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l., Introduction

In previous reports [1]* we presented equations describing the steady-state
behavior of multiconductor TEM lines subject to general excitation and termination
conditions. The dynamic behavior of such lines is a function of two sets of
parameters: (1) external parameters represented by terminations and excitations
(2) internal parameters represented by the various line admittance (or impedance)-
coefficients, and the line electrical length. Limitations of the theory presented
are that the dielectric be homogeneous and isotropic, that the conductors be loss-
less, and that the line cross-section geometry be invariant in the direction of

wave propagation.

Assuming that these conditions (and the TEM-mode condition) are met, accuracy
of behavior prediction depends on the accuracy of the parameters introduced into
the model. This report 'is concerned with some aspects of estimation of the line

internal parameters.

For a TEM system it turns out that, in theory, all internal parameters** are

determined when the line's electrostatic capacitance coefficients (Cij,i,j =1,...,N, )

for an N-line), and the permittivity and permeability of the medium are known [2].

The capacitance coefficients, in turn, are determined from & knowledge -of
the cross-section geometry and the permittivity of the medium. The problem to be
solved is typified by the seven-conductor shielded cable shown in cross section
in Fig. 1. Three quantities suffice to specify this circularly symmetrical
arréngement: a, the common radius of the cable wires; Rc, the locus of the center
of the outer six wires; and Rs, the inner radius of the shield. Actually, a
small redundancy appears here, since the line coefficients are completely deter-
mined by dimensional ratios, rather than absolute dimensions themselves. The"

ratios used in this report (for the 7-line) are

*
Numbers in [ ] correspond to Reference list. Reference 1 contains other
related references. -

*%
Except line length.



Figure 1. Seven Conductor Cable

R A - — B e st e



PLALA

<=8
-5
(1)
R
C
P=q

which are more convenient for the purposes of this report than the parameters,
p and A, of (3], to which they are related by

1
A =3
(2)

0
]
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Problems of this class, involving round wires in circular sheaths, cannot
generally be solved analytically in closed form. Accurate results must be sought
by mumerical solution of lLaplace's equation or a Green's theorem integral-equation
formulation. Analog methods using resistance cards, resistance networks, or
electrolytic tanks, are also available. Asymptotic solutions for certain limit-
ing values of the parameters are possible in closed form; the generation of such
solutions is the subject of this report. The two parameters, p and x, yield four
asymptotic regions: ’

A, x, p~ o, @Qalitatively this region is described as that for which the
wire radius is much less than the distance between wires, and much less than the

distance from any wire to the shield.

B. p—=2;x- (1L + %9-* 3/2. Qualitatively this region is that for which the
wires are so large and the shield so smell that the gap between wires (gc) and the
gap between any outer wire and the shield (gs) are much less than the wire radius.

C. p— 2; x— o, For this case the wires are bunched closely compared to
their radii, but the shield radius is much greater than the radius of the locus of

the centers of the outer six conductors.



D. p=o, x~ (1+ %) = 1. The wire radii are small compared to the shield
diameter, but the gap between the cuter six wires and the shield is much less than
the wire radius.

The D region appears to be of academic interest only. The C region does not
appear to be of practical interest either. However, one of the experiments at
Sandia used parameters falling within its scope. Thus, one set of parameters
was, in inches

0.001

a =
Rc = 0.0025
R = ko
8
yielding
P = 205 }

2. Analysis: The Electrostatic Problem

Assume the wires carry charges q, and potentials V; (i =105 7). The
potential of the shield is zero and the total charge on its inner surface is

q.. Then the capacitance coefficients are defined by
1 .

7
i=1 .

(3)
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]
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where Q, C, and V are matrices:




B Y1
.Q_ = : ; Y- = .
\'J
Y7 7
_ - (%)
Cll, Clz" . o s Cl7
c. 021, C22,. . . 027
_C7l’ 072’o e s 3 C?'L
InC, Cij = Cji for every i,'j. Furthermore the symmetry of Fig. 1 suggests
that
\
C135Cp =« - - =%
Con =Cqsy = & .=C
12 2 6
23 1 ’ (5)
013 = c2’+ S e e e = Csl
017 = 027 = .. .= C67 )

If we include C;) and C77 in the list of Equations (5), we note that only

six different capacitances need to be determined.

