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1. Introduction

Typical alrcraft or missile cabling involves the use of bulk
cables containing a variety of conductor systems, - single conductors,
shielded or unshielded (within the cable shield); and twisted pairs,
also shielded or unshielded. With the usual assumptions made through-
out the present study, such physical systems may be treated as multi-
conductor TEM lines.l ' ‘

The purpocse of this memorandum is to discuss the response of
twisted shielded pairs to a signal leaking into the system through
a break in the bulk shield. Although the purpose of using the
shielded twisted-pair configuration is to afford protection against
Just such a contingency, the actual method of termination of the
leads and grounding of the shields often negates the shielding

inherent in the twin-lead arrangement.

The analytical solution to the general class of problems des-
cribed in the opening paragraph above has been given in reference 1.
Although explicit expressions for all terminal voltages and currents
are given, actual computations, even for a single shielded pair,
are so lengthy and tedious that automatic computation is a practical

necessity.*

Unfortunately, inspection of the solution, elther as a system
of equations, or as computed data, generally yields minimal and
generally unsatisfying insights into the physical phenomena actually
taking place in the system. The specific purpose of this memorandum is
to study the simplest problems with a view toward enhancing such
insights.

2. Technical Discussion

In order to "explain" the dynamics to be investigated, this
memorandum assumes that an explanation of obscure phenomenon has

¥When the twin-lead shield is insulated from the cable bulk
shield, a single shielded pair is a 3-line (N = 3 in reference 1).



been developed when that phenomenon can, by a brief seguence of
logical steps, involving concrete physical ideas rather than abstract .

analytical manipulations, be related to ideas already well-accepted.

The following concepts will be assumed to be well-accepted
ideas, although a brief review of some of them is in order:

_ 1. The whole body of information relating to conventional 2-
conductor (l-line) transmission-line theory, 1lncluding properties of

propagation, impedance, and cascading.

2. The behavior of TEM waves guided by multiple parallel
conductor systems. The elementary concepts involved here have been

available in the literature for at least a quarter of a century.2

3. The compensation theorem for investigating the behavior
of networks. The compensating-voltage form of the theorem is the
one usually given.3 However, we will use it in the current-~
compensating form.u While perhaps not so famillar as the former,
the latter is iﬁs exact circuit dual, both in form and in derivation. ‘

A1l data related to conventional transmission line theory (1-
line) were obtalned from reference 5.

In addition to reference 2, a more detailed discussion of TEM
waves on parallel wires is avallabe in Chapters I and II of reference

6. Briefly, the fundamental phenomena are as follows:*

TEM waves guided by parallel lossless conductors of invariant
cross~-section travel at a single speed in either or both directions
along the line. The behavior of the fields in a transverse plane
1s invariant with respect to time and to position aloneg the line,
except for a scale factor representing the travelling-wave nature
of the field. 1In fact, the electric field in any transverse plane
satisfies Laplace's equation for electrostatic fields, as well as

¥[,ossless lines assumed. .
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the boundary conditions aﬁ the conductor surfaces. Thus, the

field is a unique quasi-static field for a specified set of potentials
on the conductors. The magnetic field is uniquely specifiled at

each point by the electric field and the electromagnetic constants

of the medium.

As a consequence of these facts, for a given set of conductor
potentials, only one wave is possible in the forward direction along
the line. Similarly, only one wave is possible in the reverse
direction, although the specifying potentials for the back wave
are generally independent of those for the forward wave. For a
forward wave, the current on any conductor at any cross section
is related to the potentials by

If=ZNjY vi, 5 =1 N (1)
3 = jk k2 3 s

for a system of N conductors above ground. In matrix notation,

I=YV (2)

where the ij are the line admittance coefficients. To exhibit
behavior with distance along the line for monochromatic excitation,

write

vi-a e, k=1, o, (3)

where the Ak are determined by conductor potentials at some point
along the line, whlle Y measures their common phase variation along
the line.

Similarly, for a back wave, with a set of potentials

od ¥ (L)



is assoclated a set of currents

b
51 Tk (5)
The total picure is therefore

vV = e”IV 4 g IV

[=

(6)
I=1 {& ~JV L g ejw}

Thus, Equation (1) (or Equation (5)) states that the current on
any conductor can be visualized as the superposed effects induced
by the potentlals on all conductors. The magnitudes of these
potentials (Ak or Bk) are determined by the line terminal conditions.
If the line has. two finite terminals, waves travel, generally, in ‘!
both directions, and both sets of constants must be determined.

