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1l. Introduction

This report covers the derivation of the response of a multiconductor trans-
mission line to excitation by an arbitrary monochromatic field impressed along the
line. Excitation by a localized monochromatic field (space impulse) is a special
case of this general result, and constitutes the second type of problem specified
in the request fbr proposal attached to D. E. Merewether's letter to Frankel
Associates of. June 17, 1970.

For identification in subsequent discussions in this report the four problems
listed in the proposal request are labeled as follows:

Type I: Broken Shield Problem [1]*
Type 1I: Exposed Line Externally Excited¥*
Type III: End-Excited Cable [2]
Type IV: End-Excited Exposed Line [2]
Recognition of problem types I, III, and IV is given here because it turms
out that, insofar as line behavior is concerned, these problems can be shown to be
special cases of a slight generalization of type II. Thus, a simple overall

analysis suffices for all cases.

Of course, if one wishes to determine thé responses internal to the line
terminations, a mixed network/transmission line problem is involved as explained
in Section 2.1.1 of Reference 2, and exemplified by the problem of Reference 3.
However, the procedure involved is common to all four types and requires no

further elaboration in this report.

Derivation of the general result and its reduction to the special cases of
interest is the subject of Section 2 of this report. Section 3 summarizes this

unity of results. A brief concluding statement is given in Section L.

2. Analysis of General Problenm

The notation used is generally that of References 1 and 2, with additional
terms defined where necessary. Consult Fig. 1. As usual this represents an

*
Numbers in [ ] correspond to those of Reference List, page L48.
**Subject of present report.
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N-line, with G representing the ground-, or reference conductor, while the N
conductors above ground are indicated by the single line labelled "N". Termination
admittance matrices are X} and Z?; x is the distance from the left end of the line
to a representative point on the line, where the externally-impressed voltage
gradient is gé (x), and the impressed current gradient is gf(x). Sources of E?

ahd g? are discussed in Appendix A. According to the proposal request it would be
sufficient to limit the analysis to a source of the forms g?(x) = Voé(x - xo) vhere
8(u) is the impulse function:
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The more general analysis is tractable with insignificant increase in
complexity and may prove useful for future problems.
The general result, obtained in Appendix B, runs as follovs:

Let

K(x) = line voltage vector at distance x from the left-hand end of the line

. (%) ]

I(x) = line current vector at x




S = dummy variable of integration

The remaining quantities in the following Equations (3) are defined in
References 1 and 2 [see Glossary, Ref. 2] or in the following Equations (%)
and (5):

v(x) = R 87T K(4) + U(x)

(2)
1) =-x{r s x(2) - z w0}
where
R=Jcos A"+ ,jgi sin 8'
§.=(2i+P)C°SQ+J(£+§°?_,:1n9 (L)
2:21 cos ' + j J sin 4!
and
£ o L o \
ORS {2 cos [3(£-3)]+J P sin[3(2-3)2H (5) o
0
o =v7) o€ /=
<[ E° cos [B(2 - €)1 + 5 9 sin [3(4 - DI} E° (3) a8
) S (5)

vt = [ {E°(8) cos [B(x - ©] - 5 2 (3 sin [3(x - )1} as |
o

700 = [ {25700 cos [a(x - 9] - 5 °(8) sin [olx - DI &
Q



.We proceed immediately to the special case represented by Equation (1) and
corresponding to problem Type II (see Section 1).

2.1 Response to Localized Impressed Field (Problem Type II)

Using Equations (1) and (2) in Equations (3) and (5) yields, for 0 <x_ < 4,

U(x)

I 1, 605 - %) cos Lot - 920 &8

=0, x<X
o

Yo(xo) cos [8(x - xo)], x> X

=V cos (8 - 80), x> x (a)

(6)

N
I=

(x) = 0, x < *s
= —Yb(xo) sin [3(x - xo)], x> %

= —!o sin (3' - 90), X > X (v)

‘ A Y
K(2) =k = - | {2° cos [B(4 - §)] + 3 3 sin [3(4 - Iy 8(3 - x) do
)
= -{g? cos [3(4 - xo)] + 3 d sin E;(ﬂ - xo)]} v, >
K =- [2? cos (8 - no) + 3 d sin (2 - 90)] v (7 /

In Fquations (6a), (6b), and (7), A, =B x.



Using these results in Equations (3),

¥(x) = RSV K +V cos (8" -0_)-u(8* -8)
(8)
Ix) = x{z s K r Iy, sin (37 -0 ) - u@ -6}

Where u(g) is the unit step function:

u(?‘) 0, ¢ <0

(9)

1,$4>0

and K is given by (7.

Vie show next that this result iancludes the requirements of problem Types I,

III, and IV (see Section 1).

2.2 Relation to Problem Types I, ITI, and IV

In this section we show that a slight generalization of the foregoing dis-

cussion yields a formulation which includes all four problem types.

