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ABSTRACT

An approximate formula is derived for the currents in the loads
terminating a two-wire line located parallel to and near a circular con-
ducting cylinder of finite length. The line and the cylinder are illumi-
nated by an incident plane wave. The analysis takes account of the coup-
ling between the line and the cylinder and hence of the effects of pos-
sible axial resonances in the latter. The configuration simulates exposed
conductors used to interconneﬁt the electronic apparatus in a rocket. The
analysis 1s directed to;ard determining possible hazards due to induced

currents.



® INTRODUCTION

When an arbitrary electromagnetic field is incident upon a rocket with
exposed conductors that interconnect electronic apparatus in the manner shown
schematically in Fig. 1, currents are induced that may generate unwanted and
possibly dangerous voltages in the equipment. This investigation seeks to
determine specifically the currents in the loads terminating the ends of a
two-wire line placed close to a conducting cylinder as shown in Fig. 2 when
illuminated by a plane normally incident electromagnetic wave that has its
electric vector parallel to the axes of the cylinder and the two-wire line.

The cylinder with radius a, extends from z = -h, to z = hl; it is in the

1 1

same plane as the two conductors of the transmission line which extend from

z = -hé to z = h2. Their common radius is a, and their distances from the

axis of the cylinder are d2 = d - b/2 and d3

e& of the line and d the distance from the axis of the cylinder to the center

= d + b/2 where b is the spacing

of the line. The following inequalities are satisfied:

Ba2<8a1<<l H Ba2<Bb << 1 ; Bd << 1 (1a)

1 . '
a, << hl » a, << (h2 + h2)/2 : h2 + h2 < Zhl (1b)
The load terminating the line at z = —hé is z,, that at z = h2 is 2
EXCITATION FUNCTIONS AND VECTOR POTENTIALS
The incident electric vector is given by
Einc(x) - Einc(o) e—JBx 2)

e with the origin of coordinates at the center of the cylinder. The following
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excitation functions can be defined for the three conductors:

v = E0)/8 L, v, = EXSa+b/ay/e = B0y BT g

1 2 z
(3)
8 (d+
U, = EMC(-a-b/2)/8 = EMC(0) IP(IFDI2)
3 z z 0
If it is assumed that the distances between the conductors are all
large compared with their radii, the vector potentials on their surfaces
due to the currents in all of them are well approximated by:
L hl h2
- —— t ' 1 1 1
A, (2) = o {f . I,(z") Ry (z,2") az + f I,(E") Kyy(z,27)
- ~h
1
+ 13(2') K13(z,z')]dz'} (4a)
Yo hl hz
o 2 t ' ' 1 '
Ay, (2) = o~ {f ) I,(z') K, (z,2') dz' + [ 1,(2") Ryy(z,2")
~h. . -h
1 2
t T 1
+ I3(z ) K23(z,z Yldz'} (4b)
¥y hl h2
- 1 ' ' ' 1
Ay, (2) = 2= {f ) I,(z") Ky (z,2") dz' + f CI,(2") Ky, (2,2")
- ~h
1 2
1 1 1
+ I3(z ) K33(z,z )1dz'} (4c)
where ~4{8R
K,, (z,2") = SL~——:Ei R -V/(z - z')2 + C2 5)
e Ry 0 3k 37 % ik (
with
€11 "3 » Cpp=Cy3= 3y 5 Cy3=Cy=b (62)
Cig = Cyy =d -b/2 Cy3 = Cqy = d+b/2 (6b)



Note that these distances are measured from a point z on the surface of one
conductor where the vector potential is calculated to the point 2' which
locates the element of current I dz' on the axis of another conductor. The
actual current is on the surface and involves distances that are functions

of the angle 6. However, the average distance to the center is an excellent
approximation when the conductors are electrically thin as required by (la)
and when they are not too close together compared with their radii. Actually
this latter condition is not satisfied when the transmission line is very
close to the cylinder with d - b/2 only very slightly larger than a, and with