Interestingly, Equations (1), (2), and (5) may be solved for
the potentials in terms of the currents, so that an equally valid
formulation is

G e IV 4 g IV

(e}
]

(7)

vezfeedt oy =l

where 7 = Xfl is the line impedance matrix. The implication here

is that, for a specified set of line currents, the potential on any
conductor can be visualized as the superposed effects induced by
the currents on all conductors.

The current-compensation theorem is discussed in reference 4,

An elementary example will illustrate its use. Consider Figure la, .
which shows an impedanceless generator exciting a line of length, 6,

10




@

Figsle Current=compensation theorem illustrated.
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terminated 1iIn an admittance, YL' To find the voltage, VL, across
this load, using the compensation theorem, first write the output .

voltage when YL = 0 (Figure 1lb). This voltage 1s evidently

O——"
VO Vg sec §
The compensation theorem now states that the effect of connecting
YL to the output terminals can be determined by superposing, on the

new circuit, the effect of a current generator

. o)
i = —YL VO

applied between the terminals across which Vg was measured (Figure
1c). 1In the latter figure the admittance seen at the output terminals

is
¥9 = Y. - 3 Y cot 6 Y

where YO 1s the line characteristic admittance. Therefore, the

incremental voltage is

The total voltage 1is

Y
vO = vO 4 v© = VO(? - ~E)
O @] YO

’ -3 Y_cot 8
Vv _ sec © °
g YO

J YO Vg csc ©

YO

12
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’ 2.1 Single Twin Cable, Shield Grounded At One End

Consider the configuration of Figure 2 which shows a shielded
twin pair inside a bulk shield, and terminated in loads RT and R°
A generator of voltage V simulates an external field penetrated
through a break in the bulk shield, say through a terminal connector.
Aside from the fact that somewhat simpler concepts are involved by
placing the break at one end, the fact is that this is a worst case
situation. A source located at the other end of the shield would

look essentially into an open circuilt at all frequencies.

The loads Ri and R® in typical situations are one or two orders
of magnitude greater than the line impedances, and therefore have
little effect on line behavior except at resonant conditions, when
they, along with cable losses, limit the cable response. However,
we are not concerned here with actual peak values, which are readily

) determined by automatic computation, but, rather, with the general
. nature of the responses, and their explanations in terms of familiar
k ideas. Therefore, we simplify matters further by letting R RO + o,

Inside the twin shield the potential is everywhere the same
as on the shield at the same cross-section. Therefore, there is
no potential difference across the twin leads. Thus there is no
coupling to the loads. -

We now note that, except at resonance, currents on conductors
Nos. 1 and 2 are zero. To see this, use a current equation from
Equations (7):

I, =6, eV + H eIV

1

In the remainder of this memorandum we will simplify notation
by writing

Jv

13
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and for a line of finite length, 6,

0

S = e

Thus, corresponding to ¥ = 0, 6, we have s = 1, S, respectively.

Back to the equation for Il’

= S = S" =23 sin 8 = 0

or & = mm, m integer.
The same argument, of course, applies to conductor No. 2.

This result does not imply that the potentials are zero. In
fact, since the only current is

The second of Equations (7) then yields

15
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vV, = 213<s A3 - SBE)
vV, = 7 (s—l A. - sB.)
23 3 3

-1
V, = A, - sB
3 = Z33(s 7 A3 - sBg)
As a matter of fact 1t is a straightforward matter to prove

from elementary electrostatics that 213 = 223 = 233 for this

configuration, so that, in fact, Vl = V2 = V3, as expected.

Since conductor No. 3 potential is influenced only by its own
current, we know that the potential at the open end of the line is

vg =V =vV5 = vV, sec © (8)
The ideal conditions of Figure 2, leading to zero pickup on
the loads, is not always realized. Frequently, a termination
consists of a high impedance, Ro, as shown, one end of which is
connected to a relatively large mass of metal, which, while not
grounded, represents a large unbalancing capacitance (possibly

several hundred pF) to ground. This places an admittance

Y = JuC | (9)

between one of the twin lead ferminals and the bulk shield, as in
Figure 3.

The compensation theorem then states that the effect of this

change is to introduce a current source
1=-Y V] =-Y, Vg sec © (10)

as shown in Figure 4.

16
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The effect of this current source in producing output voltage

changes, vg and vg, on conductors No. 1 and 2 respectively, will
now be investigated.