2.2.1 Problem Type I. Broken Cable Shield

Problem Type II, the subject of the present report, is represented schematically
by Figure 25, whiclh is a special case of Figure 1, with §é(x) specified as an
impulse, Yo 8(x - xo), or a generator vectqr !o in series with the line. A slight
generalization of this situation includes a generator, VG’ in the ground return
as well, as shovm in Figure 2b. In that case the net generator for the kth
conductor (with its ground return) is (Vi - VG). The net generator vector for the
line is (yo - VG gc). If, now, we specialize this by making V, = 0, the net
generator is '!G Qc and the situation is that of the broken shield. Thus the
forrmlation for problem type I1 should yield the results obtained previously for
problem type I when Yo is replaced by -VG gc. That this is, in fact, true, is showm

in Section 2.3 and Appendix C.

10
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2.2.2 Problem Types III and IV. FEnd-Excited Line

Problem types III and IV are essentially similar [2]. They result as a
special case of type II when 8 _ - O in Equations (8).

Equations (8) give the voltages and currents at any point on the line when it
is excited by a series voltage vector, Vo, at electrical distance, 90, from the
reference end of the line, while the line terminations at either end are passive.
llowever, if, for instance, we let Qo - 0, then the resulting combination of passive
termination and voltage vector at the end of the line is the equivalent of a
Thevenin source at the reference end [Ref. 2, Appendix A]. Therefore, Equations

(8) with Qo - 0, represent problem types III and IV.

Reduction to the forms previously given in Reference 2 is derived in Section

2.3.1.

2.3 Generalized Formulation for Localized Voltage Source, Including a Generator
in Series with Ground, or Shield. Problem Types I and II

As stated in Section 2.2.1, the generalized formulation requires only that zo

in Equations (8) be replaced by a new vector, z?, say, where
V =V -V Qc (10)

For reference we write, from Equations (7) and (8),

¥(x) = R 87 ET ¢ 1% cos (31 - 2)- u(® - 8)
(11)
10 = 2 {r s &+ 3 v stn (21 -8 ). u(ar - a)}
where
e
k¥ = - [° cos (5 - a)+idsin(®-23)]¥ (12)

12



At the time of this writing the computer program for problem Type I has been
prepared. The generalization to include all four types is so slightly different

from the type I problem that it seems desirable to recast the general result in
a form resembling type I as nearly as possible, with a view toward slight

modification of the existing program.

usable for all specified problem types.

The resulting program should then be

The required transformations are discussed in detail in Appendix C. From

that Appendix we reproduce the following table showing the relationships between

the parameters of the locally excited, exposed N-line (Present Report) and those

the broken shield problem (Ref. 1):

Quantity
Schematic Diagram

Left-Hand Terminal Voltage
Left-Hand Terminal Current
Voltage at Left of Source
Current at Left of Source
Voltage at Right of Source
Current at Right of Source
Right-Hand Terminal Voltage
Right-Hand Terminal Current
Ground Generator
N-Conductor Generator
Left-Hand Length of Line
Right-Hand Length of Line
Total Length of Line’
Left-Hand Termination
Right-Hand Termination

Left Termination Impedance Factor
Right Termination Impedance Factor

Table T

Present Report

Fig. 2(b)
V(o)
I(o)
v(e,-)
1(3,-)
V(e _+)
I(5,%)
v(a)
1(9)

(e ¥ [

g, 1’9, 14

Reference 1

Fig. 2
!2
_;g

1

i

Z‘I-

™+t

b

v+°
I+°

of
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Then, starting with Equations (10) - (12), the following results are obtained

in Appendix C:

v(0) =¥ =v_(Ap-y* ¥ (a)
10) = 2 = P UE)T Y ()
vie ) = v = u- (am) 7ty (c)
e ) = - =DV (a)
(13)
ve,H) = vl =y (am)t e (e)
e =L =-I"=(n" ®) )
() =3 = v, ()L (&)
1) ==, )ty ()

where Xé is given by Equation (10), and the remaining quantities are defined in
Ref, 1.
To obtain the results of Ref, 1, one sets v = Oend V, = -Vg in BEquation (10)
- - L 4
Fef. Table 17,

That is, for the broken shi=ld problem (Type I),
(14)

in Equations (13). This result compares with Equation (32) of Ref. 1.

On the other hand, for the present case, locally excited exposed il-line

(problen Type II), Vg = 0 in Equation (10) and, consequently

v o=v, (15)

14



in Equations (13). Thus the forms of the solutions for Types I and II are identical,

and differ only in the special values of !?, at most.

2.3.1 Special Case When 8_=8_-~ O. Problem Types III and IV

As § - 0, we have

o
]

-jecot 8_ = -jw

N-

]
l'a
+
m
'
|vJ
1
H
o
P
[\
(13
+
i
R
i
m
!
(Lgs)
)
]
'
<.
8
.
[1V5

Thus, in order to use the Type I computer program for this case, it is necessary
to assign some small, nonvanishing value to 6_. How small this has to be depends

on the terminations.

