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Abstract
The electromagnetic field inside a spherical shell with a small circular
hole is studied. The shell, which is perfectly conducting and infinitely thin,
is illuminated by a plane wave.
The electric field in a small hole in a spherical shell is assumed to
have the same shape as that in a small hole in a plane screen. The shape of
this field determines the scattered figlds inside and outside the sphere

except for the amplitudes. The amplitudes are then determined by the "coupling"

to the incident field.
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1. Introduction

The problem treated in this paper is the penetration of an electromagnetic
wave Iinto a spherical, metallic shell with an aperture. There probably does
not exist any simple solution to this problem because the problem of an aperture
in an infinite conducting screen has a very complex solution.

For low frequencies our problem has been solved by formulating the
problem as a Fredholm integral equation of the first kind (Thomas 1963). An
integral equation approach could be used also in the case of higher frequencies
but does not seem particularly convenient. A method for solving the present
problem for arbitrary large holes at arbitrary frequencies has been given by
Chang and Senior (Chang 1969). They used the method to compute the back-
scattering from spheres with large holes. Their results agree very well with
experiments. The method consists in approximating the scattered field by a
finite number of terms from a general infinite series expression for the field
and then applying the boundary conditions together with the method of least
square error. Sancer and Varvatsis have used essentially the same method
(Sancer 1970), but obtained two simpler problems through the use of Debye
potentials. However, the metﬁod given in (Chang 1969) gives better results
because they have taken the field behavior at the edge of the aperture into
account. A modified formulation of (Chang 1969) using the Debye potentials
would probably be the most convenient method.

In this paper we will give another approximate method, which can be used
when the aperture is small. It is believed to be simpler in use than the
method just described. Our method is equivalent with one used in a similar

accoustic problem in (Morse 1953).




2. Analysis

Consider an infinitely thin, perfectly conducting spherical shell with

its center at the origin. The sphere has a radius equal to a and an aperture

occuping the region r = a, 0 £ 6 < 60, as shown in Fig. 1.
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where k is the propagation constant and Y0 the admittance of free space.
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Figure 1. Plane wave scattered from sphere with aperture.



To obtain an approximate solution for the scattered field, valid when the
hole is small (ka sin 60 << 1 and 80 << 1) we shall proceed in the following
way. First we introduce the Debye potentials. This transforms the original
vector problem into two decoupled scalar problems. We then assume that the
shape of the electric field in the hole is the same as in a small circular
hole in a plane screen for the case of normal incidence. This enables us to
write down the shape (f0-dependence) for the Debye potentials in the aperture.
The potentials (and fields) are then known except for an amplitude constant.
This is determined by the coupling in the aperture to the incident field.

To obtain a scalar problem we represent the field by the Debve potentials

u and v (Born 1970, Harrington 1961, Sancer 1970). u has to satisfy

920 + K%y = 0 (3)

u = 0 on conductor

(4)
u and %% continuous through aperture
The incident field corresponds to
Yo ot n 1
u; = - 3¢ sin ¢ nzl (1)7(2n + 1)j (kr)P_(cos ©) (5)
v has to satisfy
vy + kv = 0 | (6




§££Xl—= 0 on conductor

or
N
v and %% continuous through aperture
Further
1 . 0 2mkl 1
vy =g cos ¢ !o@ n(n+1) Jn(kr)Pn(Cos 8 (8

n=1

In this manner the scattering problem has been transformed into two decoupled
scalar problems. When u and v satisfying (3) to (8) have been found, the

electric and magnetic fields are obtained from (Born 1970)

E = 9" (xv) + kz(rv)
r 2 o
or
E = “_gzﬂrv) . 1 3 (ru) 9
0 r raf JUJUo r sin 6 93¢ (9)
) r sin 6 9r o I, T a6
2
g o= 20 4 2
r 2 (o}
or
1 8%(rw) | 1 (o)
H =—-—F=7* (10)