The first quantity to be determined is the admittance looking
into the line at terminal 10, in order to determine vi, and to

determine what fraction of 1 flows into No. 1;

; since that current,

and whatever current is induced on No. 3, will determine fhe potential
on No. 2 by Equations (7).

At this point we digress in order to introduce an additional

analytical tool not mentioned previously.

2.1.1 Egquivalent Circults

The effect of the equivalent circuits about to be discussed 1s
to replace a number of continuously coupled lines by conventional

l-1lines coupled only at their terminals by means of ideal 1:1
transformers. ‘

A

In general there is a l-line for every different line coefficient
not equal to zero (Zij and Zji are treated as one coefficignt). Thus,
a 2-1line 1s replaced by three l-lines, a 3-1line by six l-lines, and,
in general, an N-line by %N(N + 1) 1-lines. However, in the present
instance, because no current flows on No. 2, except for 6 = mm, we
can lgnore its presence, taking its effect into account only insofar
as 1ts presence affects the values of the other line coefficients.

We are therefore dealing with a 2-1line. For forward waves
only, the canonical equations of such a line are, from Equations (7),

(11)

18




et it

@

e

7

Following Uchida' we note that these also represent the equations
of a two-mesh network, as in Figure 5a. Next, the individual
impedances of that figure are replaced by infinite l-lines of
appropriate characteristic impedance, coupled to the circult, for
maximﬁm flexibility, through ideal 1:1 transformers (Figure 5b). In
the next step we make the following stipulations (Figure 5c):

1. We assume that Vl apd V3 of Figure 5b are acﬁually being
applied at input terminals 1% and 3i of the 1line (left side of
Figure 5c).

2. The left half of Figure 5c¢ corresponds to Figure 5b 1if
the 1-1lines of 5c are assumed to be infinite.

3. If now the infinite l-lines are replaced by the set of 1:1
transformers on the right, interconnected in 1:1 correspondence
with those on the left, and if terminals 1° and 30 are connected to
a Y-network as shown in Figure 6, then it is an easy matter to show
that each of the l-lines sees 1ts own characteristic Impedance,
regardless of the relative excltatlions at 1i and 1°.

Thus the arrangement of Figure 5c¢ is externally equivalent to
a 2-line for waves travelling in the positive direction. Obviously
it is also equilvalent for waves in the back direction. Since these
comprise, in combination, all possible situations, the equivalence
holds for all conditions of termination.

This equivalence does not always lead to useful results (see
Uchida for other, more sophisticated arrangements). However, it is
sultable for our purpose.

2.1.2 Equivalent Circult for Determining Output Admittances

As stated in the preceding section, the conductor system 1is a
2-1line except at 6 = mm. The situation 1s shown schematilcally in
Figure 7. We wish to determine the impedance at the 1°-terminal
driving point. Note that terminals 1i and 30 are open-circuited

19
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"while 3i is shorted to gfound. Applying these terminations to

Figure 5c¢ yields Figure 8. We note the following consequences of
this set of terminations.

1. The open circuit at 1' means no current flows through Tlg
the circuit may be cut open at points a and b.

2., Similarly the open circult at 30 means the circuit may
be cut open at ¢ and 4.

The resulting reduced circuit is shown in Figure 9a, with a
further obvious reduction in 9b. It is now clear that terminal
19 sees an impedance consisting of two impedances in series, -
one resulting from an open circuited line of characteristic impedance
(le - 213), the other resulting from two lines in cascade, open-
circuited at the far end. The result is displayed perhaps more
advantageously in Figure 10. The circult has been drawn 1in this
way because, with terminal 3i open, (corresponding to removing
the short to ground on the left of Figure 10) the configuration is
a two-port with known filter characteristics. Thus, with the
short in place the impedance seen at 1° is the filter short-circuit
impedance.

An interpretation of this result states that energy transfers
from 1° to 3i by way of the coupling impedance, and travels through
a phase lag of 6 in the process. The driving point impedances cl
and c3 merely represent the impedances that would be seen at the
terminals 1f the coupling impedance, 213, wWere zero.

