In fera(T.'on /Vafes
~Seaser—amt—SimuiztionNetes
Note ’1’23'75’

May 1971
Charge Distribution on a Two-Dimensional Airfoil
by

F. M. Tesche
Northrop Corporate Laboratories
Pasadena, California

Abstract

A conformal mapping technique for determining the charge density on a
two—-dimensional airfoil having a net charge on it or being immersed in an
electro-static field is presented. The charge density on a wide variety of
airfoils is plotted as a function of position on the airfoil surface for the
case of the airfoils being charged. It is shown how this charge density may
be simply related to that arising due to the incident electric field. 1In
addition, curves summarizing the behavior of the charge densities at the

leading and trailing edges of the airfoil are given for various airfoil

shapes.
The results of this analysis may be utilized in attempting to predict

the charge distribution on the wings of an aircraft subject to an electro-

magnetic pulse (EMP). Moreover, if an aircraft is to be modeled by a thin-
wire structure, so as to permit the determination of the low~frequency

behavior of the surface currents, the choice of the radius in the wire model

for the wings is indicated.
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I. Introduction

In attempting to study the behavior of charges and currents induced on
an aircraft which is subject to an EMP, the static charge distribution on the
aircraft provides a reasonable description of these quantities for the lower
portion of the frequency spectrum of the pulse. The determination of the
static charge distribution on an actual aircraft is an extremely difficult,
if not impossible, task. It is possible however, to consider isolated parts
of the aircraft, such as a wing, to obtain an approximate solution to the
static problem.

Through the use of conformal mapping techniques, the static charge
distribution on a two-dimensional airfoil which is either immersed in an
incident electrostatic field, or has a total known charge placed on it, can
be computed. This solution can then be used as an approximation to the
quasi-static charge distribution on the wings of the aircraft.

If the aircraft is modeled by a thin-wire structure and the time varying
values of the total longitudinal current and charge on the aircraft are obtained
through a solution of the appropriate integral equation, the results to be
presented in this note will indicate how the total charge distributes itself
over the airfoil surface. Moreover, this analysis will relate the physical
dimensions of the airfoil to the radius of the cylindrical wire that constitutes
the wing portions of the thin-~wire model of the aircraft.

For cases where the incident time varying electric field is everywhere
perpendicular to the thin-wire model of the aircraft, there is no current
calculated for the structure. In this case the total charge on the airfoil
is zero, but an induced surface charge still exists due to the presence of
the incident electric field. This induced charge distribution, as calculated
from the conformal mapping technique, will give a more accurate approximation
to the actual charge induced on the wings of the aircraft subject to an EMP

having this polarization.



II. The Joukowski Transformation

In complex potential theory, a transformation of the form
2
z=w+ 27 /w (1)

is capable of transforming a circle in the complex w plane into an airfoil
in the complex 2z plane. This transformation, known as the Joukowski Transfor-

(1’2’3), has wide applicability in the field of hydrodynamics.

mation
In studying this transformation, it is possible to verify the following

properties:

1. Points in the w plane exterior to the circle le £ map into the

complete z plane.

2. Points in the w plane interior to the circle |w| % also map into
the complete z plane, but onto a different Riemann surface than in
the first case. -

3. Points on the circle |w| = 2 map into the line -2% < z < 22 in the

Z plane.

4, A circle in the w plane with radius'"a" and center at wbeja maps

into an airfoil shaped contour in the z plane. This circle is
constrained to be outside the region Iw[ = Q. _ '

5. There are two singular points where dz/dw = 0 and the transformation

ceases to be conformal. These are at w = #¥2. The circle of radius
"a'" which maps into the airfoil can intersect one or both of these
singular points, or the singular points can be completely inside of
this circle. For those cases whe;e the singular points are enclosed
by the circle, the airfoil curve in the z plane has no discontinuities
in it, even at the trailling edge.

With this transformation, it is possible to map the circle in the w plane
as shown in Fig. la into an airfoil in the z plane. for points on the circle
of radius "a" denoted by C, and having a.center at w, = wbeja, the relation
for the airfoil is given by Eq. (1) as

z = (w I 4 aed®) + 22 - (2)
o 3 JG)

(w e %tae
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where 6 is the angle shown in Fig. la.
In plotting the different possible shapes of airfoils, it is convenient
to normalize all lengths by the factor '"d'. Hence, the above relation can be

rewritten as

2
.f = (ejawo/a + eje) + ,a(zla) el 3)
(eJ wo/a+eJ )
In a problem involving an actual airfoil, the value of the parameter "a" is
related to the physical size of the airfoil and LA 2, and o give the shape
of the airfoil., More will be said about the values of these parameters in

later sections of this note.
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IIT. Airfoil Immersed in a Uniform Electrostatic Field

Consider an incident electric field in the w plane making an angle einc
with the u axis as shown in Fig. 2b. This incident field can be determined
from the complex potential

v(w) = - Eowe ine (4)
through a suitable operation on the real part of ¢. If a conducting circle,
Ca’ with its center at w = 0 and radius a is introduced in the w plane, it

is required that Re[¢(w)] = 0 for w on this circle so as to provide the proper

boundary condition for the electric field on Ca. The expression for the

complex potential then becomes
Yw) = - Eowe e L g 3—-e e, (5)

In a similar fashion, the expression for the complex potential for the
case of the circle Ca having a center at the point LA instead of the origin

is given by

j8e,
_jeinc anZe inc
Yp(w) = - Eo(w - wc)e + (W_WC) . (6)

As may be easily verified, this potential function has a vanishing real
part on the circle Ca where w = LA + aeje, has the correct behavior as w
approaches » and is analytic in the region exterior to the circle Ca. Thus,
it is the correct potential for evaluating the electric field everywhere
exterior to the conducting circular obstacle.

