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ABSTRACT

The electromagnetic compatibility of rockets 1is a research field
of wide scope. One of its segments 1s concerned with the response of
impedance-loaded conductors electromagnetically coupled to a rocket
when this is illuminated by a plane wave. The currents in the load
impedances are induced by the action on the line of both the incident
field and the scattered field from the rocket. 1In this paper a coupled
circuit consisting of a two-wire transmission line near a rocket is
considered. The objective is to derive formulas for the currents in
the impedances terminating the line when the rocket, line, and incident

field are oriented in space to maximize the response in the line.
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INTRODUCTION

The present paper is one in a series devoted to a study of the receiv-
ing characteristics of external unshielded conductors coupled to a rocket.
The specific purpose is to derive formulas for the maximum currents in the
impedances Z0 and Zs terminating a two-wire transmission line coupled to a
rocket as shown in Fig. 1. The length of the line and its position along
the rocket are arbitrary. The axes of the transmission-line wires are
parallel to the axis of the rocket; all three conductors lie in the same
plane. A plane monochromatic electromagnetic wave is incident on the con-
ductors with its electric vector parallel to the common axis. It is this
orientation of conductors and incident field that maximizes the load cur-
rents. Fig. 2, on which the theoretical discussion is based, is essentially
the same as Fig. 1 except for minor differences in the arrangement of the
loads. It shows a two-wire transmission line electromagnetically coupled
to a rocket. The rocket 1s conductor 1, the transmission line conductors
are numbered 2 and 3. The origin of cylindrical and Cartesian coordinates
1s at the centroid of conductor 1 which is a cylinder of radius a, that ex-

tends over the interval -=h <z <h The distance between the centers of

1 1°
the wires forming the transmission line is b. The radii of the wires are

- = E M = =
equal, a, aj. The line extends from z, zy h2 to z, z, h2. At

z, = h2 the line is terminated in impedance ZS; at z, = -hé the terminating

impedance is ZO. The distance from the center of the rocket to the center
of the line is d. The incident electric vector is parallel to and in the
same plane as the three conductors; the wave propagates in the positive x

direction with the velocity of light.

THE EXCITATION FUNCTIONS FOR THE THREE-CONDUCTOR CONFIGURATION

An incident plane wave traveling in the positive x direction with

electric field parallel to the z axis is represented analytically by

I_:im:(x) - E.’zmc(o) e—jBx
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{IQ where the reference for phase is at x = 0, 8 = 2n/) is the radian wave

number, and A is the free~space wavelength.

It is convenient to define an excitation function U for each of the

conductors. For conductor 1 this function is

inc(o) - BUl 2)

For conductors 2 and 3,
inc( d+ b/2) = inc(o) ejB(d-—b/Z) - 8U, (3)
Einc( - b/2) = Elnc( 0) ejB(d-l-b/Z) - 8U3 %)

For later use it is necessary to express U2 and U3 in terms of their sym-

qb metrical and antisymmetrical components. This is accomplished by writing
+ -
U2 (U U ) + = (U U3) (5)
U, == w, +u,)) - Lw, -uy (6)
3 2 2 3 2 2 3

and then setting

U, = v+ v Uy = us - v? (7
where

ud a (U, + U,)/2 = 8 -1 inc(0) ed8d s (8b/2) (8)

v = (U, - U)/2 = ~387t Ei“‘:m) eJBd i (8b/2) (9)