1

2 % 3

The vector potentials (4a-c) are good approximations for electrically

a

thin conductors that are separated by distances between axes that are large
compared with the radius of any of them. Since the cylinder 1 may have a
radius a; that is not small coﬁpared with its distances from conductors 2
and 3, the transverse distribution of current in it may depart significantly
from the rotationally symmetrical near the adjacent transmission line. It
follows that the implied approximation in (4a-c) that the average distance

to the currents in the cylinder is to the axis in calculating the vector
potentials is not necessarily a good one. Insofar as the total current Il(z)
in the cylinder is concerned, the effect of the adjacent transmission line
in modifying the transverse distribution is insignificant. On the other hand,
in determining the vector potential on the conductors of the transmission
line due to the current in the cylinder, the proximity of localized image
currents in the cylinder cannot be neglected when the line is very close to
its surface. For this purpose the cylinder may be represented by the total

axial current Il(z') and by the localized image currents Ia(z') and Is(z')

in the images of the two conductors of the line in the cylinder as in Fig. 3.



These images are located at distances d and d

24
which are given by the relations {1]

2 2 2 2 2
g ] a1 - a2 - D4 . a1 - D4
24 DA D4

[«
i}
Il

from conductors 2 and 3

(7a)

(7b)

where D, and D. are the distances of the images of conductors 2 and 3 from

4 5

the axis of cylinder 1. The approximate expressions on the right assume that

a2 << a2
2 1°

currents in the conductors themselves. Thus,

14(2') = —Iz(z') R

Is(z') = -I3(z')

The currents in the image conductors are equal and opposite to the

(8)

The vector potentials on conductors 2 and 3 may now be approximated as

follows:
By {fhl ' e—st21 ' fhz ' e'jBRzz e'jBRza
A, = -— I.(z') ——— dz' + I (z") [ - 1dz'
2z - 47 -h, 1 Ry, -ny 2 R, Ry,
h, e-st23 e-stzs
+ f I3(z')[ R - X }dz'} (9a)
-h} : 23 25
M {fhl ' JIERy ' Ihz ' e’jﬁRsz e'jBRaa
A, =© — I.(z") dz' + I.(z") [ ]dz’
3z 4o _hl 1 R3l R’ 2 R32 R34
) e‘JBRaa e‘jBRas
+[ 1) g - Sx—1dz'} (%)
-h)} 33 35



where

= - t 2 2 — - 1 2 2
R24 J/kz z')" + d24 . R25 -v/(z z')" + d25
(10)
= _ ot 2 2 _ ot 2 2
R34 f(z z ) + d34 ’ R35 "'\/(Z z ) + d35
Note that since d24 =d-b/2 - D4 and d35 =d+ b/2 - DS’ it follows that
al (@ - b/2)% - a?
Dy =d=w77 » Y=g Torm . v 93 = dy th (11a)
a @+ b/ - &
Ps=d+6/2 » 9357 d+ b/2 » dp5 = da5 - D (11b)
The distance between the image conductors is
2 b
b = D - D = g [ ] (12)
i 4 5 1 d2 _ b2/4

The several distances introduced in (10)~(12) are shown in Fig. 3.

APPROXIMATE EVALUATION OF THE DIFFERENCE

As a consequence of the conditions (la) all of
separated by distances that are electrically small.
proximate evaluation of the difference integrals in

pattern used in transmission-line theory [2]. That

R N T e S
h ‘jBRa ‘jBRb
f I(z") [2 - = 1dz' = I(z).{2
-h Ra Rb

INTEGRALS

the conductors are
This permits the ap~-
(9a,b) following the

is, with R, = {(z - z')2

en(b/a)] (13)



provided a < b << h, Ba < Bb << 1. With (13) and the notation

Py = (c0/2n)2n(d24/a2) » P35 = (CO/Zﬂ)ln(d35/a2)
(14)
Pys = (£5/2m)en(d,/b) Py = (C0/2ﬂ)2n(d34/b)
the vector potentials in (9a,b) become:
uo h1 e—JBR21 "
= — ! ' —
A, (2) = o [ h I,(z") %, dz' + 2 [1,(2) py, * I5(2) Pyl (15)
1
by JTIBRy M
3 & 1 v
Ay, (2) 2 ) I,(z") S [1,(2) py, + I(2) Pyg) (16)
1
where 2o = /uoleo = 1207 ohms. -