0 r 9rdb Jweo r sin 6 93¢

1 3% (ru) = e 3 (rv)
¢ T sin 6 9ra¢ JWE, T a0

|~




Using (3) and the spherical coordinates introduced in Fig. 1, u inside the

sphere can be written

o jn(kr)

1
u= ) b P (cos 8)sin ¢ (11)
mel D Jn(ka) n
Outside the sphere we write, using (&)
»  nPar)
u=u, +u + Z b —— Pn(cos 8)sin ¢ (12)

+ ' p=1 T héz)(ka)

where u, corresponds to the incident field. u, corresponds to the scattered

field when there is no aperture in the sphere. Similarly for v

- jn(kr) 1
v = nzl en jn(—ka) Pn(cos B)cos ¢ (13)
and
o hiz)(kr) 1
v=v, + v, + Z e Pn(cos 8)cos ¢ (14)

n=1 © héz)(ka)

We now consider the tangential electric field in the aperture, when the aperture
is small (ka sin 60 << 1 and 60 << 1). This is assumed to be the same as the
E~field in a small circular aperture in an infinite plane conducting screen for
the case of normal incidence of a plane wave. According to (Bouwkamp 1950)

this gives for r = a and 0 £ 6 < 60




E¢ ~ K/Z(cos 6 - cos eo) sin ¢
(15)

K sin2 0 l
cos ¢

Ee 8 - {K/Z(cos 6 - cos 60) +E —
V2 cos 8-cos 60’

where K is an unknown constant. We want to translate (15) into expressions

for u and v in the aperture. Put

1{2&5!2} = f(08)cos ¢
r=a
(16)

jwuou(r=a) = g(0)sin ¢

(9) can then be written

E
(17)

E
Y (18)

denotes fields in the aperture. Equations (17) and (18)

where Ee and E¢ now
yield
4 dgy _ _ &8 _ N
a0 (sin 8 de) sin © Ee + 30 (E¢ sin 0) (19)
and
d df f ]
a0 (sin © d—e-) ~ein® - Ee + 36 (Ee sin 90) (20)




From (19) we obtain, using (11) and (16) and the differential equation which

Pi(cos ) satisfies

o«

. 1 ) _ KN .
- Jwu Zl n(n + Db P (cos 8)sin 0 = Eg + 55 (E¢ sin 6) (21)

Inserting the approximate expressions for the tangential electric field in the

aperture we finally get

o 1 3K sin’ 6
jwuo z n(n + 1)b P (cos 0)sin 8 = 5 0 <9 < 60
n=1 nn vV2(cos 6-cos 6 )
° (22)
=0 8 <06 <
o
and using the orthogonality relations for Pi
8 2
K, (2n+1) o P (cos 8)sin 6dé6
1 n
bn = 2 2 J (23)
n (n+l)

o V2(cos B-cos eo)

where a new unknown constant, Kl, has been introduced. Analytic expressions for
the integral are given in an appendix. We are now in the position that we can
calculate all bn’ u, v, and the fields except for the common unknown amplitude
constant Kl' To calculate K, we use the condition (4) that %%—is continuous
through the aperture. This condition together with (11) and (12) gives

® j'(ka) h'(ka)
¥ b kGE - )P (cos 8) =
nj_(ka) ~ h_(ka) 'n cos

3
T (ui + ur) (24)




u, is the reflected field for the case of a sphere with no aperture and is

~obtained from (4) and (5) and the radiation condition

Yo g ng ) hiz)(kr) 1
u_ =+ —= sin ¢ 1i"(2n + 1) —5—— 3 (ka)P (cos 8) (25)
r 1k n=1 héz)(ka) n n

We can now compute Kl from (24) putting 6 = 60 and using expressions for b ,
n

u; and u_ according to (5), (23) and (25). When u is known v is then obtained

from (18) and the fields from (9) and (10).



Appendix

eo Pi(cos G)Sinzede

Evaluation of J —
o V2(cos B-cos 60)

In this appendix we shall derive an analytic expression for this integral.

