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Abstract
The electromagnetic field penetration through small
apertures is discussed for general aperture shapes. Approxi-
mate analytical expressions are obtained for the penetration
fields. In particular the fields that penetrate a small
aperture into the region between two parallel, perfectly con-
ducting plates are determined and some numerical results are

obtained.




INTRODUCTION

Electromagnetic Shielding has drawn much attention and a great deal
is known about it.l™3 However little is known about the effect on shielding
effectiveness caused by the presence of small apertures4. It has been
found that the field penetrating a small aperture may be much larger than
the skin depth at;enuated fie1d5’6. For that reason a comprehensive study
of the field penetration through small apertures is presented here. This
work 1s an extension of earlier work’ 2.

The field penetration through a small aperture into a long cylindrical
shell immersed in a uniform axial magnetic field has been studied both
experimentally and theoretically by Bombardts’é. The theoretical study

10 and it entailed the use of

followed the formulation developed by Kaden
the quasi-static approximation. Bombardt obtained good agreement between
the theoretical and experimental results for a pulsed magnetic field and

a circular aperture, indicating the validity of the quasi-static approxi-
mation. Bombardt did not determine the contribution to the penetration
fields from an impressed electric field. This paper also employs the quasi-
static analysis but a general impressed field (both electric and magnetic)

is considered as well as arbitrary aperture shapes. Comparison of the data

obtained with Bombardt experimental and theoretical data yields excellent

agreement.

Particular advantages of using the quasi-static solution for determining

the field penetration through apertures are that the penetration field is

1Superscripts refer to the List of References at the end of this paper.



expressed in a'form independent of the external field configuration and that
the dependence of the penetration field on the aperture configuration is
expressed simpiy in terms of fhe elements of a dyadic. This dyadic relates

the impressed field components to the dipole moments of the equivalent magnetic

sources for the field distribution within the aperture.



ANALYSIS

Aperture in a Plane

Consider an elliptical aperture oriented in a perfectly conducting-
infinitesimally thin sheet as shown in figure 1. Further consider the field
incident on the aperture from below, the z < 0 region. The x-axis and y-
axis of a cartesian coordinate system is oriented along the major and minor
axes, respectively, of the elliptical aperture. The z-axis is directed
perpendicular to the sheet.

One may define equivalent magnetic charge and current distributions in
the aperture to represent the appropriate field components for determining
the field penetrating the aperture. This was first accomplished by Bethel.
With a knowledge of the equivalent source distributions the penetration
field may be expressed in terms of the multipole expansion. If the aperture
is small in comparison to the wavelength of the incident radiation, then the
penetration field may be expressed in terms of the dipole moments to
determine the field at distances large compared to the aperture dimensions.

At the outset harmonic time dependence is assumed, but suppressed. The
temporal analysis is obtained by using Fourier superposition.. Equivalent

dipole moments of the aperture field distribution may be expressed in terms

of a dyadic g. They arel2
M, = 88, (1)
B, - §-3, (2)

where ﬁb and 30 are the magnetic field strength and the electric flux density,

respectively, that would exist at the position of the aperture if it were
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completely shorted. The elements of the dyadic for an elliptical aperture

are
2m 23 e? ‘
Olyq = = o e (3)
1 3 K(e?)-E(e?)
3 2 2
Gy, = - g"r_[ Lie®(1-e”) (4)
3 E(e?)- (1-e?)K(e?)
- _om 23 (1-e?)
Ogg = —E£8 21 - 2 (5)
33 3 E(e?) '
a4 = 0 i#3j (6)
Thus - :
0 =0, X8 + 0,, y¥ + a,, 22 @)

where E(ez)and K(ez)are elliptic integrals of the first and second kindsla,
respectively, e is the eccentricity of the elliptic aperture and £, is the
length of the semi major axis. If %, is the length of the semi minor axis

then

e =V1 - (22/21)2' (8)

The field components about an electric dipole oriented along the polar

axis of a spherical coordinate system are13

-k .
E (r,0) = Eklii_i_gi ko + 1 ) cos 6
2ﬂ€°r r r2
P, e ko [k 4 2 (o
Eg(r,0) = _© 0+ 21 - kb sin O 9
4megr r r?

"

By (r,0) EQEQEQ e“jkor <;ko + j%) sin 0
4y



and for the magnetic dipole oriented along the polar axis3

n.kM

Eg(r,0) = - 000 -jkor (-ky+ 3 L) sine
4Tr r
_ M e‘jkor
B(r,60) = 00 =~ j .k£ + 1) cos b (10)
2nr r r?

