei(x') =E sin (0 + m/2) cos ¢ exp | j k sin 6 cos ¢ x' (20a)

- -

-y

E;(y') =E sin (0 + 7/2) sin ¢ exp | j k sin O sin ¢ y' (20b)

=3 —d

This completes the definition of all terms in (l6a) and (16b).
4. Numerical Results .

In the actual analysis of the behavior of structures, the incoming
plane wave of interest is considered to be composed of a symmetric portion
and an antisymmetric portion whose sum reproduces the single incoming
wave, The analysis is thus presented in terms of four cases: E-polarizationm,

symmetric and antisymmetric; H-polarization, symmetric and antisymmetric (see

1 y
Figures 4 and 5). E symmetric 5
¢ X
-
E antisymmetric
Figure 4
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E antisymmetric

>
E symmetric X

Figure 5

The treatment of a single incoming plane wave, amplitude E, at arbitrary
angles of incidence (6,¢) and arbitrary polarization proceeds in the
following way. First, the E vector of the incoming wave is resolved into
a component in the x,y plane (E-pol.) and a component perpendicular to

X and the just defined E-polarization part. This now defines an E-polari-
zation incoming wave, amplitude EE’ and an H-polarization incoming wave,
amplitude Ey. Each of these waves is now resolved into symmetric and
antisymmetric'parts, each having magnitude Eg/2 for E-polarization and
EH/2 for H-polarization. Numerical results are presented in the form of
currents and linear charge densities normalized by 21y and E, where E;

is the amplitude of a single incoming wave and would be equal to EE/Z or
EH/Z as the case may be. Thus for E-polarization the exciting field along
wire 2 due to two incident waves (one at 6,¢;.the other at 0,m-¢) and

each having amplitude E, becomes

10



E; (x') = E, cos (¢ + m/2) exp [j kx' sin 6 cos é]

+ E, cos A exp [j kx' sin 6 cos (m - qb)]

and the symmetric and antisymmetric fields will be given by setting
A=m/2-¢ and A = 31/2 - ¢ in that order. The remaining field
expressions (E-pol. on wire 1 and H-pol. on both wires) can be derived
in a similar manner.

In the next section a specific numerical example is discussed that
exhibits the manner in which the graphs can be used.

The numerical analysis is based on assuming the currents to be piece-
wise constant within a given zone of the structure. There results from
this assumption a series of linear equations. The matrix form of the
equations is

IF =T
where F is a column matrix whose elements are the current magnitudes in
the various zones and the C,'s and D,'s. Most of the elements of the
(square) Il matrix are derived from the integral expressions of the left
side of (16a) and (16b) and I' is a column matrix determined by the integrals

in (16a) and (16b) containing the incident field expressions.
5. Graphical Presentation

The reference case on which a great deal of information is plotted is

1/1; = 0.5, 21,/(1;+1}) = 1.0, 21,/a = 20.0.
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This case is run for values of klz from 0.1 to 5.0 and for normal incidence.
For any problem with normal incidence, E-polarization refers to excitation
of wire 1 by the incoming wave while H-polarization referskto excitation
of wire 2 by the incoming wave. Since wire 2 is always crossed at its
mid-point by wire 1, for H—polariéation there will be current only on wire
2. As further study shﬁws in the case li/l1 = 1,0, there is complete
uncoupling of the two elements for these polarizationms.

All curves are for incoming plane waves of amplitude Eo v/m. For
normal incidence there are two waves as in every angle case, and the rules
of section 4 must be followed to determine the effects of a single plane

wave noting E antisymmetric and H symmetric currents are always zero for

normal incidence. Figures (7-16) represent the currents on different parts

of the structure as functions of kl, for the reference case. To exhibit
explicitly the manner in which these curves should be used, suppose one
wishes to determine the junction current on wire 2 for kl2 = 1,15 and a
single incoming plane wave of amplitude 1 v/m and E-polarization. This
incoming plane wave will be formed by aﬁ E symmetric part, amplitude 0.5 v/m,
and an E antisymmetric part, amplitude 0.5 v/m. From Figure 7, the magnitude
of I/(212Eo) is 0.0117 amperes/volt énd the phase is zero. Thus, for a
structure of unit length (212 = lm) and E, = OfS v/m, the complex current
due to the symmetric wave is (5.85 + j 0) x 10-3 amps and the complex
current due to the antisymmetric wave is zero. Therefore the complex
junction current on wire 2 for a plane wave, E-polarization, E = 1 v/m, is
(5.85 + j 0) ma. Figure 8 represents the magnitude and phase of the complex

current on wire 2 at a position one-third of the way from the junction to
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theAend»of wire 2. Other locations are similarly defined. Figures (17-22)
represent the linear charge densities, A (coulombs/meter), on various parts
of the structure as a function of kl2 for the reference case.