From (3) and (4) the defining equation for any individual CiJ is

ci;féﬁ‘;. () \
IV, =0, k43
oz > ()
q
Cij’?i" (b)
PV =0, k# i )



From (3)

v=cra=29 (7)
where
Prys Prpr ¢ ¢ 0 By
Prvs Pons « ¢ ¢« 5 P
P = 21’ *22 27 (8)
Pryy> Pons ¢+ + 5 P
R 7L 72 77_
is the potential—coefficient metrix. The defining equation for an individual Pi,j
is
Vv,
p,, = =
ij a
e =0, k43 (2)
(9)
or
v
D:; T )
ij qi . .
q =0,k # i (v)
Sometimes the p, 4 are more conveniently determined than the c-ij {3, 4].
The line admittance - and impedance coefficients are 'then simply
Yi j =V Ci 3
l i, J = l’ .00’7 (lo)
zi,’j =V pi,j

where




~me,

v=(u e)-% (11)
U = permeability of medium, H/meter
€ = permittivity of medium, F/meter

2.1 Discussion of Case A: X, p~ ©

This case has been covered in [3]. An upper bound to errors incurred in de-
parting from the asymptotic conditions is given in Fig. 2, (adapted from Ref. 2,
page 4-13). This is a "worst case” situation, which assumes that the charge
distribution on the conductor for which a coefficient is being evaluated has been
distorted by having all of the opposite charge on a single conductor of the same
diameter. Clearly, this is generally not true. Any other arrangement of conductors
that reduces the charge distribution distortion will also reduce the error. As
an interesting example, consider the case of a round wire in a square shield
(Fig. 3). The asymptotic characteristic impedance for this configuration is shown
in Fig. 4. For D/a = L4, Fig. 2 sugggsté an upper bound for the error of about 5%.
On the other hand, a recent numerical solution by D. H. Sinnoft/K. M. Harvey [S]
shows the error to be less than one part in 10,000! Even for the case D/a = 2.2,
which corresponds roughly to p = 2.2 in the notation of Section 1, the error was

only 7%, whereas Fig. 2 suggests an upper bound of the order of 70%.

Thus, if we set an error limit of about 5%, then the A-asymptote should prove
useful at least for (p> U, x 2_%-+ 1) for all admittance coefficients, and possibly

for p > 2.2 for some.

On the other hand, justification for using Fig. 2 as an approximate error upper
bound for coefficients of a system of more than two conductofs rests on the
assumption that a coefficient between a pair of conductors is not seriously affect-
ed by the presence of other conductors. This is approximately true when potential
coefficients are determined, since the procedure requires the extraneous conductors
to float. Thus the net charge un any extraneous conductor is zero; its effect
on the field distribution is a second-order dipole effect resulting from redistri-

bution of its neutral charge.

10
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But in a capacitance determination the extraneous conductors are grounded.
This means they carry net charges required to cancel the potentials induced by
the pertinent pair of conductors. The centroids of such charges will deviate
from the conductor centers when the conductors are closely spaced, thus intro-

ducing additional error not accounted for by Fig. 2.

A hybrid situation occurs in determining Y77 of Fig. 1. This coefficient
is determined as the ratio of charge on conductor No. 7 to its potential when
all other conductors are grounded. When the conductors are closely spaced,
intuitiqn suggests that the determination is essentially that of the characteristic
admittance of a cage transmission line. The inner conductor will have a relatively
uniform charge distribution, corresponding to the case of Figs. 3 and Y4, while the
conductors of the outer cage will have the severe shift of centroid of charge
corresponding to the error curve of Fig. 2. For instance, for an error of 5%
for the cage, use the 10% point of Fig. 2, corresponding to p = 3.33.

Because of the relative uniformity of charge in this case, it should be

expected that the A region would extend approximately to this value of p.

" On the other hand, for the B region, Fig. 3 suggests that the result would
not be too useful for p > 2.05. The question then concerns the magnitude of the
uncertainty in the range 2.05 < p < 3.33. This is discussed in Section 3.

For the remaining coefficients we have to accept the error suggested by

Fig. 2.
Before going on to Case B we rewrite the A-case formulas for the'Zij in

terms of (x, p):

14
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2. =2 _ =2 2, =32 /A lg&r"h‘xe"'l-
127 %3 T %34 T U5 T %56 = %L T 2 ”L 2
y o |
_ = = _lp o X +x + 1
213 =%y =235 =g =25 = Zp =20 2
2 =7 =z = Com|Eatl (12)
ik T %25 T 736 2x

€ onx

2 _ =0C0n
- (px)
¢ = 60/481;_
er = relative dielectric constant

2.2 Discussion of Case B: p—= 23 x—- 1+ %* -Z-

The method for obtaining coefficients when all conductors are almost touching
is adapted from Wheeler [6]. (Consider Fig. 5, which shows & portion of & seven-
conductor cable of large conductors with close-fitting shield.