This potential can be transformed to the z plane to enable the calculation
of the fields exterior to the conducting airfoil. This is done by simply

expressing w as a function of z. From Eq. (1) it is found that
W= % (z t‘J Z - 429 o)

where the + sign is to be chosen, since it is desired to consider the mapping



of the region exterior to le = £ into the complete z plane. With this

relation, the potential in the z plane which contains the airfoil is expressed

~46 2 3%
$(z) = ~ E |e i’“C(%(z +Jz2 -4 - w ) + ase (8)
o Cc 1( 2
§-z+vz =44 v,

_je
Notice that as z approaches « this potential function behaves as - Eoze inc

as

which is the required form for the incident electric field. From ¢(z) the
electric field in the z plane can be found. Letting ¢(z) = ¢(x,y) + jB8(x,y),

the derivative of ¢ with respect to z can be written as

d_¢.=—ai 3_8_—_21_‘%
dz " ax T3k Ty ~ i3y 9
since ¢ is an analytic function of z. Upon noting that Ex = - 3¢/3x and
Ey = - 3¢/3y, Eq. (9) yields the following relation
do-
az = = B + I, (10)

On the surface of the airfoil Ex and Ey are such that the total E is
perpendicular to the surface since Etan = 0. In this case, the charge density
o on the airfoil is given by o = eogl. From Eq. (10), it is then possible to
calculate the magnitude of this surface charge density as

(11)

lol = ¢, |3,

z=surface of airfoil

In practice it is tedious to use Eq. (11) directly to evaluate Icl due
to the complicated dependence on the parameter z. Instead, it is advantageous

to rewrite Eq. (11) as

Y (w) 3w

[c[ = E ow 9z

o . FIZ)'

won C
a

This form is easier to evaluate.




Taking the derivative of Eq. (6), it is seen that

. je
-je 2 inc
~ﬂ:_E e inC+L_ . (]_3)
aw o (w—w )2
c
and similarly, Eq. (1) gives
2
dw _ w
iz - 72 3 " (14)
w =L
The locus of points constrained to lie on the circle Ca’ as shown in
Fig. la, is given by
w=w o+ aed® (15)

jo
where w =w eJ .
c o}

Combining Eqs. (13), (14) and (15) gives the required

-6, j(8, -26)
lo| = eoEo <% inc %nc ><. 1 j9)2> . (16)

1-22/(w0e3a+ae

result that

Upon rearranging and simplifying terms, this last relation can be written as
o,
1 1
= 2|cos(6,_ - 8)]
eoEo inc 1_(2/3)2/(ejaw°/a+eje)2

. (17)

This expression gives the induced surface charge density on the airfoil

in the z plane, evaluated at the various points defined by the parameter 8 on

the circle Ca in the w plane. The subscript 1 on o indicates that this charge

density arises from the incident electric field.



IV. Airfoll with a Net Charge

If the airfoil is no longer immersed in a uniform static field, but
has a total charge per unit length Q on it, then the circle in w plane has
the same total charge per unit length on it. In the w plane it is possible
to write immediately that the complex potential for the charged circle Ca

having an origin at w = 0 is given by

Pp(w) = (18)

Q
2ﬂ€° In(w/a) °

If the circle has its center at w = LA then it is necessary to replace w in
Eq. (18) by w - LA

Using Eq. (12) for the charge distribution on the airfoil, the surface
charge is then given by

lo,| = |—2 ( L ) ) (19)
2 eraeje 1—(2,/w0e3a+aeje)2

Upon simplifying, this last relation becomes

2na|02] _ 1

(20)

36.2|"

T @ % fared®)

As in the case of Eq. (17), this gives the normalized surface charge density
on the airfoil as a function of the parameter 6. The subscript 2 on ¢ indicates
that this charge density is due to the net charge Q.

It is interesting to note that Eq. (17) for the charge density on the
airfoil immersed in an electric field contains the same term as Eq. (20),
which gives the charge density in the charged airfoil problem. Moreover, the
dependence on the angle of incidence of the electric field is given by a
simple multiplicative term, 2|cos(6inc - e)l. As a result, it is necessary
to only consider the charged airfoil problem. The charge distribution for
the electric field case, expressed as a function of the parameter 6, is then

-

given by:

(21)

lcll Zwalozl)

— = 2|cos(einc - e)l( q
oo :



Knowing the behavior of the charge density in the case of a charged airfoil,
therefore, permits the determination of the charge density on the same airfoil
immersed in the uniform electric field.

As mentioned earlier, a thin-wire model of the airfoil yields no induced
current or charges on the structure if the electric field is everywhere
perependicular to the wires. In such a case, the results for the charge 9
arising from a static electric field normal to the Joukowski airfoil would
be useful in predicting the behavior of the actual airfoil. For other angles
of incidence, the quasi-static electric field incident upon the thin-wire model
might be parallel to the wires. This field would couple to the structure and

cause currents to flow.

In the thin-wire analysis, only the total current I(x) is computed. With
a knowledge of I(x), one can easily calculate the total charge per unit length

Q(x) along the wire from the continuity equation

- juQx) = §§ i (22a)

A time dependence of ejwt has been assumed and suppressed.

At an observation point X along the wing of the aircraft, the variation
in the total charge per unit length in the longitudinal direction is postulated
to be small so that locally the wing behaves like a two-dimensional airfoil with
a net charge Q(xo). Substituting this value into Eq. (20) then determines the
distribution of this charge over the circumference of the airfoil. From the
continuity equation, it follows that the longitudinal surface current density
J, on the airfoil has the same functional dependence in the transverse plane as

2
the charge density 0q- Thus, the current density on the aircraft wing may be

expressed as

30 = Lo . : (22b)

Ol

With the charge and current distributions along the circumference of the
airfoil, it is then possible to estimate the strength of the local fields via

the boundary conditions n-E-= ol/eo and n x H = J.

10
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V. Choice of the Parameters a, ¢, v, and o

With the Joukowski transformation, it is seen that there are four
independent variables which describe the mapping of the circular contour Ca
in the w plane into the airfoil in the z plane. In an actual airfoil, such
as that shown in Fig. 2, it 1s noted that the length is greater than the
thickness by about a factor 6. In addition, the trailing edge of the airfoil
is rather pointed. With this information, it is possible to eliminate a
large number of parameter choicés which yield structures not resembling the
physical airfoil.