SIMULTANEOUS EQUATIONS FOR THE CURRENTS IN THE LINE
The boundary condition on the total electric field on the surface of

each conductor is

inc

E(2) = E."%(2) - (Ju/87)(3%/02” + 8%) A_(2) = 0 an

The solutions of this equation with the definitions (3) are:

Aﬂual Alz(z) = _izﬂ [Cl cos Bz + U1] (18)
- -jé&

4nu01 Azz(z) = 20“ [C2 cos Bz + D, sin Bz + U2] (19)
- -4

4ﬂuol Ay, (2) = 327 [C; cos Bz + D; sin Bz + U3] _ (20)

%0



Note that the coefficient Dl in (18) vanishes because the current satisfies
the symmetry condition Il(—z) = Il(z) and has no discontinuity in slope at
z = 0,

When (19) and (20) are combined respectively with (15) and (16) to

eliminate Azz(z) and A3z(z), the following equations are obtained:

2 By PR
1,(2) py, + I3(2) by vl 1,(z") =% dz
~h, 21
- jIC, cos Bz + D, sin Bz + U,] (21)
£, 1 JTIBRy
= e l_______ \i
I,(2) pyy + 13(2) pys = =30 [ ;") —¢ dz
~h, 31
= 3[Cy cos Bz + D, sin Bz + U,] (22)

Since the currents in the closely-spaced transmission line have only a
relatively small localized effect on the current in the large cylinder, it
is a satisfactory approximation to neglect the contributions to the vector
potential on the surface of the cylinder by the currents in the line. Thus,

with (4a) and (18)

By ~38Ryq

-1 . 1\ €
brugt A, (2) 2 L(2)) S dz

v -jbn
= =

z
-hl 11 0

[Cl cos Bz + U1] (23)

The approximate solution of this integral equation is [3]:

ja4n

I,(z) =
1l ;0

U1K1(°°3 Bz - cos Bhl) (24a)



where

-1
1" [de cos Bhl - ?U(hl)] (24b)

The parameters ¥, and WU(h) are defined in the Appendix. With (24a) it fol~

du
lows that [4]:

hy e-jBRu L hy e~jBR21
f Il(z') - — dz' = L U Ky (cos Bz' ~ cos Bh,) = dz'
-h 21 ) -h 21
1 1
2 347
. ulxlwn(z) (25a)
Ihl I(')&d"iﬁux‘i’ (2) ’ (25b)
1'% R, 9 z. “1°1731'%
-, 31 0
where
Wkl(z) = Cf(hl,z) - Ef(hl,z) cos Bhl (26)
with
f=d-b/2 for k=2 , f=d+b/2 for k=3 (27)

The integral functions Cf(h,x) and Ef(h,x) are defined in the Appendix.

With (25a,b), the simultaneous equations (21) and (22) become:

Iz(z) Pos + 13(2) Pys = -j[UlKIWZI(z) + C2 cos Rz + D2 sin Bz + U2] (28)

and



‘ IZ(Z) P, + 13(z) Pys = -j[UlKl‘!'n(z) + c3 cos Bz

+ D, sin Bz + U3] (29)
These are the equations for the currents in the two conductors of the trans-
mission line in terms of the incident electric field. The effects of coupling
to the cylinder and each other are included. The boundary conditions to be

used in the evaluation of the four constants C D C.,, and D3 are:

2’ 727 73
IZ(hZ) + 13(h2) =0 , Iz(—hé) + 13(-hé) = 0 (30)
V(hy) = I,(h,) Z »  V(-h)) = -I,(-h)) Z, (31)
‘; where Zs and Z0 are the impedapces terminating the transmission line at z = h2

and z = —hé and V_ = V(hz) and V, = V(-hé) are the voltages across these im-

pedances as shown in Fig. 3.