Alternatively one can introduce a supplementary computation into the program
subject to conditional control. Note that fcr problem Types IIT and IV 21l dynamic
quantities in Equation (13) with "-" subscripts are internal to the Thevenin source
and therefore of secondary interest. On the other hand, in the expressions for the

remaining quantities [(e) - (h)], only A requires modification. In fact, since

M-85 = (a_ 2+ R)@ e BT E
we have
_ -1, -1
A=M N~ +E-

Therefore it is only necessary to include in the program the instruction

1£0_# 0, compute A = M, N,' + M- n77
_ _ (16)
If9_=0, compute A = M, N.© + p=1

15



(In fact, this difficulty and its resolution occurs for any of the problem

types whenever §_ or 8_ is an integral multiple of m.)

It is of interest to complete the identification of this case with the results
of Ref. 2. As noted above, we are interested only in Equations (13e - h). Further-

more, since the line is one-sided, the subscripts may be dropped from M. and 5.

Finally, in the notation of Ref. 2 (and Table I)
i i, -1
P- =P = (Q)

Using these changes in notation, the second of Equations (16) is

A=urtegt - et (a)
an
sxturdtartwrndh) o () - "

i.e., two slightly different alternmative forms are possible. We will use (17a).

Substituting in Equations (13e - h) we have

IO IR A S Rl Ml (a)
A i 17t e
1N -L-I - m+dnntz ¥
-xn @ e (v) (18)
V() =¥ == @+ D (c)
IM=-8-C=2 E+dn" " (9

° )

since Y, = z? in the notation of Ref. 2.

I

16



Equations (18a - 18d) identify with Equation (16) of Ref. 2 if V° is identified

with the Thevenin open-circuit voltage vector, !?.
3. Summar

In Ref. 1 we derived formulas for the broken-shield case (problem Type I) and
a computer program to implement the model was prepared at Sandia. The more general
case shown in Figure 2b of the present report yields results identical to those of

Ref. 1 when the impressed voltage, Vg Qc of the latter 1s replaced by

V=i -V

*
in the present report. To obtain the results of Ref. 1 set

v =0, VG = -Vg,
so that
e e
= 1 = J

To obtain the formulation for the exposed line with localized external

excitation, set V, = O, so that

G

e e
= (1 =
Vo= (¥ = Y

The formmlas for the two cases preceding include a parameter

A=, B+ nT

For the end-excited line [2], V® is identified with the open-circuited

Thevenin voltage vector of the source

* See Equations (13).

17



and A degenerates to

L., Conclusions

In the process of deriving the dynamic behavior of an exposed [i-line locally
excited at some arbitrary point along the line (one of the four problem types
proposcd by Saﬁdia) we have showm that all four problems can be formulated as
special cases of a single problem. A computer program, differing only slizhtly
from that of the broken shield case (problem Type I), can be written to cover all

four cases.

18



Appendix A

Line Differential Equations With Impressed Fields

The important components of impressed field become apparent when one under-
takes to write the differential equations of a line. Figure 1-A shows Faraday's
Law applied to the ith conductor of an N-line, The law is

(1-4)

where the integral is taken in a clockwise direction around C and ¢n is the normal
flux through the plane of C in the negative-z direction. - ¢n is then the flux in

the positive-z direction.

¢ is composed of flux, ¢ (3 =1, ..., W) due to the currents, I,, in the line
conductors, and of flux due to an impressed magnetic intensity, Hl(x, y), independent

of ¥y and z near the ground plane and conductor system.

We have, for the ith conductor,

N
= :E: ¢ji - L? 12 (2-a)

J=1

where Li is a constant (in henrys) for the ith conductor. Vhen the conductor
dimensions (except ground) are small compared to spacings and to distances to the
ground plane, the impressed intensity seen by the ith conductor is approximately

Hz, and the resulting flux component is
g = - jine()d-A n, B (x)
n =~ "4 z X X=~ - Hhy Hp

¢ji =Ly I - 8x (3-4)

19



Vi(x) Ac Vi (x +ax)

Figs l~A. Faraday!s law aaplied to a short length of the
ith conductor.
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where Lji are the line inductance coefficients per unit length.

For the left member of (1-A) we have¥*

ﬁ E - as =-Ni(x) + (0-Ax) + Vi(x + Ax) + (0-Ax)
c

= Vi(x + Ax) - Vi(x) (4-A)

By virtue of the fact that tangential E is zero along perfect conductors,

there is no contribution to the integral along the ith conductor and along ground.