VECTOR POTENTIALS ON THE SURFACES OF THE THREE CONDUCTORS

The resultant vector potentials on the surfaces of conductors 1, 2,

and 3 due to the currents in all of them are, respectively,

™ by e'JBRll h, e’JBRlz
= - y & ' 1 & '
Atz T %m ! { L) =% dzy + [ I,(zp) =% dz,
~h, 11 ~h} 12
?z MR E
+ I.(z!) dz!}
Y 373 TR, 3
g 1 e'58R21 ) IR
= ——— 1 - 1 ] 1 ~ 1]
AZz i { £ Il(zl) R dzl + f' 12(22) R d22
—hy 21 —h2 22
?2 e'j8R23
+ I.(z!) ————— dz!}
Y 3%y TR, 3
My ;1 e'JBR31 ;2 e‘JBR32
A, =2y I.(z') dz! + I (z!) &— " 4!
3z = 4m y 120w 17, %) TR 2
?2 e‘JBR33
+ I(z!) &— " 42"}
Y 323 TR 3
where
= - ' 2 2 - = _ ] 2 _ 2
R11 “/(zl zl) + a; 3 RlZ \/(z1 zz) + (d - b/2)

(10)

(11)

(12)

R13 -J/zél - zé)2 + (d + b/2)2 ; R21 84/122 - zi)2 + (d - b/2)2



- / _ 182 2 . _/ o
R22 (22 z2) + a2 3 R23 =/ (z2 z3) +b

R31 =V/z;3 - zi)2 + (d + b/2)? T =,/(z3 - zé)2 +b

S }
Ryz =v (25 - 24

y2 + a% (13)

and Mg = 4T x 10—7 H/m is the permeability of free space. The several dis-
tances Rij in (13) (of which several are shown in Fig. 2) are measured from
the point z, on the surface of conductor i1 where the vector potential is
calculated to the point zS that locates the current element on the axis of

conductor j that gives rise to this potential.

The currents and vector potentials on the surfaces of the wires nos. 2
and 3 comprising the transmission line can be combined into symmetrical and
antisymmetrical parts as was done for the U functions in (5)-(9). This com-
bination is useful because the antisymmetrical or balanced transmission-line

a 1 . .
currents [ (zz) = 2[122(22) - 132(22)] (which are equal and opposite in con-

ductors 2 and 3) maintain voltage drops across the impedances Z_ and ZS. On

0
. s 1 .

the other hand, the symmetrical currents I (zz) = 2[122(22) + I3z(zz)] in

conductors 2 and 3 are equal and codirectional. They constitute radiating

antenna currents which generate no voltage drops across Z_,  and Zs.

0
With equations (11) and (12) the following expressions are obtained for

the symmetrical and antisymmetrical vector potentials on conductor 2:

s 1 u0 hl e—j8R21 e_jBR31
= = = ——— ' '
A (zp) = 5lAy, (20 + Ay, ()] = 57 £ I(zp) [ Ry; = R ] dz)

~h, 31
(14)
T ;2 s PR TIBRy;
+ — I°(zl) + } dz!
by 2L Ry R23 2



. L ng 1 IR T3RRy,
= == - = —— L} - L
A,(zp) = 318y, (z)) = Ay (2] =50 [ T,(z)) | =% R %1
-, 21 11
ug ;2 ) - 18R TIPRas
+ — I"(z.)) L - J dz, (15)
i g R, R, 2

s _ AS a _ _a2
Note that AZ(ZB) Az(zz), AZ(ZB) Az(zz).

SIMULTANEOUS INTEGRAL EQUATIONS FOR THE CURRENTS ON THE THREE CONDUCTORS

The simultaneous integral equations for the currents on the rocket and
the transmission-line conductors are obtained from the boundary conditions
that require the axial electric fields to vanish on the surfaces of the three
conductors. Since the part of the field due to the currents in the conduc-
tors has the component Ez = (jw/Bz)(Bz/az2 + BZ)Az and the incident fields
are given by (2)-(4), simple differential equations in Az are obtained which

have the solutions: ¢

-1 . 4w .
Aﬂuo A1z = -] ES [Cl cos le + D1 sin le + Ulj (16)
4ry"tA. = -1 2T [(C. cos Bz. + D. sin 8z, + U.] (17)

Uy A2z g, 2 2 2 2 2
4w _lA = —j aw [Cc os Bz, + D, sin B + U] (18)

Mo %3z T, 3 ¢ 25 3 Z3 3

where CO = 1207 ohms is the characteristic impedance of free space, and the
constants of integration are C and D. If the integrals in (10)-(12) are sub-
stituted for Alz’ AZz’ and A in (16)-(18), these become simultaneous inte-

3z
1 ] |
gral equations for the three currents Il(zl), Iz(zz), and I3(23).

