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Abstract

Computer techniques for solving electromagnetic radiation and scatter-
ing problems in the resonance region employing the thin-wire electric-field
integral equation are discussed and demonstrated. The versatility and wide
applicability of this approach for electromagnetic computer modeling are
emphasized, and numerous sample results are presented to illustrate the
method's accuracy and utility. Special attention is alsoc devoted to eval-
uation of current and charge distributions on the structure and the near
fields which result.
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I. Introduction

Tremendous strides have been made in recent years in adapting the
rapidly growing computer technology toward solving electromagnetic prob-
lems of increased scope and complexity. Computer-aided solutions are now
possible for many problems of practical interest which have resisted
reduction to classically sought closed-form solution.

This paper is devoted to providing some insight into the power and
value of computer techniques, and the diverse nature and scope of the
electromagnetic problems toward which these methods are applicable. S;nce
the computer revolution embraces nearly the entire electromagnetics spec-
trum, a subject much too broad to be examined in one paper, we shall
restrict our attention to scattering and rasdiation analysis in the resonance
region where analytical solutions are generally unavailable. Our attention
will further be focussed on an area which has profoundly benefited from the
digital computer, the integral equation formulation. Finally, our discussion
will be devoted to one method or approach -- the thin-wire version of the
electric~field integral equation.

This rather parochial viewpoint is taken so that the limited detail
associated with broad coverage may be replaced by an indepth presentation
which will convey the power and flexibility of such computer oriented methods.
At the same {time, the limitations of this kind of analysis can be more fully
stated so as not to mislead the reader as to its capabilities. This presen~-
tation then is not so much a review paper as it is a concise picture of the
important role of computer modeling in electromagnetics.

IX. Theoretical Foundation

Since our primary concern here is the computer implementation of a
numerical procedure and its typical applications rather than the accompany-
ing theoretical preliminaries, we shall just outline the derivation of the
integral equation used in the numerical modeling procedure. The formulation
requires an integral relationship between the to-be-determined induced sources
associated with an object and their resulting (secondary) fields. By evalu-
ating the secondary field over a region where the total field behavior is
known via boundary relations or continuity conditions, we are able to relate
the unknown sources to the driving (primary) field which causes them. This
leads to an Integral equation for the unknown source distribution in terms
of the specified primary field.

The starting point of our analysis is the thin-wire version of the electric
field integral equation given by
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where 8(r) is a unit tangent vector at r, F° is the primary field, I is
the current, C(r) is the structure geometry and is here used to imply an
integration over all structures wires,»k—wVﬁEEE_is the wave number with
an_assumed exp (iwt) time varlatlon, and s~ is a length varisble along
¢(r). The function g(r,r”) is the free space Greens function

(exp (~1k[r-r )/ |z-r~ I) specialized to the thin wire geometry; i.e., the
observation point r is assumed to be on the wire surface and the source
point 5 on the wire axis (see Figure 1). In this way, the singularity
in g(r,r”")is never encountered.

This particuler thin-wire integral equation has been chosen for the
analysis of wire structures because: 1) is easily applicable to general
geometries (or C(r) ), 2) it maintains accuracy for small wire radius/
wavelength values, and 3) the required current integration is_analytically
possible for certain types of current variation. Note that B is arbitrary
and may be due to an incident plane wave (in which case the structure's
scattering characteristics are obtained) or due to localized excitation
(from which the radiation properties of the structure as an antenna are
derived). .

An approximate solution for I(s”) in (1) can be obtained by reducing
the integral equation to an N'B order system of linear equations in which
the N unknowns are sampled»values of the structure currents. The N equa-
tions are generated by enforcing the intggral'equation at N points (wire
segments) on the structure (N values of r)., The coefficients in these
equations are interpretable as mutual impedances and are dependent on
structure geometry (see Appendix A). While there are many methods for
accomplishing this reduction of the integral equation to a linear system
(representable in matrix form), they differ only in detail and the compu-
tational effort reguired to obtain the matrix elements. Common to all
such methods are the representation of the current in terms of its sampled
values; a matching of the integral equatlon over the structure in some
prescrlbed fashion; the numerical calculation of the N2 "mutual impedance"
coefficients; and subsequent solution of the linear system via inversion,
factorization or iteration. A method for the expansion of the current in
terms of sampled values is presented in Appendix B.