Using these results in Equation (1-A) we get

i}
e e
+ - = -ju . - L; H ¢~
Vi(x Ax) Vi(x) 3 gg% Lji IJ Ly H ¢ ~x
Dividing by &x = 0, letting Ax = 0, and transposing,
av T
-—i { 50 = J. BRI -A
o= * gg; ( jw Lji) Ij g L0 Hy (5-A)

Write

ij ~ °ji 3i

* -
Ve acsume that Hf = 0, so that the electric field in a transverse plane is
conservative,

21



= series mutual impedance, ith and

jth conductors, per meter of line* (j # i)

. .th
-511 = series self impedance, i conductor.

Hote also that the various terms of (5-A) are in units of volts/meter, s0

that the right member may be interpreted as an impressed voltage per meter of line,

or an inpressed electric field. Writing

e LI e e -"‘1
Ei(x) = §o Ly I (6-4)
we have, for the first line equation
dvi d : .
a;‘—+.z:a,ij Ij =Ei(x), i=1, a0 5, I (7-A5
J=1
ar, in matrix form
av e
= CI==2E(x) (8-4)
vhere Ee iz the eolumn vector
h

e i e
A PV B o ORI
(@]

* [ - - L3 .
lot to be confused with Zi" a line mutual impedance coeffieient. . relation
betiwreen these quantities is Zij =V Li,j’ where v is velociiy of propagation. Thus,

;ij = jﬁZiJ., vhere 3 = wiv.

22




Next we apply the equation of current continuity to the ith conductor (Fig. ZA):

day

Ii(x + Ax) + T AxX = Ii(x)

where qi is the charge per meter of length of the ith conductor. Again, writing,
for steady state

dividing by Ax, and letting Ax - 0,

dIi .
= tdwg =0 (9-4)
qi is induced on the ith conductor by_the potentials of all the conductors, in

accordance with
v
qﬁ_:ZCijVj’i:l""’H (10-4)
ey

But if a transverse impressed electric field is present, charges are induced on
the conductors even if all conductors are at zero potential. Turthermore, such
charge ﬁust be proportional to the impressed field, TIlear the ground plane it is
reasonable to assume that the impressed field (in the absence of effects from the
conductors) is constant and normal to the ground plane, -- say £° = E;. Then we

can write
. )
q = 2 cij vj +Cy :»:y (12-a)

where Ci is in farads.

23
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In order to evaluate the Cg, proceed as follows: First, with E; present, let
all conductors "float" with respect to ground, so that they carry zero net charges,

but take on potentials Vg(j =1, ... ,N.

Next, suppose all conductors grounded. The effect is the same as applying to

then a set of potentials, - Vg. But such a set must result in a set of charges

e I e N e
;=) C..(-V)) = - s V _ -A
4 2 15 a) Z 15 %5 (12-4)
J=1 J=1

Adding these to the charges induced by the line potentials [Eguation (10-4)],

we have, altogether
N
e . H
q = ; cys (Vs - V) (13-4)

Substituting (13-A) in (9-A) and rearranging

=5 5
i e
— + 2u(jwc )V, = (3w C,.) V. (1h-4)
dx j=1 W d 5 17 3
In Equation (1k-A) write
Mys = Myy = 3WC4y

= shunt mutual admittance, ith
and jth gonductors, per meter
of line.” (i # J).

Nss = slunt self admittance, ith conductor.

*Hot to be confused with Yij’ a line mutual admittance coefficient, In fact,

Ty5=7 Cij’ See footnote, page 18.

25



Generally the V§ must be evaluated as a separate electrostatic problem. IT
the conductor cross-sections (cxcept ground) are small compared to the distances

betiween them and their distances to ground, then approximately,
Ve = -h, E (15-a)

vhere h, is the height of the jth conductor above ground. In general, we can only

say that V§ is proportional to E;:

ve =, ES
iy
and
I | r
:E: C;. Vs = E; c,. L, (16-4)
e AE S B S S S

so that C? of Lquation (11-i) is identified as
bed
€ c i, 17-
5 = PIRTI (27-4)
=1

or, in the special case then (15-4i) holds,

I7
e Z ~o
C, = - C.. h, 1¢-i
* =1 9 (18-5)
n natrix fornm,
©=-ch (19-4)

26



i

Since the terms of Equation (14-A) are in units of amperes per meter, the

right member may be interpreted as an impressed magnetic intensity or as a distri-
buted current source, Writing

N N '
e _ (5w c, VS = g°
H; = Jz;_ 1375 = Yy ng Ny Ky

e 'e on_*
- Ey li (d\. lx)
e have
N
aTt,
i e . -

- + = = T -4
= J'E=1: nij V;j Hi, i=1, ... ,1 (21-4)

a5 the second line equation. Writing in matrix form and pairing with Egquation

( 8'A) ’

av .
m*TeL1=E(x)
(22-A)
ax .
& rnL=1(x)

where

, 27-28




Appendix B
Line Response to Impressed Fields

Solution of Differential Equations

From Appendix A, Equations (22-A) we have

dv .
FteI=E(x
dI .

