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SUMMARY

Three circuits are analyzed: One consists of an isolated two-wire transmis-~
sion line with terminating impedances; another of a single conductor with terminating
impedances grounded to an infinite, perfectly conducting plane; and, finally, a ter-
minated two-wire transmission line in the vicinity of an infinite perfectly conducting
plane. In all cases, a plane monochromatic electromagnetic wave is incident on the
wires with the electric vector parallel to their axes. The wires are oriented with
respect to the incident field and the ground plane, if present, for maximum response.
The objective is to derive formulas for the currents in the load impedances of the
three circuit configurations described above. The writer then presents a heuristic
argument to the effect that solutions of these problems bracket the response of ex-
posed unshielded one- and two-wire transmission lines arranged parallel to the axis
of a rocket and close to its surface. The established upper and lower bounds for the
load currents are sufficientiy close together to be of considerable practical value in

the study of the electromagnetic compatibility of rockets,
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BOUNDS ON THE LOAD CURRENTS OF EXPOSED
ONE- AND TWO-CONDUCTOR TRANSMISSION LINES
ELECTROMAGNETICALLY COUPLED TO A ROCKET

Prolegomena

In Reference 1, an analysis is given for a circuit consisting of an exposed
unshielded longitudinal wire, two terminating impedances, and the rocket for the
case of transverse electromagnetic field excitation. An entirely different problem
arises when the polarization of the incident field is such that the electric vector is
parallel to the axes of the conductors and lies in their common plane. An accurate
solution of this problem appears difficult to achieve, but bounds of practical utility
on the values of the load currents are relatively easy to obtain. In Reference 2,
another circuit consisting of an exposed terminated two-wire transmission line
electromagnetically coupled to a rocket is treated theoretically. The axes of the
wires and rocket are assumed to be parallel and so oriented with respect to the
incident electromagnetic field that maximum response is obtained; i.e., maximum
currents in the load impedances. Omitted from discussion are two limiting cases.
Evidently, when the rocket is not present, the complete circuit consists of an iso-
lated two-wire transmission line with impedance terminations. Also, when the
rocket becomes large in terms of the wavelength of the incident field illumination,
it may be replaced by an infinite, perfectly conducting plane. The circuit then
consists of a terminated two-wire transmission line parallel to and some distance
removed from the plane., It is desirable to obtain precisely the currents in the line
terminations under these special circumstances. Formulas are derived in this

paper to permit these calculations.

The circuits of general interest are shown in Figure 1. To bracket the re-

sponse of these composite circuits requires analysis of three circuits that might

be termed '"building blocks.' The first of these is an isolated terminated two-wire

transmission line, shown in Figure 2,
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A single-wire line with terminations grounded to an infinite, perfectly conducting

plane is illustrated by Figure 3, and a terminated two-wire transmission line in

proximity to a perfectly conducting plane is portrayed by Figure 4.
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Isolated Two-Conductor Terminated Transmission Line
(Circuit A)

Figure 2 illustrates an isolated two-wire transmission line. The wires are
of radius a and are spaced a distance b apart. The origin of a Cartesian coordinate
system is at the midpoint of the line. The line lies in the xz plane, with conductors
parallel to the z-axis, The terminating impedances Zo and ZS are located atz =0

and z = s, respectively.

The incident plane wave propagates in the positive x direction with electric

field parallel to the z-axis. The analytical representation is
E;nc(x) = E;nc(o) o IPx (1)

where the reference for phase is.at x = 0. B = 2%/A is the radian wave number and

A is the free-space wavelength,

It is convenient to define an excitation function U for each of the conductors.

For wires 1 and 2, this function may be written

B
inc{ b} _ _inc 2
£ (E)Ez e “=-gU,, (@)
and
i Bb
Einc b\ _ Einc(o) o J'_2—= -gU 3)
Z (—2— z 2°
respectively,

2 .
By analogy with previous work, the simultaneous integral equations for the

total currents Il(z) and Iz(z) in the line conductors are:



u e'JBRu e‘JBRlz
Al(Z) = i [1(2')'—R1;—— dz! + 12(2')——ﬁ—2—dz'
0 0 1
= _.l j
= {Cl cos Bz + Dl sin BZ + Ul} , (4)
p
and
I ps . s .
u e'JBRzl e‘JBRzz
= L) [, 1 ) & W, H
By2) = o= I, R, dz! + Ip(2 Ry, dz
0 0
_ 3 .
= - {Cz cos BZ + D2 sin BZ + U2} . (5)
p
where
2 2
Rll = R22 = J(Z -2} +a
’ (6)
2 2
= = - H
R12 R21 J(z z')" + b

u = 4m x 10-7 H/m is the permeability of free space, vp is the velocity of light,

3x 10° m/sec, and the constants of integration are C and D.

<
i

It is convenient to separate Equations (4) and (5) into symmetrical and anti-
symmetrical components. For the vector potentials Al(z) and Az(z), this is accom-

plished by writing -

Al(Z) =

[\

1
{Al(Z) + AZ(Z)} + T‘Z’{Al(z) - Az(z)} , (7)

{Al(z) + Az(z)} -

{Al(Z) - A2(Z)}, (8)

Do} =
D) =

Az(z) =



and then setting

A (2) = A%(z) + AR(z) (9)

A,(2) = A%(z) - A%(2) (10)
where

A3(z) = %{Alm +A2(z)} , (11)

A%(z) - %{Al(z) -Az(z)} . (12)

In a similar manner,

1%(2) = -;—{Il(z.) + 12(2)} , \ (13)
1%(2) = 33, (2) - Iz(z)} : (19)
u® - %{Ul + Uz} = - E?Tcm cos (;ﬂ) , (15)
u® - -é—{Ul - Uz} = - j—E—izch—(O—) sin (%) . (16)

in writing Equations (15) and (16), use has been made of Equations (2) and (3).