THE SCALAR POTENTIAL DIFFERENCE
The scalar potential on each conductor is obtained from the vector poten-

tial with the help of the Lorentz condition. Thus with (19) and (20),

jw aAZz(z)
¢2(z) = ;E-———Sz——— = —C2 sin Bz + D2 cos Bz (32)
A, (2)
3
¢3(z) = i%-——?i;—— = -C3 sin Bz + D3 cos Rz (33)

It follows that the potential difference between the two conductors of the

-.Q line is

V(z) = ¢2(z) - ¢3(z) = -(02 - C3) sin Bz + (D2 - D3) cos Bz (34)



With (31) it follows that

V(hz) = -(C, - C3) sin th + (D2 - D3) cos th = IZ(hZ) Zs

2

_'- - ] - '=_ ~h!
V( hZ) (C2 C3) sin th + (D2 D3) cos th 12( hz) Z,

These equations are easily solved for (C2 - C3) and (D2 - D3) in terms of

Iz(hz) and Iz(-hé). The results are:
- z - ' R
(C2 C3) [Iz(hz) Zs cos th + IZ( h2) Z0 cos BhZ]/sin 8s

- - 1 - - 1
(D2 D3) [Iz(hz) Zs sin th Iz( hZ) ZO sin th]/sin Bs

where
-— ]
s = h2 + h2

is the length of the transmission line.

EVALUATION OF THE CURRENTS IN THE LOADS

(35)

(36)

(37)

(38)

(39)

In order to make use of (37) and (38) in (28) and (29) it is convenient

to subtract (29) from (28) and then successively set z = h2 and z = -hé.

E —‘ W o —'
Use can be made of (30) by setting 13(h2) IZ(hZ)’ 13( hZ) 12( hz).

Thus,
Iz(hz) z.,.= -j[(C2 - C3) cos 8h, + (D2 - D3) sin 8h, + F)
_l P - |_ - \J ]
12( hz) an j[(C2 C3) cos Shz (D2 D3) sin th + F']
where
g g d,,d
0 0 b 24735
Z === (p,, = Ppe =P, + D )=——[22.n~—+ln———]
ca 27m 724 25 34 35 2r a, d25 %

is the antisymmetric characteristic impedance and

(40a)

(40b)

(41)



[

F = UlKl[W (h,) - W3l(h2)] +U, -U

2172 2 3
= ZUIKl(cos th - cos Bhl) gn{(d + b/2)/(d - b/2)] + u, - U3 (42a)
Flom UpKg [y (Fhy) = ¥, Ch 1+ T, - Uy
& 2U1Kl(cos Bhé - cos Bhl) anf{(d + b/2)/(d - b/2)] + U2 - U3 (42b)
The approximate final forms in (42a,b) follow from the relation
W21(z) ~ WBl(z) = 2[cos Bz - cos 8h1] gnf(d + b/2)/(d -~ b/2)] (43)
which is derived in the Appendix. Note that from (3)
U = E%0)/8 and (U, - Uy) = [-126""%0)/8] eI*¢ sin(eb/2) (44)

The substitution of (37) and (38) in (40a) and (40b) leads to the follow-

ing simultaneous equations for IZ(hZ) and Iz(-hé):

I, (h,)[Z  cos Bs + jz_, sin Bs] + Iz(’hé) Zy = F sin Bs (45a)
Iz(hz) Zs + IZ(-hé)[Z0 cos Bs + jzca sin Bs] = F' sin B8s (45b)

These are easily solved with the results:

IS = Iz(hz) = [F(Zca sin Bs - jZ0 cos Bs) + jF'ZO]/A (46a)
= - ' = ' - - -
I0 IZ( hz) [F (an sin Bs JZS cos Bs) + JFZS]/A (46b)
2
A= an(z0 + Zs) cos Bs + j(an + ZOzs) sin Bs _ (46¢c)

These are the desired currents, viz., Is in Zs and I0 in ZO' Note that if. the




line extends from z = hé to z = h2 or from z = -hé to z = -h2 instead of from

z = ~h) to z = h, as assumed, the corresponding changes in sign must be made

2 2

in the several formulas.

CURRENTS AT ALL POINTS ALONG THE TRANSMISSION LINE
Although the specific purpose of this investigation is to evaluate the
currents in the loads as given by (46a,b,c), it is of interest to complete
the analysis and indicate how the currents at all points along the two conductors
of the line can be determined. Note that if (46a,b,c) are used in (37) and (38),
explicit formulas are obtained for the difference constants (02 - C3) and

(D2 -~ D.). In order to solve (28) and (29) for Iz(z) and 13(2) it is necessary

3
to obtain expressions for (C2 + C3) and (D2 + D3) so that all four constants Cz,

C Dz, and D, can be determined.