Y -
By(r,6) = Koo ~Jkor (J‘ L ké) sin ©

4mr r r

In the foregoing n, =VMy/€, = 120 ™ ohms. If the magnetic dipole is aligned

along the x-axis, then the field components are

koM .
Ey(x,y,2) = - No¥oMox o Jkor S
4mr o*IT) T (11)
' NokoMoy  _
Ep(x,y,2) = — —— 2% 73kt (g + 3 1) X (12)
2mr r r
HoMoy 2
B , = -jkor [: ko . 1 X
x(%,¥,2) e Uy | g
(13)
_ UoMoy e~ikor (5 ko 4 1 _ g2 r2-x?
4 T 2 © 2
Tr r r
HoM
By(x,y,2z) = — 0% kot (5 Ko 4 1) xy
2mr r r?) r?
(14)

4rr

H .
4+ Motbx o~ Jkor <j ko _1_2 _ kz) x
r



qubx .
= ‘Jkor Eg_ + 1 X
BZ(X’Y’Z) 2‘"’1— e j r r2 rz
1M
+ Plox gk (j ko 41 _ kz) x (15)
4mr r r? °/ r2

If the dipole is oriented

along the y axis

then the field components are

Nokolf -
B (x,y,2) = - ——2 ¢35 (ki +31)2 (16)
4y r r
NokoM -
B, (x,y,2) = - ——0F ¢ dkoT (_p 451X (17)
4mr r r
KoM -
By(x,y,2) = —= e Jkor jlo4+d 1
2rr r r?) r
u.M
+ 2 0y g-dkor (j l:_o_ + %2 - kg) = (18)
4mr r
quO . k 2
- Y -jkor (i Ko .1 )y
By(x’y’z) _21T"r. - ° (J r + r? r2
HoM o _. ko o 1 2__2
- — O kot [5 ko 4 1 _ p2)xoye (19)
4Tr T r? ° r?
u.M .
i - 5 )
2Tr r r?/ r?
HoM -
+ 2oy ~ikor (j ko , .1_2.. kg)% (20)
4y r r r



Expressing the electric dipole fields in cartesian components yields

Ex(x,}’,z) .__P_o__ e"‘jkor (j & + '];2) Xz

2
2mer r r°j r
+ o gdkor (j ko 4+ L kz) v (21)
- 2 (o} 2
4me,r r r r
By (x,y,2) = —0 e JkoT (J o+ l’z) 3
21T€°r r r r
P - k 1
4 -0 dkor (j =24= - ké) 1z (22)
4ﬂ€or r r r

E,(x,y,2) = o I (j 2 l)iz_
r

2me r r r
_ k 2_ 2
fo (B gt gy
4eqr r r? r
P —
By(x,y,2z) = - Jokofo Jkor (1, 41y y (26)
brr rr

- 1 '
By(x,y,2) = Jofofo odkor  (pe 4 5 (25)

N

The time histories of the foregoing field components may be obtained by

Fourier superposition. The results are

n O
Ey(o,y,z,t) = - 202 LM 1+ L x2 1 [¥] (26)
4m r oy bmeg T
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n, "
¥ (x,y,z,t) == Z 1 M ]+ 1 yz 1, [P.] (27)
y (Y el S C A i
¥ (xyy,zot) =-To [y L M ]1+X L [M 1}
2 sml 2 1 ox r? oy
L ZZL[i‘:’]-lL[?»‘]} (28)
4me, | ¥ P O ¢ 2O
n o f x2 " 1 "
Bx(x,y,z,t) = z;r-{;a Ls [MOX] L, [Mox]
"
+ Yo xy o1 ¥ 1-To 3 1, [F,] (29)
m r® 0% Gm g2
" 2 ", "\
= Moy - [ ]}
B t )L L, M = L, IM
y(x’}'9za ) Z;{ r3 3 [ oy] 2 oy
o xy A No x Y
+ 2 X .o [M_ ]+ X 1, [p,] (30)
4m rd 3 Tox m 2 ' °
N _lo 2 N n
B, (x,y,2,t) = e -;3{ xL, [be] +y L, [Mby] (31)
where the foregoing operators are used
2
L, [£(t)] ={ 1 .@_.2_+L_9_) f(T)} (32)
c? 3t re 9T T=t-r/c

L, [£(0)] =1, [£(0)] +1, £(t - /o) (33)
r



11.