AL =H()

(1-3)

These equations will be solved using Laplace transforms in the x cdomain, since

we pay choose the N-line to lie in the range 0 < x < 4, where 4

the line. TNotation will be as follows:

Let F(x) be the column vector

F(x)

Then for the Laplace transform of F we write

ZEx) =Fp) = EET o
(o]
r ]
R e ¥ (o)
. G k
L/, Fy(8)e =% a5 | | Fpp(p) |

is the length of

29



dr,

For the Laplace transform of dy—l it is showm in standard texts, using integra-

tion by parts once, that

~ aF;
= -F,(0) + p F;(p) =\zz=

o

Thus

g

|
L
1

(o

-5, (0) + p F(5)

PR
L&
N —
]
B
n

<3

i

LEX_.J -I',](O) +p ?I'(P)_]
E']._(O) }‘}(p)

= - ool
(0 'f:;(p)J

-r(0) + » ¥(p)

Taking transfcrms in Zquations (1-3)

wo) + W+ LT =T

-1(0) +pE+n ¥ - F
that is

7+ ¢ I=u0)+T

n¥+pl=100)+F

30



Solve for '\_7 by Gaussian elimination of z:

w
B =y
ve get
2 2w - - ~ve ~e
(p +:°)W=pVv(0) -5 1I(0) +pc -CH
or . -
o p 1 e ¢ E(p)
Vg3 ¥0) - 555 10) * 52— Ep) - 57—  (2-B)
p +3 p + p +8 p +35
Similarly, eliminating ¥,
l = 2 2 _1;(0) ) 2 n V(O) + 2 2 H (p) ) 2 (3‘5)
p +3 p +B p +3 p +3

Tables of Laplace transforms and their inverses are generally availetle (e.g.,

Ref. 5, Section 29; Ref. 6, Section Lk}, Writing, for the inverse transform,

L [F(p)] = Fx)

Vle have from standard tables,

31



[ 1
d{’-l TP——Z- = cos Px
|p + B
(4-B)
r 1
-1 1 -1
—=\| =8 sin Bx
4 _p2 . Bad
To obtain the transforms for
-1 Ee(P)
G(x) =L {573 (5-B)
p +8
and
-1 E?(P)
I(x) =2 " {5—= (6-3)
- (2 +8

use the convolution theorem [5 ’ 6; ibid.]. The theorem states: Given the product

of two Laplace transforms
G(p) = F1(p)F,(p)

and the inverse transforms of the factors

F (x) = 270 F (0)
£ (x) = 77T Fy(p)
then
G(x) = r: F (8) Fylx - B) a5 = I: F,(x - %) F, (B) a5 (7-B)

32



In Equation (5-B), if we let

F (o) = (2° + 6D
(8-B)
Fo(2) = E(2)
then the product
G(p) = F () Fo(p)
is a column vector with the scalar elements
G;(p) = F () fz’i(p) 1=1, eeuy N
so that, by Equation (7-B), the ;B element of the inverse transform is
e .
Gi(x) =j:Fl(x—§) Ei () ag i=1, ... , N
or
x e
o(x) = _[O F,(x - £) E°(8) 45
Since
F,(x) = Zt [(pz + 8°) '1:] -t sin Bx
we get, for (5-B),
ot0) = 877 [ 2°(8) sin [px - ©)] a8 (5-5)

(o]
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In exactly the same way, Equation (6-B) becomes

JI(x) = g~1 fx H°(E) sin [B(x - §)] g (10-B)
[o]

Next, from the general inversion formla [29. 2.2, Ref. 5]

ctje
1

G(x) = —= I E(p)e dp, ¢>0
— J2r]‘ . -—
c—Jm

we get, by differentiation with respect to x,
ctjo

G'(x) = Jiznf  i(p)e™ ap
c-j

Tus, since

2 (E ? A e
Q(X) =X g ) 2‘ =B J E (§) sin [B(X - g)] ag
p +8 o
it follows that
_ pTE'e(p)
6" (x) = ::,1% - 62‘ I ES(5) cos [B(x - 3)] ag (11-8)
Similarly,
> oH () x
FHCOEE 2 {PE - 62} - fo E°(E) cos [B(x - §)] ag (12-8)

Substitution of Equations (L-B), (9-B)-(12-B) in the inverse of Equatlons (2-B)
and (3-B) yields, respectively,
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x
¥ = ¥(0)+cos Bx - 8™  I(0)-sin gx +-f E°(E) cos [B(x - E)] dg
o

X
-8 [ B s [ax - )] ag (13-8)

X

I=1(0)ecos Bx - B-l 1 V(0)-sin Bx +I _}_Ie(g) cos [B(x - §)] dg

X
-8 [ 2%®) sim [aex - ] a8 (14-5)
o

or, more compactly,

V = v(0)+cos Bx - B g 1(0)-sin Bx + G'(x) - ¢ J(x)

_ (15-B)
L= I(0)-cos Bx - BT 0 ¥(0)-sin x + '(x) - n alx)
Now (Appendix A and Ref. k)
-1 v o, . .
BTGy =g (w Lij) = j(v Lij) = 32
and (16-B)
g™t =Z(C,.) =3(vC. ) =37
Nig =@ (Cyq5) =3 i3/ =9 Tij

where Zij and Yij are the N-line impedance - and admittance coefficients respectively.