For the airfoil to have a sharply pointed trailing end, it is seen
from the nature of the transformation that the corresponding point on the
circle Ca in the w plane should be as close as possible to one of the singular
points at w = £ L. As seen in Fig. la, this circle can actually pass through
one singular point if « = 0 and if a = ¢ + wo. 1f w, = 0 such that the circle
Ca coincides with the circle of radius 2, it is noted that both of the
singularities are mapped onto the airfoil surface. For cases where a # 0,
it is seen that Ca can never touch the singular points since Ca is constrained
to always lie outside the circle Iw] = %. This implies that the trailing
edge for this airfoil is not- truely singular; it has a continuously turning
normal derivative.

By imposing the condition that a = 24.“5 for the case when a # 0,
it can be seen from Fig. la that the circle Ca comes as close as possible to
one of the singularities. This assures that for the other given parameters,

*
the airfoil has the sharpest trailing edge possible.

*With the Joukowski transformation, it is possible to consider airfoils which
always exhibit a singular trailing edge. The forbidden region [wl = 2, into
which Ca must not enter, is-not unique. In fact, any circle which intersects’
the points w = £ £ can be thought of as defining a forbidden region. With
such a redefinition of the forbidden region, it is possible to have the circle
Ca always pass through one of the singular points, thereby giving rise to a
singular edge on the airfoil. Unfortunate}y, the airfoils generated in this
manner seem to have too much of a curve to them to realistiéaliy model an

actual wing of an aircraft and this point has not been pursued.

11




With the constraint that a = v + £, the circle Ca maps into a thinner
and thinner airfoil as LA approaches 0. In the limit as w, = 0, the airfoil
becomes a plane. From this, it can be deduced that for relatively thin airfoils,
the value of v, should be small compared to 2. Hence, the best choices of v,
and £ for describing an airfoil lie within the range 0 < W< L < a.

In considering the dependence of the airfoil shape on the angle o, it
is seen that for o = 00, the airfoil is singular at the trailing edge and is
symmetric about the Re(z) axis. As o increases from 0° the singularity at the
trailing edge becomes less pronocunced and the airfoil starts having a curve
in it. At a = 900, both the trailing and leading edges have the same shape,
and the airfoil is symmetric about the Im(z) axis. As o increases even further,
the airfoil takes the mirror image shape of the airfoil calculated for the
angle m - a. Thus, for actual airfoils, the values of o to be considered are
given by 0 < a < n/2.

The final parameter that specifies the nature of the Joukowski airfoil
is "a". This parameter defines the physical size of the airfoil. By normalizing
the values of LA and £ by the value "a'" as done in Eq. (3), a normalized airfoil
can be drawn in the z/a plane. The shape of this airfoil depends only on the
parameters « and 2£/a, since wo/a_is determined by the constraint 1 = wo/a + 2/a.
Once these parameters are decided upon so that the Joukowski airfoil is of
the same approximate shape as the actual airfoil, the constant "a'" may be found
from the knowledge of the dimensions of the wing.

As an example of the method used to choose the parameters for this problem,
consider the sample airfoil of Fig. 2. This is a typical cross section of the
B-52 wing. By conmsidering various values of a and %/a, it was found that for
a =0, ¢/a = .87 (which implies wo/a = ,13), the normalized shape of the Joukowski
airfoil is close to that of the actual wing. The normalized airfoil for this
case is shown in Fig. 5a.

From Fig. 2, it is noted that the overall linear dimensions of the actual
airfoil is 8.5 meters. Noting that this corresponds to a normalized length of
x/a = 3.55 in Fig. 5a, it is readily calculated that the radius of circle c,
is to be a = 8.5/3.55 = 2.39 meters.

n,n

It is interesting to consider the significance of the parameter 'a'",

12



which defines the radius of the circle Ca in the w plane. As is well known
from the theory of conformal mapping, the total charge per unit length on the
cylinder in the w plane is equal to the total charge per unit length on the
airfoil in the w plane. Similarly, the potentials of both structures are

the same. As a result, the capacitance per unit length of the airfoil is
identical to that of a right circular cylinder of radius "a" This value "a"
is defined as the equivalent radius of the airfoil, and may be determined by
the method indicated above.

In using a thin-wire structure to model an actual aircraft, it is necessary
to specify the radius of the wire elements. The most logicil choice is to choose
the radius such that the capacitance per unit length of the wire is equal to
that of the aircraft. This implies that for modeling the airfoils on an aircraft,
the parameter "a" should be used as the wire radius. -

Since the cross section of the actual aircraft wing is not constant along
its length, the wire radius for the thin-wire model should be taﬁered to account
for this effect. By applying the above procedure for determining the effective
radius "a" at various points along the wing, the nature of the désired taper

in the wing elements for the. thin-wire model can be found.

13
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VI. Numerical Results

Employing the analysis technique described in the previous sections,
the charge distribution on various airfoils has been determined. In addition
‘to the airfoil shapes, data 1s presented for a few other simple obstacles,
such as a flat plate, ellipses and a circle, which are also generated by the
Joukowski transformation. Since the problem of the airfoil immersed in the
static electric field is so simply related to the problem of the charged
airfoil, only data for this latter case is presented. The behavior of the
airfoil in the electrostatic field may then be calculated by a simple multi-
plication by the cosine factor indicated in Eq. (21). This cosine function
is plotted along with each of the charge density curves for two values of
6. , 0°

inc
The only exception to this is Fig. 8 which shows the induced charge on the

and 900, so as to indicate what the multiplicative term should be.

a = 0° airfoil of Fig. 5a with einc = 0° and 90°. This airfoil most closely
resembles the B-52 airfoil in Fig. 2 and is presented so the reader can see
the general shape of the charge distribution in these problems.

Figures 3a and 3b show the flat plate, ellipses and the circle generated
by the transformation. For these figures, o = 0, wo/a = 0 and %/a varies
between 1 to 0. Figure 3c presents the normalized charged distribution on
these structures as a function of the angle 6 in the w plane. These points
correspond to the non-uniformily spaced points as indicated on the surfaces
of the obstacles. Table 1 gives, as a function of 8, the magnitude and angle
of the normalized quantity z/a which defines the surface of the obstacle.