3

Let (28) and (29) be added and z set equal to h2 and -hé

3’

successively.

The results are:

I,(h,) 2 = ~3[(C, + C;) cos Bh, + (p, + D3) sin th + G] (47a)
_h ! o v 1 '
12( hz) Z.q j[(c2 + c3) cos Bh, (D2 + 03) sin Bh, + G ] (47b)
where
%o %o
Zes ™ 2n (Pyy = Pos + Py, = Pag) = 57 #nldy,dy,/d,0dy0) (48)
and
G = U1K1[W21(h2) + ?31(h2)] + U2 + U3 (49a)
T = - ] - 1
G UlKl[‘l’Zl( hz) + \1’31( hz)] + UZ + U3 (49b)
The equations (47a,b) can be rearranged as follows:
(c, + C3) cos gh, + (D, + D3) sin gh, = jIZ(hZ) Zg -G (50a)



v : 't s _h! - o
(C2 + C3) cos th (D2 + D3) sin th JIZ( hz) ch G (50b)
These can be solved for (C2 + C3) and (D2 + D3) to give

(C2 + C3) = {[jIz(hz) Z.g " G] sin Bhé + [jIZ(-hé) ch -~ G'] sin th}/sin Bs
(51a)

(D2 + D3) = {[jIz(hz) zcs - G} cos Bhé - [jlz('hé) Zc - G'} cos th}/sin s

s
(51b)

where Iz(hz) and 12(-hé) are in (46a,b), G and G' in (49a,b) with (68) in
the Appendix.

Since (C2 - C3) and (D2 - D3) are given in (37) and (38) with (46a,b), and
(C2 + C3) and (D2 + D3) are available in (51a,b), explicit formulas for CZ’ C3,
DZ’ D3 are readily obtained. If these are substituted in (28) and (29), all
quantities on the right are known so that Iz(z) and I3(z) can be determined.

The equal and opposite transmission-line part of the currents is Ia(z) =

[Iz(z) + 13(z)]/2.

SPECIAL CASE A: TERMINATED LINE NOT VERY CLOSE TO CYLINDER
When the transmission line is sufficiently far from the cylinder so that

the inequalities d >> a, and d >> b are satisfied while Bd << 1 is still valid,

1
it follows from (lla,b) and (12) that bi = 0 and d24 = d25 s d-b/2, d34 =
d35 = d + b/2. With these values (41) gives
an = Zc = (coln)ln(b/az) | (52)

which is the characteristic impedance of the isolated two-wire line.

SPECIAL CASE B: TERMINATED LINE VERY CLOSE TO CYLINDER
When the transmission line is so near to the cylinder and so closely

spaced that the following inequalities are satisfied:
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(dc/2) = d - a; << a; , b << al , b<<d (53)

it follows with (1la,b) that

2 2
[a1 + (dC - b)/2]1° - al |

dyy = a, + @ -5)/2 =d,.-b 5 dy=dy (542)
[a, + (d_ + b)/21% - ai
d3g = a, + (@_+5)/2 =d.*tb 5 dyg=dy (54b)

Since conductor 2 and its image, conductor 4, may be very close together, the
approximate expression for Poy in (14) is not adequate. The accurate formula

that includes the proximity effect is [5]:

2
by = (5g/2Mn(dy, Ja) 1 dy, = (4, /D[ + V1 - (2ay/d, )01 (55)

With (54a,b), (41) gives

Z..= (ty/2m{2 ln(b/az) + fnl(d_ +b)(d_ - b +J/(dc _ b)Z + 4a§)/2di]}

(56a)
where dc/2 is the distance from the surface of the cylinder to the center of

the transmission line. Note that when the line conductor 2 is in contact with

the cylinder, dc = b + 2a2 so that with a2 << b,

Z.a = (gy/2menf2(1 + /E)b/az] = (CO/Zn)[Rn(Zb/aZ) + 0.881] (56b)