It may be appreciated that the process of generating a linear system '
to replace the integral equation is essentially one of evaluating the tan-
gential electric fleld at p01nt r on the structure due to the current on a
segment around 7, with T and r” scanned over the structure geometry C(r).
The successful numerical modeling of a structure requires its representation
by a collection of straight wire segments which is electromegnetically
indistinguishable, within scme specified accuracy criteria, from the original
structure. Thus not only structures consisting entirely of straight wires,
but curved wire structures, and sclid surface objects as well, or combin-
ations of these, are amenable to modeling in this fashion.
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If the linear system representing the integral equation is written
in matrix form as

(z] [1] = [E] (2a)

and the admittance matrix is found [Y] = [Z}_l, it is a simple matter to
evaluate the current distribution on the structure for any primary field
through the matrix operation (See Appendix C for further discussion).

(1] = [¥] [E] - (2b)

A1) other electromagnetic field quantities such as near and far fields,
polarization, impedance, etc. can then be found through other far less
demanding operations. These processes are entirely consistent with
Maxwell's equations and except for the integral equation solution method
do not involve any a priori, and possibly, restrictive assumptions.

The procedure outlined above is of course not unique; every scatter-
ing and antenns problem involves g similar series of operations for its
solution. Nor are the special features of the wire modeling approach
new; the topic has been rather extensively documented (Richmond, 1966}
Tanner and Andreasen, 1967). The main contribution of this presentation
is to outline the method's computer implementation and to provide a con-
vincing demonstration of its scope of applicability as evidenced by a
variety of practical problems for which the technique has been profitably
employed. The development of a dependable computer method is a process
which requires an awareness of potential numerical limitations and a
continued willingness to subject the computed results to experimental
comparison as the scope of application is expanded. The numerical
results included here are a representative cross-section of test cases
of practical interest. The extensive validation to which the numerical
procedure has been subjected allows its confident use as a computer-
experimental tool.

IIT. Computer implementation

Development of a computer program based on the integral equation
method is relatively straightforward. The difficulties in efficiently
using the approach come from the many options open to the user pertaining
to the desired output deta (near or far fields; polarizations; bistatic
or monostatic patterns; etc.) and the preparation of input date for the
specific geometry of interest.

Prior to the generation of input data a suitable wire model to repre-
sent thée siructure must be developed. Modeling guidelines have evolved
in the course of using the technique; a discussion of the numerical con-
vergence with decreasing segment length for wire scatterers is presented
elsevhere (Miller, et al., 1971). The wire structure geometry is then
defined for the computer model in terms of the segment endpoints in
cartesian coordinates, wire radius, and load impedance if any, for each




of the N structure segments, which are numbered 1,..., N for identification.
Segment electrical connection information, reguired for the current inter-
polation procedure (see Appendix B), is supplied by two N-integer connection
arrays, one of which pertains to the positive end of each of the segments
relative to its current reference direction, and the other to the negative
end., Positive integers, for example, are used for two segment Junctions

and denote the actual segment number to which the given segment is connected.
Negative integers are used.to denote connection of the segment to two or
more other segments, identifiable by the same negative integer.

For structures such as the wire grid helicopter (see Figure 9), the
data is generally derived segment-by-segment from scale drawings of the
structure. This is an obvious area where future improvements could increase
the effectiveness of computer modeling. An interactive graphics approach
whereby the structure geometry data is automatically developed by the
computer is possibly the most likely method of overcoming this problem.

Many structures however consist largely of-straight and/or curved wires or
other systematically varying shapes which can be described by parametric
equations so that subroutines can be used to generate these portions of

the structure geometry. As a check on the geometry data for a new structure,
a computer-drawn plot of the data can be generated and/or the data can be
checked by a subroutine which verifies the compatibility of the connection
and coordinate data with the program conventions (e.g. to verify that the
electrical connections are physically correct). It is thus possible to
eliminate virtually all errors in the geometry generator before proceeding
with the actual calcilation.