Using notations from (Mac Robert 1947) we write

®s T;l(cos 6)sin26d6

eo Pl(cos 8)sin26d6
1= J B = n{n + 1) J

o V2(cos 8-cos 60) o V2(cos 8-cos 80)

Since (Mac Robert 1947, p. 335)

-1 sin O 1
Tn+1(cos 9) = 5 F(—n,n+3,2,5 (1 - cos 8))
we have
0 (-n)_(m+3)_ (Do r 3
- n{nt+l) _ r r (l-cos 8) sin 67d6

1
2 r=0 2r(2)rF(r+1) e (cos B6-cos 60)2

where (d)r = I'(d + r)/T(r). Making the substitution
cos 68 =1 - £t(1 - cos eo)

we find
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o
J (cos © - cos 90)-%(1 - cos 8)r sin3 ede
o

1 _ 1 1
2(1 - cos 6°)r+3/2 J tr+1(1 - t) & dt - (1 - cos eo)r+5/2 J tr+2(1 - £) % dt
o

0
T (r+2)T (2) I (r+3)r )
= -————*—32— 2(1 - cos 60)r+3/2 - ——————T—Z— (1 - cos 60)r+5/2
I'(r + E) F(r+3§)

Divide I into two parts

where

F(i) rzl (-—n)r(n+3)r I‘(7r+727)6_
2 120 25() (DI (x + )

/2

I, = n(n+ 1)(1 - cos 60)3

T
1 (1 - cos eo)

and

n(n+1)FC%)

5
Iy=-——>5"— (1 - cos 60)

/2 n (-n)r(n+3)rF(rf%Z

o (1 - cos 6 )r
r=0 27 (2) I (e+1)T(x + 5) °

To evaluate I1 we write

n (-n)_(n+3)
I1 = %-n(n + 1)(1 - cos 00)3/2 £ L (1 - cos eo)r

r=0 25T (r+1) (%)r

/

= %—n(n 4+ (1 - cos 60)3 2 F(~n,n + 3,%;%(1 - cos eo))
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Using various formulas for hypergeometric functions (Erdelyi 1953, pp. 101,

102, 105) we find

51

F(-n,n + 3,2,2 (1 - cos 60)

l-cos ©
5 nt2 1 d 5 1 1 o
= - = 4+ - - ———

2 nt+l sin 60 deo {(1 + cos eo)F(Z =5 5 2 )}

0
o
+ —
nt2 1 d_ Q1 + cos 8) —Z——Si~—-—————n(2n 7
n+l sin 60 deo o (2n+3)sin eo

=22
2

which gives

6

1
A o . 3
- 5] cos — sin + )8
10 (1-cos 60) . o) 3 o8 7 (n 2) 0
I, =~ =—n{n+2)———————— {sin - cos(n + 3)6_ ~ — -~
1 3 sin 6 2 2’70 3
o] 2(n + E)

The evaluation of the term 12 is done in a very similar manner. We obtain

Prll(cos ) )sinze da

—
(e}
o]

/2(cos g-cos eo)

2
_ _ 5 n(utp) (1re0s 6 (I4eos 0,) {c + Dotn % oetn + B
3 3 sin 6 2 2 2770
n 4+ 5 [o]
) n(l-cos 60)5/2 8

) 3
cos - sin(n + i)eo} +

1
N

2(n +2) (0 + ) (a+2) ’

6
+ a(n+ 1)(n + 2)cos ng_ + n(3n2 + 2n + l)tan—2 -2 sinno - n3t:an-3 = sin nd
o 2 0 2 o

2 8 e 2 5] 5]
_ 3o 2 "o -4 "o 3n +n+l 2 o -3 o .
-5 (1 + tan 5 Ytan — cos nBo — (1 + tan 5 Ytan 5 sin neo
5] 0
3n 2 70,2 -5 "o
+ i (1 + tan 2) tan 5 sin neo}

{(3n3 + 5n2 + n + Z)t:zm“1 -2 sin nﬁo
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