For these obstacles, it is readily seen that the charge tends to collect
near the sharply curved portions of the surface. For the flat plate where
2/a = 1.0, the charge density is actually infinite at the singular edge.

The variation of the charge density at the positions 6 = 0° and 6 = 90° on
these symmetric structures is presented in Fig. 3d as a function of the
parameter %/a. In some cases, the ellipse might be an adequate approximation
to the cross section of the fuselage of an aircraft and these results may be
employed in a study of this portion of the aircraft.

In a similar manner, Figs. 4a through 7a present the numerical results

for various airfoil-like structures. Each figure contains four seperate
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airfoils having fixed %/a and wo/a values, but varying values of a. Tables
2 through 5 give the normal;zed co-ordinates of the airfoils. The corresponding
plots of the charge density on the airfoils are presented in Figs. 4b through
7b.

Figures 9a and 9b summarize the behavior of the charge on the airfoil
as the parameter o is varied. The charge density on the leading and trailing
edges of the airfoil is plotted as a function of a for various values of 2/a.
The value of ¢ on the trailing edge of the airfoil is infinite for a = 0,
but for other values of a, a finite value is computed. Note that the charge
density on the trailing edge of the airfoil is plotted on a logarithmic
scale. '

For an airfoil immersed in an incident electric field, it is evident
that there must be two positions on the airfoil where there is a null in the
induced charge density. Figures 10a and 10b show, as a function of the parameter
a, the angle of incidence of the electric field which causes a null in the
charge distribution in the leading and trailing edges of the airfoil. This

is on the left scale.
For the cases where. a # 0, the positions of the trailing edges (and

also the leading edges) are not sharply defined due to the non-singular
nature of the airfoil. 1In these cases, the location of the trailing and
leading edges was defined as being that point where the derivative dz/dw

took on a maximum value.
From Figs. 10a and 10b it is possible to determine the value of eo

which corresponds to the leading or trailing edge of the airfoil. From the

simple cosine dependence on the induced charge density it is readily seen that

the position of these edges are given by

_ _ on°

This angle defining the leading or trailiﬁg edges of the airfoils may be read
off the scale on the right hand side of Figs. 10a and 10b.

15




VII. Conclusion

Through the use of a conformal mapping technique, which maps a circle
into an airfoil shape, expressions for the gharge density on the airfoil
located in an electrostatic field are derived and-related to the charge
density on the same airfoil having a net charge.

The results of numerical calculations for some typical airfoil structures
are presented, showing not only the airfoil shape, but the charge distributions
for the airfoils having a net charge. Summary curves are presented showing
how the charge density at the leading and trailing edgés of the airfoil behave
as a function of the airfoil shape.

By using the results of a thin-wire analysis to cémpute the total
charge induced on the aircraft wing, it is possible to approximate the charge
distribution on the wing of an actual aircraft subject to an EMP. Although
the transformation as employed in this note is primarily intended for the
study of airfoils, such a technique could be used to describe the behavior

of charge on a fuselage of an aircraft which has an elliptical cross section.
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w_plane

Figure la. The circle Ca in the complex w plane which maps
into the airfoil in the z plane.

Figure 1lb. Definition of the angle of incidence 6
electric field falling on Ca.

inc of the
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Figure 2,

The approximate shape of the airfoil of a B~52 at a position near the junction of

the wing and fuselage of the aircraft.

1.3 m
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Figure 3a. Shapes of ellipses generated by the Joukowski transformation
for'wo/a =0, a = 0 and a fixed value of £.
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Figure 3b. Shapes of ellipses generated by the Joukowski transformation
for Wg/a =0, a =0 and a fixed value of 2.
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Table 1