The driving point impedance at 1° is now readily determined
from elementary line theory. The terminating impedance at the left
of the two-port of Figure 10 is

7° = a;3 , a = -=j cot ©

The impedance looking into the right-hand port of the line
of impedance 213 is (see reference 5, p. 22-4)

23
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2
5 a C3 + 213
13 a 233

The overall impedance at terminal 1° is then

2 2 2
79 = 71 + az, = 2 (Zyy Z33 - Bag) * Py3 (122)
1 1 a z :
33
2
Z
a 13
= + (12b)
Yll a 233
where we have written6
Z
v, = A (13)
Z Z - 7
11 "33 13

The increment 1n voltage at 1° terminal is

1 o 2 1 o)
Yl + Yc Zl
Yy v?°
- = 1 (14)
Yl + YC
by Equation (10).
The total voltage at 1° is
o
oT _ .0 Yc Vl
Vit =V -5
Y + Y
1 c
0 ;0 o)
¥V v
- T - (15) .
Y1 * Yc 1+ Zl Yc

26




’ With the help of Equations (10) and (12b) thls becomes

V_csc 8
VST = 2 T 5 (16)
cot & - wC(le - - cosc 8)
11
The resonant frequencies are given by
2
Y Y Al
_ -1)1 11 11 _
8 = cot 2‘:— oo+ (_—w202 + u[zll Y., 1]) :}S (17)

To determine the voltage change, Vg at the output terminal of
conductor No. 2, recall that such change must result from the
change currents on conductors No. 1 and 3. Consulting Figure 7,
note that in addition to the impressed current at terminal 1° &
,. reflected wave on No. 1 may be expected. In addition, waves of
.- current in both directions may be expected on conductor No. 3. In

fact, writing

ii = output current on conductor No., 1
0 .
Yoo1i
e | (18)
Y1 + YO
we have, in addition,
L1 _ _
ll—il(S—l>—O
i
vy = vals = 1) =0 > (19)

27



The respective standing waves of current may be written
(Equations (7))

:'Ll = 3 Gl + SH1
(20)
-1
. +
13 S G3 sH3
while the voltage on No. 3 is a linear combination of current-
induced waves
vo = 7. (7t e - sHL) 4+ Zo.(s™F 6. - sH.) (21)
3 13 1 1 33 3 3

The boundary conditions (18) and (19) then yield

-1 - o]
S G1 + SHl = il}
Gl + Hl = 0
s~1 Gy + SHy =0 |
} (22b)
- + - =
213 Gl Z13 Hl 233 G3 233 H3 0
Simultaneous solution of Equations (22a) yields
= - = Iz ©
Gy Hy = J % 1] csc 8 (23)

and the conventional 1-line current for conductor No. 1

1 = sin Y io
1 sin 6 1

Then Equations (22b) are

28
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+ =
N G3 SH3 0
(24h)
Z
13
G, - Hy = =] =—= 1. csc 6
3 3 233 1
yielding
o = -3 213 _ s o0
- 8
3 233 sin 2 1
(25)
0. = j Z13 -S_le 40
3 233 sin 2 1
for the current-wave amplitudes on No. 3.
The voltage increment on conductor No. 2 is, therefore,
v, = Z..(s"t @, = sH,) + Z..(s"T G, - sH.) (26)
2 12 1 1 23 3 37

At the 2° terminal, s = S, and

o

Vo

_ -1 -1
= ZlZ(S Gl - SHl) + 223(8 G3 - SH3)
which, with the help of Equations (23) and (25), reduces to

‘ Z Z
5 = j(Z12 cos 6 - _l%__ﬁi sec 8) ig csc 6
33

Thus, the voltage induced across the output load is
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_ .0 0

Av = v1 - v2
5 (27)
3 o Z13 223
= — {1 + J Y \Z cos & + —z——= sec 0] csc 6
vO 4 v 1\12 233
1 c : /

where 1 is given by Equation (10).

A simpler, though somewhat less accurate, picture is obtained
as follows:

Knowing the current at both ends of line No. 1, and ignoring

the reaction from No. 3 due to i the current on No. 1 is definitely

l,
fixed as

17 5in 6 "1 ]
@
while the voltages due to this current are

v, = J Z i

o)
17 17 csec 6 cos Y

2 = 235 1

<
i

i csc 6 + cos ¥

on lines No. 1 and 2 respectively. Their difference at the output
terminals 1is

_ .0 o _ . .0
Av = vi - v, = 3(Z44 - Z1,) 1] cot 8 (28)

which is the desired approximate result. That this checks

(approximately) with the previous result can be seen as follows:

30
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If, in Equation (27), we replace 1 by ii via Equation (18),

and, in Equation (12b) recognize that ignoring the reaction from

No. 3 implies

725 % o— = g 7 = -J Z cot 0,

11

then substitution of these approximations in Equation (27) yields
Equation (28).