To determine Y. . and Y., we place a potential on conductor No. 1 and note

11 12
the total resulting charge on that conductor (for Yll)’ or the total resulting

charge on conductor No. 2 (for le).

But when the conductors and shield are very closely sﬁaced; most of the
electric field and, therefore, most of the charge, will be concentrated in the
four regions marked "g", and there will be essentially no charge in between.

Thus the four regions can be treated as independent capacitances between pairs of
conductors and their effects combined by simple addition. Furthermore, there

15
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are only two independent capacitance configurations represented in Figs. 6a and
6b, respectively. Here for the sake of complete geﬁerality we indicate conductors
of different radii at (2), although for our specific example they are equal. At
(b) the smaller circle represents one of the outer six conductors, while the outer

circle represents the shield.

A single formula expresses the capacitance (per meter) for both of these

configurations. It is, in MKS units [7],

e\

2R1R2

(13)

C = 2me cosh

where the upper sign is used for (b), the lower for (a).

For the asymptotic situations under study these expressions can be simplified.

First, for case (a), we have

- = <
D Rc 2a+gc,gc < a

therefore

Q
]

ore (cosh-l 1(%e 2 b
& l [2 a) ]

-1 .
2re {cosh ll} If2 l]l (1)

Elementary hyperbolic transformations yield

cosh -1 ; p2 1) = 2 cosh™ (2> , (15)

17
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Figure 6. Capacitance Between Circular Cylinders
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But as gc 0, Rc 29.’ so 3 1, and cosh 2) 0. lLet

u = cosh™t (g) -0

then

§=coshuzl+—§-u2

whence
1 )
u = (p - 2)2 (16)

Using (16) in (1) via (15),

-1
1.
C, ~ 2rrg:{2(p - 2)2}

= —TE (17)
(p - 2)
Then, as usual
1
Y, = vC = —— (18)
2C(p - 2)%

For the (b) case of Fig. 6 we have

Rlst
R2=a
D=R
[+

19
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-1 R™ + aa - R
Cb = 2ne {cosh 23RS
-1
2, 2
1|p(x” -1)+1
= 2re {cosh [ oox :l (19)
Again writing
2,2
_ S1ipS(x™ - 1) +1
u = cosh I: opX }
we have, approximately
2, .2
1 2 _D (x - l) + 1
coshu=1+s5u = 5px
whence
. 2 2 '
o = [(px - 1) - n{l (20)
px
and (19) is
3
- pX ) 21
Cb zTe 2 2J -.- R ( )
i (px - 1)" - P T
and
b 4 2 2
(px - 1)" - p

20
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Y,=-1,

Yyg= .. .o=Yp=. . =Y =20 (23) .
Yy =Yop= =Yy ="Y

Y77=6Y

3. Behavior of Y.

17
Region-A and Region-B curves for Y77 are given in Fig. 7. Actually the
ordinates are : . '
-1 -1

This menner of display yields a zero at p = 2 instead of an infinity for the

fat-wire asymptote.

As discussed in Section 2.1, the true curve should be close to the fat
asymptote for p < 2.05 and close to the thin asymptote for p > 3.33.* Between
these values a more-or-less gradual transition presumably exists. The true value
has an error less than half the difference between these curves. Whether or not
this is good enough depends on the specific problem requirements. In the event
it is not, recourse must be had to numerical solution of the electrostatic field

problem.

*Although Y77 is, generally, a function of both x and p, computations of the thin

asymptote show that its value varies only about 1% in the range 1.4%3 < x < 3.33,
for p = 4. Presumebly, this variation decreases with p.

21
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The dashed curve of Fig. 7 represents our best estimate of the true curve of
y,;;, obtained by a method similar to that of Ref. 2 (pp. 4-66 ff.).

Pending discussions with Sandia regarding the usefulness of this result, we
have not considered it advisable to devote further effort to analysis of the

remaining coefficients.
4. Conclusion

The asymptotic data are generally useful outside the range 2.05 < p< L,
except that the upper limit of the excluded range may be reduced to p = 3.33 for
the coefficient Y. '
methods must be used.

For accurate results in the excluded range, numerical
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