L, [f()] =1, [£(e)] + 2{(-1: g—;*‘%z)f(’r)} ) (34)
T=t-r/C

with ¢ = 3 x 108’m/sec.

By using the appropriate coordinate transformation, the foregoing

expressions may be used to determine the field components from an arbitrarily

located aperture.

Dipole Moments and the Incident Field

For plane wave incidence on a perfectly conducting plane, it is well
known that the normal component of the electric field at surface of the

plane is

a8, = 2 a-gine (35)

where EINC jg the incident electric field vector and n is a unit vector normal

to the plane. The tangential component of the magnetic field is
axH, =2n x gine (36)

Using the foregoing in (1) and (2) yields

By(1) = + 223 al DI (1) (37)
N = - 3 .1 yinc

MOX(T) = - 22 o HX (1) (38)
Moo =-228 o wC (n) (39)

oy 22
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where
1 = _ 3
%1 o‘11/’2‘1
1 ' 3 0
Opp == 0y,/% (40)
Wl =+ g,/
33 33 1

for an elliptical aperture.

For E-plane incidence and the propagation vector k= (-k, sin 6, cos ¢,
-ko sin 6psin ¢4~k cos 6,)

ginc - ¢
z

Hinc (t)= - i—-EinC (t) cos 6 cos ¢, (41)
o

¢ (r)= - L EIPC (¢) cos 6 sin ¢
Y ng ) 0

And for H-plane incidence

inc inc

z

E (t) = E (t) sin 6,

ne (ry =L I8¢ (1) cos ¢, (42)
no

Hinc
- (t)

1 inc .
n E (t) sin ¢o

o

where Einc(t) is the total electric field incident on the aperture.

The non-dimensional dyadic elements for an elliptical aperture, as
defined in (40), are given in Table 1. For apertures that are not elliptical
an approximation to the dyadic elements must be used. An equivalent aper-
ture eccentricity may be defined for arbitrarily shaped apertures as shown

in Figure 2. The dyadic elements such as those for the elliptical aperture
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may be determined using the equivalent eccentricity in (3) - (5). The
equivalent semi major axis length should be chosen so that the area of the
arbitrarily formed aperture is equal the area of the ellipse with the
equivalent eccentricity. For example, the rectangular aperture shown in

Figure 2 has as the equivalent semi major axis length

w
L, = (43)

2V

For a perfectly square aperture the equivalent eccentricity is zero and
equivalent semi major axis length is the same as (43) where w is the length
of one side of the aperture. Then using e = 0 and £, as shown in (43) in
(3) - (5) the dyadic elements for the aperture may be approximated. How-
ever the foregoing approximations are not expected to be accurate if the
shape of the aperture differs radically from an ellipse.

If the aperture is located in a finite size object then (35) and (36)
are no longer valid. But E  may be expressed in terms of the surface
current charge distribution that would exist at the aperture if it were
shorted and

-> N ->
H =nxK
o
expresses the magnetic field in terms of the surface current distribution.
This brings up an important question of aperture penetration for finite
bodies with a resonant surface current. In this situation the scattered

magnetic field may be orders of magnitude greater than the incident magnetic

field and the use of (36) would grossly underestimate the field penetration.
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Two Parallel Plates

The problem of field penetration into the region between two parallel
plates is of considerable interest since it applies to the degradation of
shield integrity caused by the presence of small apertures. The preceding
analysis may be extended to two parallel plates, one having an aperture and
the other continuous, by using image theory. The image of the electric
dipole moment is colinear with the dipole vector; however the image of the
magnetic dipole is antiparallel with the magnetic dipole vector. Taking
this in consideration a doubly infinite array of images is formed as shown
in figure 3. The field components at a particular point in space may be
obtained by an algebraic addition of all the contributions from the aperture
dipoles and the image dipoles. This was done in computing the data that
are presented in figures 4-11.

In figure 4 the x-component of the electric field along the z axis
between the plates is shown. As would be expected the field component gets
quite large very near the aperture. Here

- a;Z cos 60 sin ¢, E - Polarization

a, = (44)

2 . .
a;z sin ¢o H - Polarization

Figure 5 exhibits the z component of the electric field along the
z axis. Here
0 E - polarization
a = (45)

o' sin 6 H - polarization
33 o

And figure 6 exhibits the only non zero component of the magnetic field

along the z axis. The penetration field components at the surface of the plate
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are shown in figures 7-11. The dominant feature of the foregoing curves is

that the contribution from the images is in general quite small for the
parameters studied.