Normalized Ellipses as a Function of the Parameter 6

wo/a = 0.0, a = 0.0
2/a =1.0 2/a = .8 8/a = .5 2/a = .3 “8/a = 0.0
8 ||z/a|| ang(z) | |z/a|| Ang(2) | |z/a|| Ang(z) | |z/a|| Ang(z) | |z/a|| Ang(z)
og 2.00 o.oog 1.64 o.oog 1.25 o.oog 1.09 o.oog 1.00 o.oog
10° | 1.97 0.00°| 1.62 2.22°] 1.24 6.04° | 1.09 8.37°| 1.00 | 10.00
20° | 1.88 0.00°} 1.55 4.57°1 1.20 | 12.32°|1.07 | 16.90°| 1.00 | 20.00°
30° {1.73 0.00°{ 1.43 7.22°1 1.15 19.11°( 1.05 | 25.73°(| 1.00 | 30.00°
40° | 1.53 0.00°| 1.28 | 10.44°)1.07 | 26.72°]| 1.02 | 35.01°| 1.00 | 40.00°
50° | 1.29 0.00°} 1.09 14.66°] 0.99 35.57° | 0.99 | 44.85°} 1.00 |  50.00°
60° | 1.00 0.00°] 0.88 | 20.82°| 0.90 | 46.10°] 0.96 { 55.33°| 1.00 | 60.00°
70° | 0.68 0.00°| 0.66 | 31.09°| 0.82 | 58.76°| 0.93 | 66.44°]| 1.00 | 70.00°
80° [ 0.35 0.00°| 0.45 | 51.23°| 0.77 73.62°1 0.92 | 78.07°| 1.00 | 80.00°
90° | 0.00 0.00°| 0.36 { 90.00°| 0.75 | 90.00°{ 0.91 | 90.00°} 1.00 | 90.00°
100° ] 0.35 | 180.00°| 0.45 | 128.77°} 0,77 | 106.38° | 0.92 | 101.93° | 1.00 | 100.00°
11° | 0.68 | 180.00°}| 0.66 | 148.91°] 0.82 | 121.24° 0.93 | 113.56° | 1.00 ‘| 110.00°
120° | 1.00 | 180.00°| 0.88 | 159.18°{ 0.90 | 133.90° | 0.96 | 124.67° | 1.00 | 120.00°
130° | 1.29 | 180.00° | 1.09 | 165.34°] 0.99 | 144.43° | 0.99 | 135.15° | 1.00 | 130.00°
160° (1.53 | 180.00° | 1.28 | 169.56° | 1.07 | 153.28° | 1.02 | 144.99° | 1.00 | 140.00°
1.2° {1.73 | 180.00°} 1.43 | 172.78°{ 1.15 | 160.89° | 1.05 | 154.27° | 1.00 | 150.00°
1602 1.88 180.002 1.55 175.432 1.20 167.682 1.07 163.102 1.00 160.002
77°11.97 | 180.00°| 1.62 | 177.78° | 1.24 { 173.96° | 1.09 | 171.63° | 1.00 | 170.00
1632 { 2,00 | 180.00°] 1.64 | 180.00° | 1.25 | 180.00° | 1.09 | 180.00° | 1.00 | 180.00°
190° 1 1.97 | 180.00°| 1.62 | 182.22° | 1.24 | 186.04° | 1.09 | 188.37° | 1.00 | 190.00°
200° {1.88 | 180.00° { 1.55 | 184.57° | 1.20 | 192.32° |1.07 | 196.90° | 1.00 | 200.00°
210° [1.73 | 180.00° | 1.43 | 187.22° | 1.15 ] 199.11° }1.05 | 205.73° | 1.00 | 210.00°
220° 11.53 | 180.00° { 1.28 | 190.44° | 1.07 | 206.72° | 1.02 | 215.01° | 1.00 | 220.00°
230° {1.29 | 180.00° | 1.09 | 194.66° | 0.99 | 215.57° | 0.99 | 224.85° | 1.00 | 230.00°
ztog 1.00 180.002 0.88 200.822 0.90 226.102 0.96 235.333 1.00 240.002
2500 10.68 | 180.00° | 0.66 | 211.09° | 0.82 | 238.76° [ 0.93 | 246.447 | 1.00 | 250.007
260° | 0.35 | 180.00° | 0.45 | 231.23° | 0.77 | 253.62° | 0.92 | 258.07° | 1.00 | 260.00
270° |0.00 | 360.00° | 0.36 | 270.00° | 0.75 | 270.00° | 0.91 | 270.00° | 1.00 | 270.00°
280° | 0.35 | 360.00° | 0.45 | 308.77°{ 0.77 | 286.38° | 0.92 | 281.93° [ 1.00 | 280.00°
290° | 0.68 { 360.00° | 0.66 | 328.91°( 0.82 | 301.24° {0.93 | 293.56° | 1.00 | 290.00°
300° |1.00 | 360.00° | 0.88 | 339.18° ] 0.90 | 313.90° | 0.96 | 304.67° | 1.00 | 300.00°
3102 1.29 360.002 1.09 345.342 0.99 324.432 0.99 315.152 1.00 310.002
3200 11.53 | 360.000 | 1.28 | 349.560 | 1,07 | 333.28° 11.02 | 324.997 | 1.00 | 320.007
3307 |1.73 | 360.000 | 1.43 | 352.78° | 1.15 | 340.89° [1.05 | 334.270 | 1.00 | 330.00_
3402 1.88 360.002 1.55 355.432 1.20 | 347.68° |1.07 | 343.10°0 | 1.00 | 340.00°
350° [1.97 | 360.00° | 1.62 | 357.78°| 1.24 | 353.96° | 1.09 | 351.63° | 1.00 | 350.00
360° | 2.00 | 360.00° | 1.64 | 360.00°] 1.25 | 360.00° {1.09 | 360.00° | 1.00 | 360.00°
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Figure 3c. The surface charge density, shown as a function of position,

on the ellipses of Figures 3a and 3b having a net charge per
unit length of Q. The weight factors for determining the
induced surface charge when a static electric field is incident

at o = 0% and 90° are also given.
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Normalized Airfoils as a Function of the Parameter 6

Table 2

Lla = .77, wo/a

(o]