The integral equations for the symmetrical and antisymmetrical currents

on the transmission line may be written down immediately from (14) and (15)
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‘ with (17) and (18). They are

-3BR,,  -JBRy

by
-1.s 1 e e
4ru_ A% == I(z')[ + sz'
0 %z z_hl 1'%1 Ry, Rqy 1
?2 s !. e-j BRZZ e"j BR23
+ I°(z!) | + ]dz'
~n; 27 L Ry, Ryg 172
= -] éE-[Cs cos Bz, + D° sin Bz, + Us] (19)
CO 2 2
1. 1 71 e‘jBRu e'jskal
4y A% = = I (z')[ - }dz'
0 “z 2_,nl 1'%1 R, Ryq 1
{ ]
‘}2 . IR TIBRys
+ I%(z}) - dz
-hy 2L Ry Ry 472
2
= -5 3" [c® cos Bz, + D? sin Bz, + U?) (20)
Zo 2 2
where
s 1 a 1
C” =3(C,+Cy , C =5(C, -Cy
(21)
s 1 a 1
D —2-(1)2 + 03) . D° = 2(D2 - D3)
Let
© ° i }\1 (] P P (22)
) W = - — L.(z)) + dz
an { T1'71 i R, Rqy 1



Tt _ .
' and . % 1}1 (e 18R,, . JBR31] ' )
W™ o= -j I.(z!) - dz (23
8 _hl 1'°1 R21 R31 1

Then (19) and (20) become:

b, . - e'jBRzz . BRy3
Ty | i '
f' I (zz) L TR + R ?dZZ
~h} 22 23 4

-3 LS [Cs cos Bz, + D° sin Rz, + us + ws] (24)

%o 2 2
h2 ‘ —jBR22 -jBR23 "
a, ,, . e _ e iy
/1 (z)) | =% R | 425
~h2 22 23

= -j 4n [Ca cos Bzz + D sin Bz, + U2 + Wa] (25)

Lo 2

. s .
As mentioned earlier, the current I (zz) contributes nothing to the

voltage drop across Z, and ZS if these are lumped terminations centrally

0
located. Hence, (24) need not be solved. However, it should be emphasized
that the formulation is general to this point subject only to the usual re-

. ; 1y .
strictions: Bal << 1, a, << h Ba2 << 1, Za2 << (h2 + h2), Rb << 1, and

1 1’
b << (h2 + hé). Attention is now directed toward the solution of (25) for

the antisymmetrical current in the transmission line.

THE ANTISYMMETRICAL CURRENT IN THE TRANSMISSION LINE

Because the antisymmetric currents on the two conductors at zé and zé

are equal and opposite and close together, their effects cancel at all dis-
tances |z - z'l that are large compared with the distance b between the two

(4

conductors. It follows that the left side of (25) is well approximated by [1]:

1
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h -jBR22 -j8

2
a e e
f I7(z}) [ -
~h! 2L Ry, B3

R)3
}dz' 1 213(22) 2n(b/a,) (26)

Similarly, if Bd << 1, hl > h2’ and h, > h!, W as given by (23) may be

1 2°
written as follows:

14
W% = o 22 I,(z)) tal(d + b/2)/(d - b/2)] (27)

The characteristic impedance of the two-wire line is

4
z = -2 gn(b/a,) = 1/Y_ =J/2%/¢ (28)
c " 2 c
Then
Ia(z) = -jZYC[Ca cos Bz + D2 sin Bz + U? + Wa(z)] (29)

Here U? is the contribution to Ia(z) from the incident field and wa(z) the
contribution from the coupled rocket. For simplicity in writing (29) the

subscripts on z have been omitted.