Similarly in (43),

1+(dc+b)/231 . dc+b d -b

- = = (57)

d + b/2 ] &
1+ (dc - b)/2a1 a a

2 n [:r177;7§ = 2 n |

IR N EpeTERE R SR 2 8 S i it e kit



where use has been made of (53) and the series expansion of the logarithms.
SPECIAL CASE C: SINGLE CONDUCTOR CONNECTED TO CYLINDER BY
TERMINATING IMPEDANCES
If conductor 2 of the transmission line is brought in contact with the
cylinder, it may be removed and the terminating impedances Z0 and Zs connected

directly to the cylinder as indicated on the right in Fig. 1 where Z, and ZS

0
are the input impedances of coaxial lines into the rocket. 1In this case
dc = b and from (56a) the characteristic impedance of the line formed by con-

ductor 3 and the cylinder is

an = (cO/Zn)ln(Zb/az) (58)

The formulas (46a,b) give the currents in ZS and Z_ terminating the single

0
conductor to the cylinder. Since an in (58) differs by only 52.8 ohms from

an in (56b), it is clear that the currents in Z. and Zs are of the same order

0

of magnitude when Z_. and Zs terminate a two-wire line (with spacing b) very

0
close to or in contact with the surface of the cylinder as when Zb and Zs

are connected between the ends of a single conductor with its axis at a dis-
tance b from the surface of the cylinder. This is true as long as the condi-
tions in (53) are satisfied. Essentially the only difference arises from the

somewhat different wvalues of an obtained from (56a) with dc = b or dc =

b + 2a2.

CONCLUSION
General formulas have been derived for the currents in the conductors
of a two-wire line that is parallel to the axis of and quite near to a con-
ducting cylinder when both line and cylinder are illuminated by an incident

plane electromagnetic wave with the electric vector parallel to the common

et T timAT YR (At tem e e mimmls e em T Ma memin e Tue my T mee seaS
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axis. In particular, explicit formulas are given for the currents in the
loads terminating both ends of the line when this is close to or in contact
with the cylinder. Formulas for the currents in the loads connecting the

ends of a single wire to the surface of the cylinder are also given.

APPENDIX
The functions de and WU(hl) which appear in (24b) are defined as fol-
lows:
h1
¥. = (1 - cos Bh )"t f (cos Bz' - cos Bh.)[K(0,z') - K(h,,2z')] dz' (59)
du 1 o 1 1
1
hl
WU(hl) = f-h (cos Bz' - cos Bhl) K(hl,z') dz' (60)
1l
with
e-jBR
K(z,z') = (61)
R=[(z - 2% + a2)1/2 (62)
The integral functions in (26) are defined as follows:
h L~JBR
Ce(hyx) = [ cos Bx' 7 dx' (63)
-h
h _-38R
Eg(h,x) = f—h g dx' (64)
where
R=[(x - x")2 + £2}/2 (65)

They are readily evaluated by computer.



-17-

The combination V21(x) - Y31(x) which occurs in (42a,b) with x = h2 and

x = -hé is readily evaluated from (63) and (64). Thus,

h
1
¥y (x) = ¥a,(x) = I-h (cos Bx' - cos Bh,)
1
e"jBRn e'33R31 '
x - ) dx (66)
Ro1 Ra1

This has the same form as (13) and satisfies the same conditions so that with
1/2 1/2

Ryy = [ = x2+ (d - /D212 and ry, = ((x = x)% + (@ + /2212 and
(la), it follows that
W21(x) - W3l(x) = (cos Bx - cos Bhl)-Z nf(d + b/2)/(d - b/2)] (67)

The combination ?21(x) + V31(x) which occurs in (49a,b) cannot be simpli-

fied in this manner. It is given by

Y2100 + ¥3, (1) = Cryppyay (Pps®) + Crqpyzy (hys®)
(68)

= [Egep/2)Bys® + Eq_y/9y(hsx)] cos Bhy

where the C and E functions are defined in (63) and (64). They are readily

evaluated by computer.
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LEGENDS FOR FIGURES
Fig. 1. Rocket with external single and two-wire lines.
Fig. 2. Two-wire transmission line coupled to cylinder.

Fig. 3. Two-wire line close to cylinder with approximate image.
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FIG.1 ROCKET WITH EXTERNAL SINGLE AND TWO-WIRE LINES.



FIG.2 TWO-WIRE TRANSMISSION LINE COUPLED TO CYLINDER
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FIG.3 TWO-WIRE LINE CLOSE TO CYLINDER WITH APPROXIMATE IMAGE.