o

a = 0° 30 @ = 60 a =90

6 | |z/al| Ang(z) | |z/al| Ang(2) | |z/a|| Ang(2z) | |z/al| Ang(z)
0°l 1.71 0.00°] 1.69 2.31°} 1.63 3.76°| 1.57 3.68°
10°] 1.70 3.56°] 1.67 5.98°] 1.60 7.52°1 1.51 7.31°
20°| 1.65 7.16°( 1.61 9.90°| 1.53 11.78°%| 1.43 11.77°
30°| 1.57 10.84°| 1.53 14.16°| 1.44 16.66°| 1.33 17.23°
40°| 1.46 14.70°] 1.42 18.86°| 1.33 22.31°) 1.21 23.92°
50°] 1.33 18.86°) 1.29 24.,19°] 1.21 28.99°1 1,08 | 32.21°
60°| 1.16 | 23.58°| 1.14 30.51°| 1.07 37.12°| 0.96 | 42.63°
70°] 0.98 | 29.35°} 0.98 38.39°{ 0.94 | 47.31°| 0.85 | 55.75°
80°| 0.77 | 37.35°| 0.82 48.95°( 0.82 | 60.41°( 0.78 71.81°
90°} 0.57 | 50.55°| 0.67 64.10°1 0.73 77.14°] 0.75 90.00°
1002 0.40 76.742 0.56 86.122 0.69 96.952 0.78 108.192
110°] 0.37 | 120.38°| 0.55 | 113.41°| 0.72 | 117.12°] 0.85 | 124.25
120°| 0.52 | 152.48°| 0.64 | 137.65°| 0.80 | 134.50°| 0.96 | 137.37°
130°] 0.75 | 167.27°{ 0.79 | 154.26°! 0.93 | 147.95°( 1.08 | 147.79°
140°1 0.99 | 174.30°] 0.98 | 164.79°| 1.07 | 157.97°| 1.21 | 156.08°
:50°) 1.21 | 177.78°) 1.16 | 171.48°] 1.21 | 165.41°| 1.33 | 162.77°
160° | 1.39 | 179.37°| 1.32 | 175.70°| 1.34 | 170.95°] 1.43 | 168.23°
170°| 1.50 | 179.92°| 1.45 | 178.25°| 1.45 | 175.02°] 1.51 | 172.69°
180° | 1.54 | 180.00°( 1.53 | 179.59°| 1.52 | 177.91°} 1.57 | 176.32°
190° | 1.50 | 180.08°] 1.54 | 180.10°] 1.55 | 179.80°| 1.59 | 179.20°
200° ) 1.39 | 180.63°} 1.47 | 180.10°} 1.52 | 180.83°] 1.56 | 181.39°
210° | 1.21 | 182.22°} 1.33 | 180.00°| 1.43 | 181.13°| 1.49 | 182.90°
220°| 0.99 | 185.70°| 1.13 | 180.31°| 1.27 | 180.89°| 1.37 | 183.75°
230°{ 0.75 | 192.73°] 0.87 | 181.92°| 1.05 | 180.36°| 1.19 | 183.97°
240° { 0.52 | 207.52°| 0.58 | 187.03°| 0.77 | 180.00°| 0.95 | 183.60°
250° | 0.37 | 239.62°} 0.29 | 205.66°) 0.45 | 181.09°| 0.67 | 182.72°
260° | 0.40 | 283.26°| 0.19 | 283.56°| 0.12 | 197.03°| 0.35 | 181.46°
270° | 0.57 | 309.45°| 0.42 | 324.18°| 0.23 | 341.02°| 0.00 | 270.00°
280°( 0.77 | 322.65°| 0.69 | 334.62°{ 0.55 | 347.24°] 0.35 | 358.54°
290° | 0,98 | 330.65°| 0.93 | 339.70°{ 0.83 | 348.84°| 0.67 | 357.28°
300° | 1.16 | 336.42°} 1.14 | 343.29°| 1.07 | 350.01°] 0.95 | 356.40°
210° | 1.33 | 341.14° | 1.32 | 346.40°| 1.27 | 351.35°} 1.19 | 356.03°
320° | 1.46 | 345.30° | 1.46 | 349.40°! 1.43 | 353.03°] 1.37 | 356.25°
330° | 1.57 | 349.16°| 1.57 | 352.43°| 1.54 [ 355.10°]| 1.49 | 357.10°
3402 1.65 352;843 1.64 355.562 1.61 357.572 1.56 358.613
350° | 1.70 | 356.44° | 1.68 | 358.85°| 1.64 0.46°| 1.59 0.80
360 | 1.71 | 360.00° | 1.69 2.31°} 1.63 3.76°] 1.57 3.68°
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The charge density on the airfoils of Figure 4a having a net charge
Q per unit length shown as a function of position. Weight functions
for determining the induced surface charge due to an electric field
incident on the airfoil at an angle einc are also given.
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Table 3

Normalized Airfoils as a Function of the Parameter 6

2/a = .87, wo/a = .13
o = 0o o = 30O o = 60o a = 90o

8 | |z/a] | Ang(z) lz/a| | Ang(z) |z/a| | Ang(z) |z/a|| Ang(z)
0°] 1.80 | 360.00°} 1.79 0.81°1 1.77 1.24°) 1.74 1.09°
102 1.78 2.282 1.76 3.112 1.72 3.432 1.69 2.962

20°| 1.72 4,579 1.69 5.62° | 1.64 6.01°| 1.59 5.38
30°1 1.61 6.95°| 1.58 8.40°| 1.52 9.07°| 1.45 8.48°
402 1.47 9.482 1.43 11.572 1.36 12.802 1.29 12.522
50° | 1.30 12.31°| 1.25 15.37°( 1.18 17.52°% 1.10 17.97
602 1.09 15.732 1.05 20.252 0.98 23.892 0.89 25.802

70° | 0.85 20.45° | 0.83 27.22°| 0.78 | 33.32°| 0.69 { 38.01
80° | 0.59 28.55°1 0.60 38.91°1 0.58 48.97°{ 0.53 58.50°
90° | 0.34 48.43° ] 0.41 62.70° | 0.45 76.47°| 0.46 90.00°
100°} 0.23 | 109.63°} 0.35 | 107.25°| 0.45 | 113.05°} 0.53 | 121.50°
110°} 0.42 | 155.77°] 0.49 | 143.70° 0.59 | 140.11°] 0.69 | 141.99°
120°] 0.70 | 169.51°} 0.72 | 160.60° | 0.80 | 155.26°] 0.89 | 154.20°
130°} 0.97 | 175.06°} 0.96 | 168.98°| 1.01 | 164.10°] 1.10 | 162.03°
140° | 1.23 | 177.76°] 1.19 | 173.72°| 1.22 | 169.75°| 1.29 | 167.48°
150° | 1.44 | 179.12°| 1.40 | 176.61°{ 1.41 | 173.60°| 1.45 | 171.52°
160°| 1.60 | 179.75°| 1.56 | 178.37°| 1.56 | 176.30°}| 1.59 | 174.62°
170°| 1.71 | 179.97°| 1.68 | 179.39°| 1.67 | 178.199| 1.69 | 177.04°
180° | 1.74 | 180.00°| 1.74 | 179.91°| 1.73 | 179.45°| 1.74 | 178.91°
190°| 1.71 | 180.03°{ 1.73 | 180.07°| 1.74 | 180.22°| 1.75 | 180.32°
200° | 1.60 | 180.25°| 1.65 | 180.05°| 1.68 | 180.58°| 1.71 | 181.31°
210°| 1.44 | 180.88°| 1.51 | 180.00° | 1.57 | 180.62°| 1.61 | 181.94°
220° | 1.23 {182.24°{ 1.30 | 180.13°| 1.39 | 180.44°| 1.45 | 182.22°
230° | 0.97 | 184.94°1 1.05 | 180.78°| 1.15 | 180.17°| 1.24 | 182.19°
240°{ 0.70 | 190.49°( 0.76 | 182.66°| 0.87 | 180.00°| 0.98 | 181.90°
250° | 0.42 | 204.23°{ 0.45 | 188.38°| 0.55 | 180.45°( 0.68 | 181.39°
260° { 0.23 | 250.37°{ 0.15 | 221.05°{ 0.22 | 184.70°( 0.35 | 180.73°
270°| 0.34 | 311.57°( 0.25 | 326.70°| 0.13 | 342.93°} 0.00 | 270.00°
280° | 0.59 | 331.45°} 0.55 | 341.93°) 0.46 | 351.96°] 0.35 | 359.27°
290° ! 0.85 | 339.55°| 0.83 | 346.55°| 0.77 | 353.30°} 0.68 | 358.61°
300° | 1.09 | 344.27°| 1.09 | 349.15°| 1.05 | 353.98°| 0.98 | 358.10°
310° ] 1.30 | 347.69°| 1.31 | 351.15°] 1.29 | 354.64°} 1.25 | 357.81°
320° | 1.47 | 350.52° ) 1.49 | 352.98° | 1.48 | 355.47°) 1.45 | 357.78°
330° | 1.61 | 353.05° | 1.63 | 354.80°| 1.63 | 356.51°] 1.61 | 358.06°
340° | 1.72 | 355.43°| 1.73 | 356.68°| 1.72 | 357.81°| 1.71 | 358.69°
350° | 1.78 | 357.73° | 1.78 | 358.68°| 1.77 | 359.38°] 1.75 | 359.68°
360° | 1.80 | 360.00° ) 1.79 0.81°] 1.77 1.24°] 1.74 1.09°
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Figure 5b. The charge density on the airfoils of Figure 5a having a net charge