The expressions used to compute the penetration field exhibits some
peculiar behavior for certain plate separations and frequencies. In particular,
when

kod = mT m=1, 2, 3, -—

some components of the field are unbounded. Evidently the foregoing represents
resonance conditions. The appendix discusses this result in detail plus a

modification of the formulation to treat the resonant case.
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Penetration Current and Charge about the Aperture

For many practical problems the currents and charges on the inside
surface about an aperture are needed. An apprgximation to the behavior of
these quantities may be obtained by examining the dipole field. It should
be remembered however that this field should be combined with the fields
of the image dipoles. As seen from the previous section the image dipole
contribution is often negligible.

Considering an elliptical aperture the dipole field components at

the surface of the conducting plate are

B (x,0,0) | & ay(k 2)°
N ;nc Jlexl_ 2150 (1 -1 (46)
B Zﬂ(kOX)2 Ikox'
' 3
B (x,0,0) ej|kOXI - _az(koﬁl) (1 -3 1 -_.L_.f)
—“L—"—Binc 2‘ﬂ|kox| [k x| [k x]
3
+a3(k021) (1 A )(47)
ZTrlk x| Ik Xl |k XIZ
[o]
E_(x,0,0) ej[koxl __ ax(kyl )3(1 -3 1 )
E1nc , 2"|koxl Ikoxl
. 3
. az(k_ %) (1 -y 1 1 ) (48)
[ 2
whal VTl TR
o]
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-a; cos 6 cos ¢ E Polarization

Where a, = o ° (49)

1
ail cos ¢ H Polarization
o

It must be remembered however that the foregoing approximations are strictly
valid only at distances from the aperture that are large As compared to the
aperture dimensions, i.e. r >> g,. The coefficients in the higher order
multipole expansion are of the order (koa)z'n"'1 for the nth multipole and
the radial dependence goes as (kor)'(2“+1).

To determine the time behavior of the‘corresponding field components
a particular time dependence of the incident field is considered. A con-
venient time dependence also used by Bombardt is

=0t

FIfC () = ge @ (50)

where

g = £ Finc ()

I

n
Here T is the rise time of the pulse and Ein°(1‘) is the peak value of the

electric field.

The surface charge on the inner surface of the plate containing an

aperture may be obtained by using (50) in (28). Along the x-axis it is

[} inc _
D (x,0,0,t) ~ - 23 )3 E E, (t - |x|/e) (51)
am \ | x|
provided
£
<< 1 (52)

eT



and

Y ] e=xl/e)® : (53)
cT 2

1

The x-component of the magnetic field under the foregoing restrictions is

2, ¥ EC(e-[x|/e) (54)

Ixl/ n

¥ (x,0,0,t) = - 31.(
X Z.rr o

and the corresponding y-component,

(f. )3 Einc(t-lxlfc) (55)

It is noted that (52) and (53) are equivalent to the small aperture approxi-

mation, i.e. koz <« 1 for significant frequency content of the pulse.
1
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Comparison with Bombardt's Results

In studying the quasi-static field transmission through circular
apertures Bombardts’6 considered a small aperture in a long cylindrical
shell immersed.in a uniform axial magnetic field. The geometry of the study
is shown in figure 12. 1In this problem the penetration field may be ex-
pressed in terms of only a magnetic dipole moment directed antiparallel to
the impressed magnetic field. However the effect of the cylinder walls
must be considered. From the preceeding results it is found that the
penetration fields are generally only slightly perturbed by the walls of
the shield. Hence the penetration inside the cylindrical shell and near
the center of the shell should be nearly that occuring for the aperture in
a plate. This is the approximation used by Bombardt.

The time dependence for the magnetic field is considered to be that
given in (50) for the electric field. Following the development of the
foregoing section the penetration field may be easily obtained. The time
history of the z-component of the magﬁetic field on the axis of the cylinder

is found to be

H (0,y,z t) 3 gt &3
2 ’Y,Zo’ - a22 1Zo _L) (56)
Ho(t) 4oy r®

where Ho(t) is the impressed magnetic field directed along the y axis. This

5 provided

equation agrees exactly with equation (9) of Bombardt's first paper
the aperture is circular, i.e. uéz = 8/3. In Bombardt's second paper on
the subject a higher order expansion is used to determine the magnetic field.

Figure 13 exhibits experimental data and theoretical data obtained by Bombardt

compared with (56). Excellent agreement is obtained.
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CONCLUSION

A general theory of aperture penetration is presented for arbitrarily

shaped apertures. Results are presented for circular and elliptical

 apertures and a comparison with experimental data is presented. The pene-

tration field is expressed in terms of the dipole moments of the equivalent
sources for the aperture field distribution. Therefore the formulation
applies only for apertures that are much smaller than the operating wave-

length.