Therefore,

B~ ¢

N

J

(17-B)

Bl n = ;

fr<
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Substituting in (15-B),

V = V(0)+cos Bx - j Z 1(0)-sin Bx + G'(x) - { J(x)
(18-B)
I = I(0)*cos Bx - j Y V(0)°sin Bx + J'(x) - 1 G(x)
Introduction of Terminal Conditions
In Equations (17-B), in order to conform with previous notation, write
v(0) = ¥
100) = I
and note that terminal conditions require that
I+y V=0
(19-B)
I’-yYv¥Y-=o
(see Glossary, Ref. 2)
Then Equations (18-B) yield, respectively,
vO = ¥ cos B2 - § 2 I'esin B4 + G'(8) - L 3(2)
(20-B)
1°=1I"cos B4 - j Y V' .sin B4 + J'(£) - n G(4)
Writing 6 = B4 and
U(x) = G'(x) - & I(x)
(21-B)
H(x) = 3'(x) - 1 G(x)
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_Y_o-fcose-;jglisine-l-_q(lu)

I°=_];i cos § - J YV sin 8 + W(L)

(22-B)

Using Equations (22-B) in the second of Equations (19-B) and replacing f’ by

means of the first of Equations (19-B),

IO-XOV°=|:-f'f'cose-j_’x:fsine+_w_(£)]

_-Y_o [l'i cos 6 +jgzivi sin 8 +_I-_I(l')]=o
l:(f‘ +¥%) cos 8+ J(x+x 2 Xi) sin 9] Yi = W(4) - ¥° ue)

Factor Y in the left member:

Y[(zr'+21%) cos 0+ 3@ +21° 27 sin 6] T = W) u(y)
Using previous notation [2]
Y [('+2%) cos 0 + 5(3+ 2 PY) sin 6] vt = H(a) - ¥° U(¥)
Write
5= (2" +2°% cos 0 + j(3 + 2° PY) sin 6

and

k(2) = z [W() - 1° ()]

whence (23-B) becomes

vh= 5T K(8)

(23-B)

(2L-B)

(25-B)

(26-B)

37



Equation (25-B) is transformed as follows:
By (21-B),

K(2) =2 3'(8) - 271 6(8) - B g'(#) + B ¢ 3(4)

gfl #(g) cos (82 - 9] -3 .[t E°(5) sin [B(4 - §)] a8
[o] (o]

2° fz E°(5) cos [B(4 - 8)|ag+527° gfz H°(5) sin [B(4 - 5)] a5
o (o]

Jz {2eos[pe -]+ sz zsm [B04 -] } H°(®) a8
_Iiﬁéws@u-§ﬂ+jgsm[mz-m]}f@)ﬁ

K(4) = f: {3cos[B4-8)]+ 320 st [B4 - 8]} 25°(5) a8

) IZ {£° cos [0t ; £)] + 3 9 sin [B(4 - 8] } E°(E) s (27-B)

Use (26-B), (21-B) and the first of (19-B) in Equations (18-B) , and note that

v(0) = v
100) = *
Bx = 6"

V=y_icose' —jg_I_l sin 8' + U(x)

(S cos8' + 3P sing') 8T K(2) + U(x) (28-B)

38



_Igi cose'-jlf' sin 8 ' + W(x)

]
[}

-(}_i cos ' + J Y sin 8") §_-l K(£) + W(x)

-z(gi cos 68' + j J sin §'") §-1 K(4) + W(x) (29-B)

[}

U and W are easily transformed, respectively, to

u(x) = [ {E°(6) cos [B(x - )] -3 2 B°() sin [B(x - ©)] } a5 )
° ‘ (30-B)

i) = 1 [ {2 2208) cos [8x - 9] - 5 22(5) stn [50x - 0]}t

In summary, voltage and current along the line are given by Equations (28-B)
and (29-B). The quantities S, K(£), U(x), and W(x) in those equations are defined
by Equations (24-B), (27-B) and (30-B), respectively.
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Appendix C