Q per unit length, shown as a function of position.
for determining the induced surface charge due to an electric field
incident on the airfoil at an angle einc are also given.
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Table 4

Normalized Airfoils as a Function of the Parameter 6

L/a = .92, wo/a = ,08
o 0o o = 300 a4 = 60o o = 90o

6 | |z/a]| | Ang(2) | |z/a] | Ang(z) | |z/a| | Ang(z) | |z/a] | Ang(2)

0°| 1.86 | 360.00°|1.86 0.32°{1.85 0.47° | 1.34 0.40°
102 1.84 1.482 1.83 1.803 1.81 1.822 1.79 1.473
200 | 1.77 2.97°0 | 1.75 3.420 | 1.72 3.44° | 1.69 2.89
3001 1.65 4.532 1 1.62 5.242 1 1.58 5.387 [ 1.55 4,75°
400 | 1.49 6.207 | 1.45 7.360 | 1.41 7.790 ] 1.36 7.23°
500 | 1.29 8.11° 1.25 9.957 [ 1.20 | 10.947[1.14 10.662
600 | 1,05 | 10.50° | 1.02 13.42010.97 | 15.40°)0.90 | 15.84°
707 1 0.78 | 14.07 | 0.76 18.820 | 0.71 | 22.65°|0.65 | 24.79°
80° [ 0.49 | 21.19°|0.49 | 29.55° ) 0.47 | 37.39°]0.42 | 44.09
902 0.22 47.192 0.26 61.792 0.29 75.992 0.30 90.002
100° | 0.22 | 142.70° | 0.28 | 132.14°{0.35 | 131.55° | 0.42 | 135.91
110° | 0.51 | 168.14° | 0.53 | 160.27°]0.58 | 155.82°( 0.65 | 155.21°
120°} 0.81 |174.68° | 0.81 | 169.70° | 0.84 | 165.83° | 0.90 | 164.16°
130° | 1.09 |177.45° | 1.08 | 174.19° [ 1.10 | 171.13°| 1.14 | 169.34°
140° | 1.34 |178.84° ) 1.32 |[176.72°)1.33 | 174.41° | 1.36 | 172.77°
150° | 1.55 | 179.54° | 1.53 | 178.25° | 1.52 | 176.59°} 1.55 | 175.25°
160° | 1.71 {179.87°|1.69 |179.18°| 1.68 | 178.20° | 1.69 | 177.11°
170° | 1.81 | 179.98°|1.79 |[179.71°]1.79 {179.14°} 1.79 | 178.53°
180° | 1.84 | 180.00° | 1.84 | 179.97° | 1.84 | 179.81°| 1.84 | 179.60°
190° | 1.81 | 180.02° | 1.82 | 180.05° | 1.83 | 180.21°| 1.84 | 180.39°
200° | 1.71 |} 180.13°|1.74 | 180.03°|1.76 | 180.38°| 1.78 | 180.94°
210° | 1.55 | 180.46°|1.59 | 180.00° | 1.63 | 180.37°| 1.66 | 181.25°
220° { 1.34 | 181.16°|1.39 | 180.07°| 1.44 | 180.26°| 1.48 | 181.37°
230° ) 1.09 | 182.55° | 1.14 | 180.41°] 1.20 | 180.09°] 1.26 |} 181.32°
240° | 0.81 | 185.32° {0.85 | 181.37°]0.92 | 180.00°| 0.99 | 181.13°
2503 0.51 191.862 0.54 184.092 0.60 180.242 0.68 180.822
260° | 0.22 | 217.30°|0.21 |196.47° ] 0.27 | 182.22°| 0.35 | 180.43
270° | 0.22 | 312.81° | 0.16 | 327.98° | 0.08 | 343.78°| 0.00 | 270.00°
280° | 0.49 | 338.81° | 0.47 |347.17°} 0.42 | 354.70°) 0.35 | 359.57°
290° { 0.78 {345.93°(0.78 | 351.00°{0.74 { 355.74°( 0.68 | 359.18°
300° { 1.05 | 349.50°|1.06 |352.86°|1.04 | 356.19°]| 0.99 | 358.87°
310° | 1.29 |351.89°|1.30 |354.19°|1.29 | 356.58°| 1.26 | 358.68°
320° | 1.49 | 353.80° | 1.51 | 355.36°| 1.51 | 357.05°| 1.48 | 358.63°
330° [ 1.65 |355.47° | 1.67 |356.51°{ 1.67 | 357.65°| 1.66 | 358.75°
3402 1.77 357.032 1.78 | 357.70° | 1.78 358.412 1.78 359,062
350° | 1.84 | 358.52° | 1.84 | 358.96° | 1.84 | 359.34° 1.84 | 359.61
360° [ 1.86 | 360.00° | 1.86 0.32°{ 1.85 0.47° | 1.84 0.40°
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Figure 6b. The charge density on the airfoils of Figure 6a having a net charge
Q per unit length, shown as a function of position. Weight functions
for determining the induced surface charge due to an electric field
incident on the airfoil at an angle einc are also given.
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Figure 7a. Shapes of normalized airfoils defined by &fa = .97,
wb/a = .03 and the parameter a.
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Table 5