Having thus préscribed the structure being modeled, the subsequent
steps in its numerical solution are the calculation of the impedance matrix,
the matrix solution, the computation of the current, and finally the desired
field evaluation. All of these operations (besides the initial integrations
required for the impedance matrix evaluation) involve matrix manipulations.
The storage and computer time required for them can be substantially reduced
by structure symmetrles which lead to a reduction in: 1) impedance matrix
calculation time ~ N2/s; 2) linear system solution time ~ N3/s2; and 3)
current and field evaluation ~ (N/s), where s is the number of gymmetric
sections which comprise the structure. '

It is possible to effect additional solution efficiencies by special-
izing a computer program to a certain type or class of structures or by
judiciously employing physically acceptable approximations in the sclution
procedure. A cholce is fregquently required between reducing solution cost
for specific problems and developing a program of broad appllcablllty.
Generally speaking, it is desirable to have available a general purpose
program which is adaptable with a minimum of change to particular problem
applications., -

The modeling capability of the integral equation (1) can be extended
to problems other than conducting structures in free space by suitably
modifying the Green's function for the problem of interest. The simplest
extension is to a lossy medium, accomplished by using a complex wave-number
in the integral equation. A more complicated problem is that of an antenna



near an interface of twe semi-infinite media of different electrical
properties, in which case a Green's function which involves the Sommer-
feld integral can be used (Sommerfeld, 1964). Furthermore, the time-
dependent equivalent of (1), obtainable by Fourier transformation can be
used for transient studies. Examples from all of these extensions are
shown below. _

In concluding this section, we wish to emphasize that numerical
methods both complement and supplement. experimental measurement and
classical theoretical analysis. It is not true to claim that the demon~
stration of a computer technique's validity for a limited range of problems
proves it capable of solving any problem to which the technique might be
applied. There are as yet many areas of uncertainty assocciated with com-
puter modeling, end many rather simple problems for which satisfactory
programs have not yet been developed. Techniques like that discussed
above, while even now satisfyingly versatile, require continued improve-
ment and extension., Modeling capabilities of this kind, if judiciously
employed, do provide the initial phase of what eventually will become
true computer experimentation.

Iv. Scope of Applicability

The numerical solution of the integral equation allows in-depth
analysis of a wide variety of electromagnetic problems. Radiation and
scattering problems including mutual coupling can be ireated with almost
equal facility. A highly complex structure such as a helicopter (c.f.
next section} has been successfully modeled employing the wire-grid
equivalence described earlier. The use of wire-grid modeling provides a
great flexibility in the type of structures which can be analyzed since
conducting surfaces and structural details such as corners and wire
appendages can all be effectively represented using wire segments. An
indication of the wide scope of applicability of the technique is provided
in Figure 2, where representative structures are listed with the required
computation times and costs (on a CDC-6600 computer and a useage charge
of $1000/nour).

Both antenna radiation and scattering calculations are depicted in the
figure. The first structure shown is a zig-zag dipole with a total wire
length of 0.7A. The input impedance at six different frequencies was
determined for the computation time and cost indicated. The second struc-
ture is a fore-shortened log-periodic antenna where the four longest dipole
elements are inductivelyloaded, demonstrating the modeling of impedance
loading. The third configuration represents an unbalanced conical spiral
antenna with wide tape arms, one of which is terminated by a reactive lozd.
The wide tape arms are modeled here using two thin wires which conform to
the edges of the tape. Additional cross wires can be placed on each arm
to account for transverse currents if they prove significant. The fourth
structure is the wire-grid equivalent of a parabolic reflector; the indi-
cated computation time was required to calculate a single antenna pattern
using & dipole feed. Distortions of localized regions of the reflecting
surface and its effect on the electromagnetic characteristics can be easily




analyzed by appropriately modifying the geometric data. The fifth struc-
ture 1s a wire-grid representation of a slotted conducting plate for which
the Dbackscatter RCS of this structure at two frequencies, polarizations,

and aspect angles were calculated. This suggests that the numerical approach
is applicable to problems concerning electromagnetic coupling through surface
apertures since the surface currents and aperture field distributions can be
made available. The final structure is a"squirrel cage" which is a broad-
band scatterer for penetration-aid applications. The speed and accuracy
with which the numerical computation are performed allow large scale para-
metric studies to be implemented which are highly suited to the iterative
approach required in decoy design where the RCS of the scatterer is talliored
to best match some desired (vehicle) RCS.

It is hoped that these examples provide an indication of the versatility
of the numerical approach as applied to structures of various shapes and
sizes. The next section presents additional examples in greater detail so
that one can obtain an appreciation of the different type of solutions which
are realizable. ) '

VI. Typical Results

The usefulness of the integral equation technique considered above is
best illustrated with sample results. BSeveral types of applications are
discussed in the following paragraphs.