General Solution of Multiline Problem with
Space-Impulse Vector Voltage Source

' Start with Equations (11) of the main text. We are interested in determining
various terminal quantities, which are expressed, in the terminology of the present

report, and also in the terminology of corresponding quantities in Ref. 1, by the

following:
Table I
Quantity Present Report Reference 1

Schematic Diagram Fig. 2(bj Fig. 2
Left-Hand Terminal Voltage v(0) = V2
Left-Hand Terminal Current 1(0) = -12
Voltage at Left of Source \_7(66) = y_%
Current at Left of Source I(85) = -_1_5:
Voltage at Right of Source | 2(9;'5) = '_\j_
Current at Right of Source ;_(93) = _I_i
Right-Hand Terminal Voltage v(6) - Vo
Right-Hand Terminal Current 1(8) = pg
Ground Generator VG = —Vg
N-Conductor Generator Yo = 0
Ieft-Hand Length of Line 90 = 6-
Right-Hand Length of Line - 90 = 6.,
Total length of ILine 6 = 6- + 6 +
Left-Hand Termination ' = Y2
Right-Hand Termination Y° = 1
Left Termination Impedance Factor _P_i = P-
Right Termination Impedance Factor 20 = P,
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From Equations (11)

since

since

But by Equations (4),

Therefore,

*
See Table I

**
See Ref, 1

42

10) = -1% = 2 {n0) 57 &%= x 2t 57 i
I(0) = E? by Equations (4)
v(e;) = y% = R(6,) g‘l K

R(e)

¥(e:)

R(0) = J by Equations (L)

R(B) =d cos B_+j 2; sin 6
= J sin 8_(-j cot 8_-d + 27)*

= -b:l(a_ 3+ g_)**

I
<
]
1l
&
=
1
(0
=

(1-c)

(2-¢)

(3-¢)



1(65) = -t = ¥ {ze,) 87 &7}

But by Equations (&),

2(8_) =70 ) =B cosB_+JSsinb_

jsin6 (-~ JB-cot 8.)

= v Mg+ e )

Therefore,

ovtyn-str® (k-C)

1(83) = STK

Passing to the right of the sources (Fig. ™), we have, in Equations (11),

o]
and consequently,
-1l e e
V(o%) = ¥= = R(B) 87 K + ¥
= [-b:l M- 57T B+ g] ve (5-C)
: R S § -1 e
I(6) = I = -I-=Db  YN-STK (6-C)

by Equation (4-C).

*See Ref. 1
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Finally,

v(8) =v2 = R(8) 5T K% + v® cos (8 - 8.)

R(8) 87 k° + 7% cos 6,

= (8) 7[5 cos 6, + x°() " r(e)] [rte) ] ¢° (7-c)
and
1(8) = I, =¥, V5 : (8-)
vhere
R(B) = d cos 6 + j g? sin 8
=jsin @ (-j J cot 8 + P-) (9-c)

= vt (a g+ p)*

The next step is to transform the quantities _Ige and S. First, by Eguation
(12)

=
!

= -(B, cose++j£sin9+) ze

< s . e
-j sm6+(§-32+cot6+)z

(10-C)
-1 e
=b, " (d+2a,BP)V
-1 e
=b, NV

*
See Glossary, Ref. 2,
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Transformation of S is somewhat more involved. From the second of Equations (U4)
and Table I we have

§=(B-+B,) cos (6, +8_) +J (3 +P, P-) sin (8, +6_)

(- +2,) (cos 8, cos 6_ - sin 6_ sin 6_]

+ j(£+£'_§_-) [ sin 8, cos 8_ + cos 6, sin 8_]

E:L'pa.nding and rearranging,
S = {j J cos 9+ sin §_ + P- cos 6, cos B_ - P, sin 9+ sin &_+ j P, P- sin 8 cose_}

4

-I-{jgsine_*_cose_-z-sine_l_sine

L +§+’cos6+.co's e_+,j§+§_- cose+ sine_}

= {@cos 6, +J B, sin 9+)(,j sin §_ + P- cos e_)}
-1-[(3' dsin@ +P cos b, )(JcosB_+JP-sin e_)}
8 = sin 6 sin 6 _ {(-j $ cot 6, + g+)(=9; - j P- cot 8)

+HI -3

B, cot 8, )(-j J cot 6_+ P-)}

-, ) H(a, 3+ )@+ 8B + (S +a, (e 3+ )}

§ = (b+ b-) -1 (P-d—l- N- + L M-) (ll_c)

Further manipulation of § yields its relation to A [1]. We have
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2
\ I
—~ —~
(o o

I
—~
o'
o'
[}
~—
]
o)
=

conversely,

n
o’
o
=
lta
1=
1

A=v, b N,

1o
]
&
S

1
w0
1

=

<

S~
+
1

]
=
1
[ 47]
]
—
{
id
=
=
S
+
lta
i

Using Equations (10-C) and (11-C),

g=u- s [T @) ¢ o, v (o, m-

-1 -1 -1
(b, o) w57 [, vy, m- w7t ep,

(b, o) u- g7 u m-uT

-1

=170, -1 . .-1 -1
(b, b)) [ 57% 7t s 7]