Normalized Airfoils as a Function of the Parameter ©

L/a = .97, wo/a = ,03
a = 0° a = 30° a = 60° a = 90°

6 | |z/a]| Ang(z) lz/al| Ang(z) |z/a| | Ang(z) |z/a|| Ang(z)

og 1.94 360.002 1.94 0.05: 1.94 0.073 1.9 0.052
10°] 1.92 0.58°| 1.91 0.62°| 1.90 0.57°{ 1.90 0.43
20°] 1.83 1.18°] 1.82 1.26°| 1.81 1.189( 1.81 0.93°
30°] 1.70 1.79°} 1.68 1.98°1 1.67 1.92°| 1.66 1.60°
40°) 1.51 2.46°] 1.50 2.83°| 1.48 2.86° | 1.46 2.50°
50°} 1.28 3.24°|-1.27 3.89° ] 1.2¢4 4.10°| 1.22 3.78°
60°| 1.02 4.27°1 1.00 5.37°} 0.98 5.93°] 0.95 5.75°
70° | 0.72 5.92°1 0.71 7.87°1 0.68 9.15°] 0.66 9.38°
80°| 0.40 9.89° | 0.39 14,00° | 0.37 17.33°] 0.35 19.18°
90° | 0.08 45.85° 1 0.10 60.72°] 0.11 75.41° ] 0.12 90.00°
100°| 0.28 | 170.02°| 0.29 | 164.47° | 0.32 | 161.24°] 0.35 | 160.82°
110°) 0.61 | 176.46° | 0.61 | 173.78°| 0.63 | 171.64°| 0.66 | 170.62°
120° | 0.93 | 178.34°| 0.92 | 176.71°} 0.93 | 175.20°| 0.95 | 174.25°
130°| 1.21 | 179.19°| 1.20 | 178.14°| 1.21 | 177.04°] 1.22 | 176.22°
140°| 1.46 | 179.63°| 1.45 | 178.95°| 1.45 | 178.16°| 1.46 | 177.50°
150° | 1.66 | 179.85°| 1.65 | 179.45°| 1.65 | 178.91°| 1.66 | 178.40°
160° | 1.82 | 179.96°| 1.81 [ 179.75°| 1.80 | 179.41°| 1.81 | 179.07°
170°{ 1.91 | 179.99°| 1.90 | 179.92°| 1.90 | 179.76°| 1.90 | 179.57°
180° | 1.94 | 180.00° | 1.94 | 180.00°| 1.94 | 179.98°| 1.94 | 179.95°
190° | 1.91 | 180.01°| 1.91 | 180.02°| 1.92 | 180.10%°| 1.92 | 180.21°
200°{ 1.82 | 180.04°| 1.83 | 180.01°( 1.84 | 180.14°| 1.84 | 180.39°
210°| 1.66 | 180.15°| 1.68 | 180.00°| 1.69 | 180.14°| 1.71 | 180.49°
220° | 1.46 | 180.37°| 1.48 | 180.02°| 1.50 | 180.09°| 1.52 | 180.52°
230°| 1.21 | 180.81°| 1.23 | 180.13°| 1.25 | 180.03°] 1.28 | 180.49°
240° | 0.93 | 181.66° | 0.94 | 180.44°| 0.97 | 180.00°| 1.00 | 180.41°
250° | 0.61 | 183.54° | 0.63 | 181.24°| 0.65 | 180.08°| 0.68 | 180.29°
260° | 0.28 | 189.98°} 0.29 | 184.23°| 0.32 | 180.66°] 0.35 | 180.15°
270° 1 0.08 | 314.15° | 0.06 { 329.25°| 0.03 | 344.56°| 0.00 | 270.00°
280° | 0.40 | 350.11° ] 0.39 | 354.30%°] 0.37 | 357.84°] 0.35 | 359.85°
290° | 0.72 | 354.08° | 0.72 | 356.31°] 0.71 | 358.35°] 0.68 | 359.71°
300° 1 1.02 | 355.73° | 1.02 | 357.14°] 1.01 | 358.53°} 1.00 | 359.59°
310° | 1.28 | 356.76° | 1.29 | 357.68°] 1.29 | 358.68°| 1.28 | 359.51°
320° | 1.51 | 357.54° | 1.52 | 358.14°] 1.52 | 358.84°| 1.52 | 359.48°
330° | 1.70 | 358.21° | 1.71 | 358.58°} 1.71 | 359.05°| 1.71 | 359.51°
340° | 1.83 | 358.82° | 1.84 | 359.03° | 1.84 | 359.32°| 1.84 | 359.61°
350° | 1.92 | 359.42° | 1.92 | 359.52°{ 1.92 | 359.65°| 1.92 | 359.79°
360° | 1.94 | 360.00° | 1.94 0.05° | 1.94 0.07°| 1.94 0.05°
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The charge density on the airfoils of Figure 7a having a net charge
Q per unit length, shown as a function of position. Weight functions
for determining the induced surface charge due to an electric field
incident on the airfoil at an angle einc are also given.
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'Figure 8. Charge density on the airfoill for o = 00 in Figure 5a for the case of an electric field

incident at einc = 0° and 90°. These curves are obtained by multiplying the appropriate
curve in Figure 5b by the weight factors.
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Figure 9a.
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Normalized charge density on the trailing edge
of various airfoils having a net.charge, shown
as a function of the parameter o. Note the
logarithimic scale.
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Figure 9b. Normalized charge density on the leading edge of
various airfoils having a net charge, shown as
a function of the parameter «.
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Figure 10a.

Plots of
inc
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6
o

vs. a for a null in the induced charge at the

trailing edge of various airfoils immersed in a static electric

field.
of the airfoil.
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The value eo defines the location of the trailing edge
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Figure 10b. Plots of einc vs, a for a null in the induced charge at the

ieading edge of various airfoils immersed in a static

electric field.

The value 60 defines the location of the

leading edge of the airfoil.
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