The determination of possible corona discharge in the vicinity of an
antenna requires a knowledge of the antenna near fields. Figure 3 is a
piot of the normalized radial electric field of a loop antenna in the plane
of the loop at an angle of 90 degrees from the source. Comparison with
the published results of Fante, et-al. (1969) is shown. The near fields
for a slightly more complicated configuration is shown in Figure 4. Two
9.3 inch diameter loops are each loaded with sixteen capacitive elements
uniformly distributed along the conductor such that the loop resonates at
170 MHz. The upper loop is excited, and the lower loop, which is separ-
ated by 11 inches, acts as a parasitic element. The near fields {1 watt
input power) are computed at a radial distance (from the z axis) equal to
one inch plus the loop outer diameter. The fields are evaluated as a
function of azimuthal angle ¢ from the z axis in the plane of the top loop
(0), in the mid-plane (A), and in the plane of the bottom loop (x). The
fields are respectively normalized to the three values (volts/meter) at
the top of the figure. With this type of information one can predict where
breakdown 1s most likely to occur and what, if any, techﬁiques can be used
to reduce this possibility.

Antenna input impedance can be calculated quite readily once the cur-
rent on the antenna has been determined. For instance, Figure 5 shows the
effect of the transmission line on the input admittance as a function of
antenna electrical length and a comparison with results obtained using an
ideal voltage source in the antenna. A complicated structure such as a
Loran C antenna presents a more challenging problem. Computations have
been performed to evaluate the input impedance of that antenna, over a



perfectly conducting ground, with the antenna excited near the base of
the 625 foot mast. The twenty-four radial arms of catenary shape are
joined at the top of the antenna. Figure 6 shows a comparison between
the computed impedance and experimental data (supplied by the U.S. Coast
Guarf). Data such as this is useful in the design stage, and allows

the performance of numerical "experiments" to determine the character-
istics of various antenna configurations.

The calculation of radiation and scattering patterns is straight-
forward once the admittance matrix, Y, for a given structure has been
obtained. Upon determining the current induced by the primary source
(via multiplication of Y times the primary field vector), the secondary
fields are obtained as an integration (analytic for the far field) of
the structure currents. A bistatic pattern requires only one current
evaluation, whereas the monostatic variation necessitates finding the
current for each viewing angle desired. Figure 7 shows the backscatter
raday cross section of a straight wire with bow-tie termination. Only
data for 0<6< 90 degrees is shown because of the structure symmetry. The
predictioﬂg'gfe very accurate even in the region of the deep null,

Figure 8 illustrates the backscatter RCS as a function of aspect
angle for the wire tee-pee shown, where a is the wire radius. The numer-
ical data are plotted and compared with experimental data obtained by
Micronetics, Inc. Two sets of experimental data are shown in Figure 8,
representing clockwise and counterclockwise rotation of the angle 8.

Alrborne platforms are generally complicated structures and sccurate
modeling, particularly in the resonance region, is required to accurately
predict their electromagnetic characteristics. Wire grid models suffic-
iently represent solid surfaces when the open regions are small in terms
of wavelengths (Richmond, 1966)}. Figure § shows numerical results obtained
from a wire-grid model of an OH-6A helicopter compared with experimental
data obtained by Collins Radio.

The interaction of an antenna and its enviromment can be quite pro-
nounced when the enviromment is in the form of & ground plane. Although
it is quite simple to predict antenna characteristics in the presence of
a perfectly conducting ground plane, this simplicity is not realized when
ground losses must be taken into account. The classical technique for
handling the lossy ground problem is contained in the Sommerfeld integrals
(Sommerfeld, 1964) which become part of the integral equation kernel. How-
ever, for antennas with any degree of complexity, the integrals can not bhe
analytically evaluated and numerical integration is difficult and inefficient.
An alternate, approximate technique, based on the Fresnel reflection coeffic-
ients, has been developed and has been shown to yield relisble results
(Burke, et al., 1970). Figure 10 compares results using both methods as
applied to a two element parasitic array of vertical antennas. The outstand-
ing feature of the results presented is that the approximate technique
reduced computation time by about two orders of magnitude compared to the
time required employing the Sommerfeld formulation, with no significant loss
of accuracy.