Using Equation (11-C),
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. - -1
= (3 + 8- 5T )
- 1 -1 ,.-1 -1
= [(N M, + M- N- )(M+ N+)]
-1,-1
= (AN, M)
=M (AN) - | (24-)

In Equation (7-C) we need to reduce the qua.ntity'

X =5 cos 0, + K (%) B(6)

- Using Equations (4) and (12), and Table I, we get

\ .
| 2{_=c059+[(2—+g+) cose+j(§+g+g-si_n6)]
-[:g_*_cose++j§sin6+][:£cose +j B- sine]
= P- (cos 6 cos & + sin 6 sin 8) + 3 3 (cos 6, sin § -sin 6, cos 8)
=P-cos (6 -6,) +JJ sin (8 -8,)
=P-cos 6_+JJ sinb_
X=-b T3 (15-C)
We can now proceed to further transformation of Equations (1-C) to (8-C). Using
Equations (10-C) to (15-C) where apprcpriate we get
\
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v(0)

"
5

I
]
[
1

I(0) = -I

I
-~
]

v(ez)

I(e;) = I

It
—~
>

Using Equation (1L4-C),

v(e¥) = ¥, =1
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Ie) =1y = -1 = (a2 y® (21-C)

by Equation (19-C).

Finally, to transform V(8) and I(6) it is desirable to cast S and R(8) into

other forms.

Let
(22-¢)

Then Equation (9-C) is written

&
o
T

R(8) (23-C)

while, from the second of Equations (4) we have

{ta
]

-
5508 |a(R- +2) + (4+ 2, B

- -1 [(£+ a P-) +g+(a§+_1_>_-)']
- p-L (_f + 2, yg‘) (24-C)

Using Equation (15-C) in (7-C)

v(6)

) -1
7 = R6) 57 (a7 - [r®)]

- r(e) 571 &- [R(G)]-l ve

Then substituting Equations (23-C) and (24~C) yields
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w(e) = ¥5 = w7 (v ) (o) d + 2, wh L () ) v

bl o+ Ty oyl

vo [t @t ez b

. 4 .
Now since M- and N- are each linear functions only of Jd and P-, the pruducts of

which commute, wc have
Whence

By a similar argument

M- N- = N- M- (25-C)
“etc.
Therefore we may write
-1
o -1 [-1.2,.4 17
¥O) =¥ =vl b [ptw (vt v p D] O
R A N R R e I e
=b-"b {N- [M- N- M5) T+ M& P ]} v
= =" 4= o =T I -
S P R Lo
=v oyt et p)] o (26-c)

In virtue of Equation (25-C).

Consider the quantity

50



Y

1>
]
=
tdw
+
0

(+ap-) +(ad+B)p,

(3 +B-B,) +a(k-+B,)

But

&=-jcot 8 =-jcot (B, +86)

.1l -cot B+ cotB. 1+ a+a.

= J Tcot B4 + cot 6. a_ ¥ a_
Substituting (28-C) in (27-C)
1+ a, a_
é=(£‘*‘2'§+)+—a_‘_—_,_a-—-(2'+&.)
1
_a++a-{(a++a_) (§+g_§+)+(1+a+a_)(g-+g+)}
=?}_—-a—{(£+a._g-)(a+£+g+)+(a_£+_f_>_-)(£+a.
I (n-m +m-n)=ni+mdp
=T a ta = = == = - =

Substituting (29-C) in (26-C)

(27-C)

(28-C)

(29-C)
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v(e) = ﬁ = b:l b [y_.'.'l (a.+ + a._)"l (N- M, + M- g_'_):l-l lre
-1
= b(a +a) [(M iy n- yq_] A
=btb(a, va) (AN (30-C)

The scalar coefficient is easily simplified. We have

j esc 8(-j cot 8, -J cot 8)

1
-+
b(a+ a_) J esc 6_

cse B cos 04 cos O
= -j : + =
csc 6_ sin 6+ sin ©

csc A

sin S_ cos 6+ + cos 8_ sin 8+
= "J Zse 6_ sin 6, sin 6 _ )

= -5 S5 5 0 sin (6++6_)

sin 6
=-jese b, = -b
Thus (30-C) becomes, finally,
- . -1 ve
() =¥ = -b, (AN) (31-C)
while the current is simply
1) =10= v, ¥ (A N1y (32-C)
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Collecting the results for convenience, we have

v(0) =¥2 =b_(AN-)1¢®

1(0) = 1% = b ¥2 (A W) ¢°
¥(8:) = ¥ = 4~ (A N-)Ly®
16;) = -I*= (A7 7

-l._e
Wop) = Y=y (am)ty
i i -1.e
, 6 =17 == (anty
o -1l _e
v(e) =¥ = o, (An)T ¥
o .0 - y=1 ..
1) =1, =-b ¥ (AE) "V

(a)

(o)

()

(a)

(e)

(£)

(2)

(h)

(33-C)
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