2.1.3 Physical Interpretation

The physical picture that emerges from this analysis is about
as follows: : -

When the twin leads have balanced loads at both ends, the
interference produced by leakage of an external field into one end
of the cable is negligible. If, however, one of the leads is loaded
at one end By a capacitance to ground, the effect is as though a
current source had been impressed on the lead at that point. The
(nearly) open circuit at the other end of the lead causes a large

standing wave of current on that conductor.

Although the current source and reflected wave cause, generally,
no current to flow on the other lead, they induce voltage waves both
on the other leads and on the shield. Because of the nature of the
shield termination, current does result on the shield, and consegquently
it, too, induces voltage waves on the second lead. Current and
voltage waves on the unbalanced lead and on the shield adjust theilr
amplitudes and phases to meet the boundary conditions at the terminals
of these conductors. The total voltages on the twin leads are then
simply related to the currents on all conductors by way of the line
impedance coefficients, and with the usual adjustment of algebraic
sign, depending on whether the current wave associated with a
particular component of voltage is a forward wave or a back wave.

31



2.2 Two Shielded Twin Cables, Shields Grounded at Opposite Ends:
Response of Shields Only

The arrangement to be discussed is shown in Figure 11. 1In
this case two shielded pairs are contained within the bulk shield,
and are grounded at opposite ends of the cable, left open at the
other ends. Again, in the absence of the unbalancing capacitance,
Cl’ each lead of each pair is raised to the same potential as its
outer shield, so that no potential appears across the pair. Of
course, the potential of the unbalanced-pair shield may be expected
to be different from the preceding case. Apart from that, the
potential difference of the unbalanced pair is similar to that of
the preceding case.

While it is true that the unbalanced current on No. 1 induces
a voltage on No. 6 (the other pair's shield), the reaction back on
No. 1 may be expected to be considerably smaller than that of the
voltage induced on No. 3, as given by Equation (14) of the preceding

case.

The schematic describing the situation to be studiled is shown
in Figure 12a. An equivalent circult, derived from a circuit like
Figure 5c¢, is shown at 12b. A study of the original diagrém from
which 12b is derived shows that the desired voltage, Vg, is the
sum of two voltages

=V 4V (29)

where Va is the volftage at the open end of the :B—Iine and Vb is
the voltage at the output of the coupling line, 236' Evidently
this says the voltage at the open end of No. 3 is its conventional
line voltage, Va, when the coupling is zero. When the coupling

is not zero, an additional voltage, Vb’ is added.
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Without spelling out the details, it is straightforward to
show that near 6 = T/2 (say for |v]| = |7/2 - 6] << 1), the voltages
at the ends of the coupling line are related as

Vb _ LaV
Te " 1,07 - 25

Furthermore, for lw] small, the impedance of the c3-line is
small, while the input impedance to the coupling line is high. Thus,

VC = Vg and

v z.0
L 3 (30)

Vg 53¢2 - Z36

For the same reason, the input voltage to the -3 line at ¢ = 0
i1s zero, whence Va = 0., Thus, V§ may be expected to resemble
Equation (30) near 8 = w/2. Equation (30) is plotted qualitatively
in Figure 13. The result shows two voltage poles separated by an
amount proportional to the square root of the coupling impedance.
The picture obviously is one of two over-coupled resonant circuits.
The overcoupling is a consequence of the fact that the normal load

has been replaced by a dead short at terminal 6°.

Using Figure 12b and conventional 1l-line formulas, one readily
obtains the values of the terminal dynamic quantities:
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Ii
37 51
Z
1.4 236
V6 3 . tan 6 Vg
o’ (31)
v
Vg = -j csc © _T_g—_
Z Y33
Z A%
Ig = —ié——% sec © )
Z66 Z
where
Z2
7l 2 _ l_%QE—Q + 3 30 tan 0 (32)
33 66

3. Conclusion

In attempting to clarify the nature of the dynamic behavior of
multiconductor shielded-pair cables, we have found two devices useful
for relating this behavior to that of conventional two-wire lines:
(1) the analysis and subsequent synthesis of voltages and currents
in terms of travelling induced waves (2) the substitution, in an
equivalent circuit, of lumped couplings at the ends of conventional
lines in place of the continuous coupling along the multiconductor
line.
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