The transient (time domain) analysis of antennas and scatterers is
another area of interest where the digital computer provides a unique
capability. Using a Gaussian pulse for the exciting field, the time
dependent currents induced on a structure can be evaluated by solving
an integral equation which is the Fourier transform of Equation (1).
Technigues for solving this type of equation are well known (Sayre, 1969);
Bennett and Weeks, 1968; Poggio and Miller, 1970). It is a simple matter
to evaluate the impulse response in the frequency domain from this infor-
mation. In effect, the transfer function for the electromagnetic device
is determined which can then be used to evaluate characteristics for
other exciting waveforms. The advantage of the time domain analysis 1is
that the fregquency domain characteristics over a broad bandwidth can be
determined with one relatively simple calculation.

Figure 1la shows the feed point current variation as a function of
time for a dipole antenna excited with a Gaussian pulse at the center of
the antenna. When the Fourier transform of this current is divided by the
Fourier transform of the Gaussian pulse input voltage, the frequency domain
input admittance is obtained. as shown in Figure 1lb. The results are com-
pared with independent data as provided by King and Middleton (King, 1956).
The bandwidth limitation and accuracy of the results are affected by time
sample size, space sample size, the length of time over which the current is
evaluated, and the subsequent accuracy with which this sampled data is trans-
formed. ’ T i

An example of a scattering application is shown in Figure 12. The
problem of determining the time domain back scattered fields (or equivalently,
the frequency domein RCS) from a crown band for axial incidence interest is
presented in this figure. The time dependent response to a Gaussian pulse
is presented in a) while the Fourier transform is used to determine the fre-
quency domain response in b) over a finite bandwidth. Again, a comparison
with independently computed results shows good agreement.

VIT. Conclusions

The results shown above serve to illustrate the potential usefulness
of the thin-wire, electric-field, integral equation for the numerical analysis
of a variety of scattering and antenna problems. This approach, when combined
with an efficient numerical method for its solution together with the speed
and size of current digital computers, provides an economical and reliable
alternative to, and complement for, the experimental study of a wide range of
practical problems. These problems can include both thin-wire structures and
wire grid models of seplid-surface objects. Particular advantages are offered
by the numerical method to determine such properties as average RCS, current-
distributions, input impedance, near field behavior, etc., which may be diffi-
cult and expensive to measure experimentally.



APPENDIX A

NUMERICAL PROCEDURE

An outline of the numerical solution procedure for the induced current
via reduction of the integral equation to a linear system is presented here.

The current integration in Equation (1) extends over the entire struc—
ture and produces the tangential electric field at any point on the surface.
In mathematical terms, the current or source points lie in the domain, and
the field or observation points in the range of the integral operator. An
intuitive approach to solving the current is provided by: (1)} approximating
the current in terms of unknown sampled values and a specified functional
variation on the structure; and (2) enforcing the resulting integrals to
match the integral equation in a pointwise sense over the range of the
integral operator. This procedure generates a set of linear equations for
the unknown sampled current values and demonstrates at its simplest, the
essence of the method of moments. Our discussion will be limited here to
sub-sectional collocation, a version of the moment method, which is dis-
cussed in more general terms by Harrington (1969) and Kantorovich and

Krylov (1964).
Let the actual structure current be approximated by

N
I(s?) = Zan £ (s7) (a1)

n=1

where the a, are constants to be determined and the f, are the basis or
trial functions. The fn may be defined over the entire domain of the
integral, or over a sequence of sub-domains. It is the latter approach
which is used in the sinusoidal current expansion employed for the fore-
going calculations. Upon substitution of (Al) into the integral equation
(1), and requiring exact equality between the right and left hand sides
of the equation at N poings, me 2% 1,..., N over the wire structure,

we obtain , with 3/9sy, = S<Pm Y [

1wl

_EEQ' an’[.fn(s‘) é\(pm) 8T+
n=1 c
1@

(a2)
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which gives N equations for the N quantities a,. This process of point-
fitting the integral equation involves the use of delta functions for
the weighting or testing functions employed in the approximation of the
rigorous integral equation.