THE CURRENT IN THE ROCKET

A closely-spaced transmission line that extends a few meters in length
near the skin of a rocket has only a relatively small localized effect on the
current in that rocket. Accordingly, it is a satisfactory approximation to
neglect the contributions to the vector potential on the surface of conductor
1 by the currents in conductors 2 and 3 in the process of determining the

current in the rocket. Thus, (16) with (10) becomes:
h1 -JBRll

[ 1.(z") & — dz' & -
S Wl R1 %0

4
[C1 cos Bz + U1] (30)

(The coefficient D1 vanishes because the current satisfies the symmetry con-

10



'(" dition I, (z) = Il(—z) and has no discontinuity in slope at z = 0.) The
approximate solution of the integral equation in (30) is [2]:

4 Ul(cos Bz - cos Bhl)

I,(z) = j — —
1 CO [de cos Bhl - Wu(hl)]
- j 2T y k. (cos 8 h (31)
j Co 1K cos Bz - cos B 1)

The functions ?dU and ?U(hl) are defined in the Appendix.

THE CURRENTS IN THE LOAD IMPEDANCES

For the antisymmetric current Ia(z) ordinary transmission line equa-
tions apply so that the potential difference across the wires at any posi-

tion z can be obtained directly from (29). It is given by

a a
a -1 31 (z) - _qa a 1 W (z)
vV (z) Joc 3z 2[-C” sin Bz + D° cos Bz + ST ]

(32)

where use has been made of the relation B = wV 2%c for a dissipationless
line.

The term awa(z)/az is easily evaluated from (27) and (31). It is

aw?(z) _

3z —BUlKl ¢n{(d + b/2)/(d - b/2)] sin Bz (33)

Since U? is given and w2 and awa/az have been determined, Ia(z) in (29)
and V®(z) in (32) are known except for the constants c? and D®. These are
easily evaluated in terms of the impedances Z0 and Zs at z = -hé and z = h2,
respectively. Thus, with (29) and (32),
a
L9 v¥(h,) = 2[-c* sin gh, + D* cos Bh, + 13w (z) ]

8 9z z=h2

11



a a a a a
=z (h,) = —jZZSYc[C cos h, + D° sin Bh, + U” + W (h))] (34)

Also,

]

a
v¥(-h}) = 2[C* sin Bh) + D cos Bh! + L W (2)
z--hé

2 8 9z

- - a 1y o s a R | ' a a. ..
2ol (-hy) = j2Z,Y _[C” cos Bh, - D" sin gh, + U” + W (-h))] (35)
These equations may be rearranged as follows:

a . a .
C[-sin th + JZSYc cos th] + D" [cos th + JZSYc sin th] G(hz) (36)

Ca[sin Bhé - jZOYc cos Bhé] + Da[cos Bhé + jz Yc sin Bhé] = H(—hé) (37)

0
where . a
. a a 1 aW (z)
G(h,) = -iz_¥_[U% + Wi (h,) - 3 525 ] (38)
z=h
2
T a a, . ;_awa(z)
H(-hz) jZOYc[U + W (-h)) - 2 5z z=-h'] (39)
2

The simultaneous solution of (36) and (37) yields:

L 1 s
a H(-hz)[cos th + ??E?c sin Bh%J trffhz)[cos th + JZO

. ]
ca o hithy)lcos Bhy * 177, sin Bh Y. sin gh,]
D

(40)