‘Figures (23-26) fall into a category different from others in fhis
report. These curves are time hisgories of junction currents on the
structure as functions of ct/2l,. These are the result of a Fourier in-
version of the frequency spectrum assuming an incoming pulse of the form

-t

E(t) = E, U(t) e o = 0.1/sec

where U(t) is the unit step function defined by

U(t) =0 t<o0

U(t) =1 t>0

The pulse of interest is the step function but for mathematical convenience
a slowly decreasing exponential is included in this definition. 1In the
case of these time histories, the value of 212 is defined to be unit
magnitude. Thus Figures (7—26) refer to the reference case.

Figures (27-28) exhibit the resonant length variations as the crossing
‘point location varies from an approximate T-structure (li/l1 = 0.1) to
crossing at the geometric center (li/l1 = 1,0). In these figures the
resonant length is defined as the value of kl, at which the largest magnitude
of the junction currents occurs. Figures (29-30) show the manner in which
the magnitudes of the junction currents evaluated at their resonant frequencies

- vary as li/l1 varies. For example, on Figure 29 the value for IRES/ZI2 E,

at 1i/11 = 0.5 is determined from the magnitude curve on Figure 7. Figures

13



(31-32) illustrate the dependence of the maximum junction currents in time
[=IMAx(t)] on lilll, as determined from figures such as Figure 23.

Figures (33-34) demonstrate the behavior of the resonant linear charge
densities (XRES) - where ARES/212Eo is determined by observing the peak
values on curves such as Figure 18 - as functions of 1i/11‘ Figures (35-36)
signify those values of kl, - called resonant length (1) - at which ARES
occurs vérsus lilll' Note that resonant length always refers to values of
k12 aﬁ which junction currents are maximum, while resonant length ()\) refers
to values of k12 for which linear charge densities are maximum. Thus Figures
(37-40) present variations of resonant length and resonant length (A) as
212/(1i+11) varies from 0.5 up to 1.2. ‘Figures (41-43) show IRES and XRES
variations as functions of 212/(1i+11), while Figures (44-48) display varia-
tions of IMAX(t) and AMAX(t) - the maximum linear charge density in time -
as functions of the same variable.

Figures (49-56) display currents at various points on the structure
for the different polarizations at non-normal incidence. Figures (57-59)
clearly exhibit the effects of the thin wire approximations as the radius
of the wires changes. Figures (60-62) display the behavior of the system
when wires having different radii are considered, a; referring to the radius
of wire i. Notice there are no curves for H-polarization as al/a2 varies -
this is because the current remained constant on wire 2 since a, was held
constant and a; accounted for the varying ratio, a1/a2.

While an exhaustive study of zone size has not been run on the crossed-
wire problem, certain data are of interest. In Figure 29, Iggg for H-
polarization provides useful information on this question. IRES(H—pol.)

should be independent of 1{/11 due to geometric considerations. Due to the

numerical techniques used in solving this problem, the number of zones on wire 2

14
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varies (in this figure) from 38 for 11/11 = 0.8 to 62 for li/l1 = 0.5, 1.0.
Notice that IRES/ZIZEo has the value (22.7 * .2) x 1073 amperes/volt for
all values of lilll‘ It is also of interest to note the ARES(H—pol.) varia-
tions on Figure 33. Again this should be a straight line but due to the
manner in which the charge density is determined and zoning variations, omne
must conclude that the charge densities are not as gdod as the currents
calculated. Figure 34 also points out the sensitivity of charge density
calculations - on wire 1 (y > 0) calculations, the number of zones varies
from 31 for li/l1 = 1,0 to 5 for li/l1 = 0.1. It must be observed that the
size of the zones does not vary neariy this much as a function of 1i/11

- the zbne size goes only from 0.01667 to 0.02778.

In a separate but related investigation on a single linear antenna
(212/a = 20), the number of zones on the structure was varied from 20 to 80
and currents induced on the structure by a normally incident plane were
calculated. This study showed that over 807 of the length of the antenna
the current values calculated for 40 and 80 zones were the same to within
7% toward the ends of the antenna and within 47 at the center of the antenna.
It has been shown that the use of an axial current that is independent of
the actual cross-sectional distribution of current provides accurate results
as 1qng as the point of interest is not within five (5) radii of the end
of the structure [3]. In the crossed wire program the minimum number of
zones on a given wire (1 or 2) was 38. However, the effects of intersecting
wires and numbers of zones on each side of the intersection may well be

more important than the total number of zones on the wire.
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