The linear system (A2) can be re-written in matrix form as

N
;{:Z a =5
mn n m

n=1

Note that Z has the dimensions of impedance; hence its characterization
as an impedance matrix. It represents the tangential electric field at
point py on the structure due to the current term &, . A solution for
the a, simply follows as

N

a = ZE:Y E n=1,...., N

n nm m .
. m=1

where Y = Z_l is known as the admittance matrix. Since Y is derivable

without dependence upon E, it truly approximates the electromagnetic

response of the structure for which it has been obtalned for any excit-
ing primary field BY,
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APPENDIX B
CURRENT INTERPOLATION

Let the current on segment J be expressed as
T.(s”) =A, +B,sink {(s” - s,} +C, cos k (s - s, (B1)
g(87) = Ay * 3y ( h J 5

with s, the midpoint coordinate (Yeh and Mei, 1967). Also, let segment
j be cbnnected to segments j-1 and j+1 at its minus and plus reference
ends respectively with the reference directions on all three segments
the same. Evaluation of 1; at sj_1, s, and s, results in

J+l
Aj + Cj = Ij
Ay By o T % %m T T (52)
A B S, TG Cals T hia

where dj is the length of the jth segnent and

i
oy
jel]
+
8

<
n

C . CcOos
J+Ll,3d

Solution for A,, B,, and C, in terms of I'—l’ I. and Ij+1 provides
an eguation ofdthned form J J J

Ij(s’? = xj(s’) I, Yj(s’) I, Zj(s') I (B3)

where X., Y., Z, contain the coefficients A,, B.,, C,. The system of
equatioﬂs Wﬂichjresults from the collocatioﬁ sofutidn to the integral
equation is thus seen to involve as unknowns the K current samples at
the centers of the N segments into which the structure is divided.

The extension of the interpolation procedure to multiple junctions
is straightforward. Consider the case where segment j is connected to
m segments numbered j+1,...,j+m at its plus end and the single segment

-1 at its minus end. Then only the equation representing (BlL) evalu-
ated at Sj+l is modified and becomes

1z




J+m

J+n
) ) |
A, + = B,s, + C,c, = = I, BLY
J m J 1,3 JiJ m i (L)
i=j+l i=j+1

which comes from interpolating Ij to the midpointé of the m connected
wires-where it is equated to the average midpoint value. A solution
for the Ay, Bj and C; in terms of the midpoint currents Ij—l’ I

- - . . « N .+ o o
Ij+p follows as before. A multiple junction at the minus end of ter
segment is similarly treated. :

Equation (B3) is substituted into the integral equation and, after
summing over the N segments and collecting terms in I., gives

iwuo N
I Ij X541 Kj+lds + YjKjds

J=1 dj+l dJ

- = ~ . "p
+ 2,1 Ky _qds 8p,) B (p,) (BS)
-1
with
2
— ~ . ~ _J-—_ 8 -

Kj = s(pm) s(pj) + 2 T g(pm,s )

where by replacing §(s”) by &(p.) we implicitly assume that the indi-
vidual wire segments are straigﬂt. The bracketed term in (BS) is
interpretable as an impedance. It relates the current Is, interpolated

into neighboring segments, to the field at observation podint P> M= l,..., N.
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APPENDIX C
NUMERICAL EVALUATION OF STRUCTURE CURRENT AND CHARGE DISTRIBUTION

The emphasis of the discussion in the main body of this presentation
has been on the development and general application of the thin-wire
computer modeling methodology to radistion and scattering problems. One
aspect of this procedure which is of particular interest and relevance to
the EMP area is that of determining the current and charge distributions
on a structure exposed to some primary field of EMP origin. We, there-
fore, examine in greater detalil here those features of the numerical
treatment which bear most directly on the current and charge evaluaticn.

An essential feabure of the numerical method is the approximation of
the integral equation by a linear system whose solution can be achieved
via standard matrix menipulations. Of particular import is the fact that
the admittance matrix Y is the approximate numerical equivalent of the
actual physical structure; its multiplication by a specified primary
field vector leads to the induced structure currents in the anumerical
sense exactly as does illumination of the actual structure by the corre-
sponding illuminating field in a physical sense. Furthermore, since
knowledge of the structure current distribution allows straightforward
computation of the resulting electromagnetic field anywhere in space,
the admittance matrix can be regarded in & broad sense as a numerical
hologram of the physical structure with the primary field vector serving
as the reference beam used for reconstruection of the original wavefront.
Actually, since from Y one can find the wavefront anywhere in space for
any primary field, Y evidently contains much more information than the
usual hologram, although 1t must be noted that an additional computation
step is involved between the current calculation and the wavefront eval-
uation.