It is shown that pulses penetrate small apertures with essentially
no distortion and that the fields of the apertures are mostly local.
Furthermore, the field configuration is approximately that about perpendicular
static electric and magnetic dipoles except for cases very near resonant
conditions. It is because of this behavior that pulses penetrate small
apertures with essentially no distortion in time history.

Future studies should include determining the field penetration for cavities
near resonance and with a finite Q. These topics are only briefly discussed
in this paper.

Although the formulation presented in this paper strictly applies only for
a small aperture in a parallel plate shield the results have a much broader
application. They are:

1. The field penetrating a small aperture (dimensions < A/10) in an
arbitrarily formed electromagnetic shield is approximately that of static-crossed
electric and magnetic dipoles, except for frequencies very near resonance
(within V10%) of the interior cavity of the shield. If the interior cavity
formed by the shield is a low Q cavity (Q‘§ 10) then the aforementioned restriction

vanishes.



34.

2. The foregoing magnetic dipole moment of the equivalent source dis-
tribution of the aperture lies in the plane of the aperture and the
corresponding electric dipole moment is perpendicular to the aperture.

3. The cartesian components of the magnetic dipole moment are directly
proportional to the corresponding components of the surface current density
that would exist at the position of the aperture if it were electrically
shorted.

4. The magnitude of the electric dipole moment is directly proportional
to the surface charge density that would exist at the position of the

aperture if it were electrically shorted.
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APPENDIX

When the aperture is illuminated at the resonant frquency of the cavity
formed by the parallel plates, multiple reflections within the cavity may
significantly perturb the aperture field. The contribution to the normal
component of the electric field at the aperture arising fromvthe multiple

reflections is

v -j2nk,d
E,(0,0,0) = - § -2 o z erinked (-1 +y_1 (1)
T €4 1 (2nk,d) 2nk,d
n=

where Po' is the aperture electric dipole moment corrected for multiple reflections.

This corrected dipole moment is

3
By = &) 0y [2 B¢+ E, (0,0,0)] (A2)

Using (Al) in (A2) yeilds

3 o
k L -

z 5 Znk,d
m n=1 (2nk,d)
(A3)
In general, the correction is small so that
LI _ 3 ' inc
Po --»Po =22 Oqq Ez

However, when the magnetic dipole moment is considered a significant correction

may be obtained.
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The contribution to the x-component of the magnetic field at the aperture

produced by the multiple reflections is

3 = -32
H,(0,0,0) = Mox % edfmkod 1 1
— — [+ + | (as)
2 — 2nk°d 2nk°d (2nkod)

where M;x is the x-component of the aperture magnetic dipole moment corrected
for multiple reflections. This corrected dipole moment is
T

3
Mc‘x = —21 a

il [2 ui“c + H,_(0,0,0)] (A5)

As before using (A4) in (A5) yields
' 3 ' _inc (ko21)>
Mox == 2% 0y By /{1+———-——°1 L
2m (A6)

®  -j2nk,d 1 L
e
* ,; Znkgd [-1+3 2mca * (anod)z]

Similarly the y-component of the corrected magnetic dipole moment is obtained.

. 3
M;y = -2 zi 0yy H;“C/ { 1 + Ko21)7 0y
2 (A7)

[+2]
-j2nk,d 1 1 f
X e [-1 + 4 + 2
g;; 2nkd anod (2nkod)

Note that when resonance occurs, i.e. kod = mm, where m is an integer, the

sums in (A6) and (A7) diverge thus yielding
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M' . 0 (A8)

Thus at resonance a significant perturbation of the aperture occurs because
of multiple reflections. Evidently to determine the penetration field at
resonance requires a limit be evaluated.

Since the corrected electric dipole moment does not approach zero as a
resonant condition is obtained it must be concluded that the electric dipole
moment of the aperture can not excite a resonant mode of the parallel plate
cavity. However, for the general cavity, it must be expected that the electric
dipole may excite a resonant mode. Thus near the excitable resonances the
internal reflections (image dipoles) significantly effect the aperture dipole
moments.

The foregoing discussion and conclusions apply only to high Q cavities.
Many cavities formed by electromagnetic shields are relatively low Q, i.e.
Q~10. For these cavities the importance of multiple reflection considerably

diminishes. However, this is a topic requiring further investigation.