L - ] - - L - s
G(ﬁz){f;n th jZQYC,C?i_BhZ] Hfth)[ sin th + stYc cos th]
D

D2 =

(41)

where

12
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D= j[Yc(ZO + ZS) cos
The total length of the line is

a
G(h2) = -stYc{U + U K1 enf (2d

1

+ UlK1 n[(2d

=h' = 4 a
H( h2) JZOYC{U + UlK1 en{(2d

- UlKl en((2d

Thus,

a ' = — a M -
I (-hz) jZYC[C cos th D

= -jZYc{Ca cos Bhé -D

x (c
a . a a
1 (hz) —JZYC[C cos Shz + D

a a
—szc{C cos th + D

x (co

These are the final expressions

2
Bs + jJ(1 + YCZOZS) sin BRs] (42)

s = h, + hé. In (40) and (42),

2
+ b)/(2d - b)](cos Bh, - cos Bhl)}
+ b)/(2d - b)] sin 8h, (43)
+ b)/(2d - b)]1(cos Bh; - cos Bh,)}
+ b)/(2d - b)] sin 8hj (44)

sin Bhé +v? + wa(—hé)]

sin Bh) + v + UK, 2n[(2d + b)/(2d - b)]

os th - cos Bhl)} (45)
a a
sin th + 0" + W (hz)]

sin Bh, + v? + U K, n{(2d + b)/(2d - b)]

s th - cos Bhl)} (46)

for the load currents Ia(-hé) in 20 and

Ia(hz) in Z_. Y_ is defined by (28); c? and D? are given by (40) and (41);

uv? and U1 by (9) and (2), respe
1/[¥,, cos Bhy - ¥y (hd].

ctively, and Kl by (31), i.e., Kl -

13
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Note that in (45) and (46) the currents in the load impedances depend
upon the length h1 of the coupled rocket and on the relative axial location
of the transmission line. The center of the rocket is at z = 0; the ends

of the line are at z = h, and z = -h! If the lower end of the line is

2 2°
above the center of the cylinder, hé must be replaced by -hé in the formulas.
On the other hand, if the line lies entirely in the interval —h1 <z<0,

then -h2 must be written for h2 in the formulas.

Resonance in the cylinder with Bh., = 7/2 increases Il(z), as given by

1
(31), and hence W?(z) and aWw?(z)/9z. This significantly affects the cur-

rents in the transmission line and its terminating load impedances.

CONCLUSIONS

A unified treatment has been developed for the determination of the
currents in the terminations of an open-wire transmission line that is
electromagnetically coupled to a rocket. The relevant integral equations
for all currents have been formulated and those related to the currents in
the loads solved. In this manner full account is taken of the incident
field and of the field scattered from the rocket as they affect the currents
in the transmission line and its terminating loads. Since the formulation
is based on the vector potentials Az due to all axially directed currents
and the associated charges, it necessarily includes the contributions from
all components of the electromagnetic field that are derived from Az' These
are the radial and axial components of the electric field and the associated
magnetic ficld maintained by the currents and charges in the rocket and the
transmission line, and by the primary incident wave. Note that these distri-
butions are not arbitrarily assumed but are derived from the boundary condi-
tions; they include the effects of mutual coupling. The analysis as pre-
sented does not take account of the lateral displacement of the current in
the rocket as the transmission line is brought nearer. This proximity effect
is equivalent to a shift in the mean position of the current in the rocket
from the central axis. This does not change the order of magnitude of the
currents in the load impedances of the transmission line even when this is
quite close to the surface of the rocket. A more detailed discussion of the

significance of this effect and for its numerical evaluation is the subject

of a separate note.

14



APPENDIX

The functions de and YU(hl) which appear in (31) are defined as

follows:

By

¥, = (1 - cos 8™ | (cos 82" - cos 81 [K(0,2") - R(hy,z)] da
1 .

h

1l
?U(hl) = _{ (cos Bz' - cos Bhl) K(hl,z') dz'
1
with
-3jBR
K(z,z') = e R

2,1/2

R=[(z - 2% + af)

They are readily evaluated by computer.

47)

(48)

(49)

(50)

15
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Fig. 1. Typical configuration of a transmission line
electromagnetically coupled to a rocket



Fig. 2.

L J zl=-h1

Geometry of a coupled circuit approximately
equivalent to Fig. 1
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