Continuing with the notation of Appendix A where the structure current
is formally approximated by

N
I{s”) = Ez:anfn(s’) (A1)

n=1

but adopting the specific sinusoidal current form given by (Bl), we
obtain explicitly for (A1)

N
I(s7) = E::[An + B sin k(s” - sﬁ) + C cos k(s” - sn)] ul]s” - s, f/dn - 1)

n=1
i, x<0
where Ulx) = ' (c1)
0, x>0

1k




Similarly, since the current I(s”) and charge density p(s”) are related
via the continuity equation

we can express p(s”) as

N ,
p(s”) = i Vu e }: cos kis sn) - Cn sin k(s” - sn)] U([s' - s, !/dn - 1)
=1 (ce)

o

Thus, a determination of the charge and current distribution on the struc-
ture first requires evaluation of the current expansion coefficients Aj,
Bj, and Cj on the N structure segments. ~
From Appendix B, where the current interpolation is discussed, it is
clear that the unknowns in the linear system (2a) are the sampled current
values, Ij, at the centers of each of the N structure segments. Further-
more, the As;, B: and Cs on a given segment are expressible in terms of the
sampled current values on that segment and the segments to which it is
connected. It is thus possible to write (Cl) and (02) in terms of Y and
the various interpolation functions XJ(S Y, Ys{s”) and Z:{s”), 3=1,..., N
[introduced in (B3)]. Since, however, the 1n%erpolation functions contain
common cos k(s” - si) and sin k(s” - s:) factors, it is computationally
more efficient to uSe the forms for I(s”) and pl(s”) given by (Cl) and (C2)
with prior numerical evaluation of Aj, Bj and Cj from the admittance matrix.

For the simply connected structure (no multiple wire junctions), we
have :

= D-'l [-s e -8 c
J J J=1,3 “J3+1.3 J+ls3 7J-1,3

-1 .
B, =D, c, . ~ C, 1 IL + e, .- 1] I, - lc =11 I
J J {%J-l,a J+laJ] J [ J+1,3 ] -1 [ J=1,3 ] J+%}

1T

j=
[

I -3 . I, + s, I,
J J+l,3 "J-1 J=1, J+{}

c
I

c -1 ,
i = D, S, .t s, I, - s, . 1, - s, . . I,
J {} J=1,J J+l>J] J J+1,5 “i-1 J=1,3 J+i:}

with DT = I

307 S+, !

1 -¢c

c, 4t s, . R
J-le] J-1,3 J+L.3

Thus once the sampled current values have been calculated from



I, = Z Ynm E (ck)

with E, the tangential component of the primary field at the center of
the n'th segment, numerical values for the current expansion coefficients
can be computed from (C3) followed by application of (C1) and (C2) to
obtain the charge and current distribution. The procedure is more in-
volved but essentially the same for the situation posed by the multiple
Junction case where as a result {C3) would be modified as discussed in
Appendix B.

Having obtained the current expansion coefficients, computation of
other field varisbles is straightforward. While the far-field is perhaps
the most commonly sought guantity for both radiation and scattering prob-
lems, the near-field is just as subject to evaluation. The principal
difference in computing these fields is the analytic current integration
that is possible in the calculation of the far-field whereas the near-
field determination regquires some numerical integration. In either case,
the field due to the current induced on the structure is given by

. I a /2
L oy n ) .
E(r) = T [An + Bn sin k(s” - sn) (c5)
n=1 -4 /2
i O
+ C cos k(g7 - s )] U(Is’ - s I/d -1) [8 + 1y —é—ﬂ (r) das”
n n n n n k2 Bsn &
where gn(r)r= exp(-ik | ¥ - r, )/ ]z - r |
and r =r +s 8
n no n

with ;nO the position vector to the center of segment n and §n = §(pn).
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Dipole antenna excited by a Gaussian pulse

Scattering of a Gaussian pulse by a crown band




FIGURE 1.
GEOMETRY FOR THIN WIRE ELECTRIC

FIELD INTEGRAL EQUATION
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FIGURE 11.
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Circumference, P = 25.13 in.
Wire Length = 84.0 in.
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