Employing the above definitions for the symmetrical and antisymmetirical
components of vector potentials, currents and excitation functions (4) and (5) be-

come




-jBR -iBR
-l1,s s e 1o, 12
4pu AT (z) = 17 (zY) + dz!
o R R
0 11 12
. .4n[_s s . S
= "]C—C cos Bz+ D sinPfz+U |, (17)
o
S --BR --BR
-1 a a e ¥ e ¥z
4nuo A7 (z) = 17 (2" i - R dz!?
11 12
0
_ .477[ a a . a
=i C% cos Bz + D" sin Bz + U7} . (18)
o]
Here,
s _ 1 a_ 1
C —-2-(C1+C2) . C —-2—(C1-C2)
s (19)
p%-Lp +D,) D*= HD_ -D,)
2" 2! » T 271 T 72

and §o = 120w ohms is the characteristic impedance of free space.

The reader should observe that Is(z) is a codirectional or antenna current.
This current is excited on the wires by Eiznc because US\ 0. This current causes
no voltage drop across the load impedances Zo and Zs if they are lumped and cen-
trally located. The current Ia(z) is a bidirectional or transmission line current.
The voltages across Zo and Zs are due solely to the antisymmetrical component of
current excited by the incident field in the structure. Accordingly, interest cen-

ters in solving Equation (18) for Ia(O) and Ia(s) subject to the boundary conditions.

It can be shown that the left side of Equation (18) is well approximated by3

11



S . .

2zn|E - £ dzt ~ 21%(2) fn (g) , (20)

R11 R12

when transmission line theory applies, i.e., fb << 1, Accordingly,

Ia(z) = —j 2 [Ca cos Bz + D? sin Bz + Ua'] , (21)
Z
cA
where
4
_ -0 b

is the characteristic impedance of a lossless two-conductor transmission line,

; . a . R : :
For the antisymmetric current I (z), ordinary transmission line equations
apply so that the potential difference across the wires at any position z can be ob-

tained directly from Equation (21). It is given by

a
a =j2I(z)=[_a. +p? ]
V(z) v T 21-C" sin Bz + D" cos Bz|, (23)
: I
where use has been made of the relations B8 = w¥£ ¢ and ZcA =\Lc- for a dissipa-
tionless line., Evidently,
v(s) = Ia'(s)ZS = 2[—Ca sin Bs + D? cos Bs] s (24)
v0) = -Ia(O)ZO = 2D% , (25)
where, from Equation (21),
a . 2 a a
1%0) = -j po—[c® + v, (26)

cA

12



and

1%(s) = -

2
= [Ca cos Bs + D2 sin Bs + Ua] . (27)
cA
Equations (24) through (27) may be solved simultaneously for C* and D2,

The currents in the terminating impedances Z0 and Zs are then given by Equa-~

tions (26) and (27), respectively. Using Equation (16) it is readily shown that

IZ(O) = _szlznc(o)B“IDAl sin (-%3) [ZCA sin Bs + jZ (1 - cos Bs)] , (28)
IZ(S) = .szlznc(O)B“lDA1 sin (%—kl) [ZcA sin Bs + jZo(l - cos BS)] , (29)
where
a2
Dy =Z (2 +2Z) .cos Bs + J(ZCA + ZSZO) . (30)

These are the final expressions for the load currents in an isolated two-~wire trans-

mission line displayed by Figure 2 and delineated as Circuit A,

Single-Conductor Transmission Line With Terminations
Grounded to an Infinite Perfectly Conducting Plane
(Circuit B)

In this section, the objective is to derive formulas for the load currents in a
circuit consisting of a single conductor with terminating impedances grounded to a
perfectly conducting plane, as illustrated by Figure 3. In carrying out the analy-
sis, it is convenient to substitute an image of the conductor and its terminations
for the ground plane. The circuits are then electrically equivalent. However, it
is necessary to remember that in obtaining the excitation functions for the wires

both the direct and image fields must be included.

13
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The impedance termination at z = 0 is 2Z0, and at z = s it is ZZS (see Fig-
ure 3). For convenience, the distance between the actual conductor and its image
is designated 2b; the radius of the wire is designated a. The reference for phase

is taken at the midpoint of the line-image configuration.

Now
E.Cx) = E_(0) e TIPX
s (31)
E;nc (x) = _Elznc(o) eJBx
image
so that
_ minc inc
_Bul = Ez (-b) + EZ' (-b)
image

_ Emc(o)[egb ) e-jﬁb] - 2E°%0) sin (B0) . (32)

Z

By symmetry, it is evident that

U2 = —Ul . (33)
Accordingly,
s_ 1 _
U = —2-(U1+U2)—0 s (34)
a_1 _
U = -Z-(Ul -Uz) = U1 s (35)

where use has been made of Equations (15) and (16).

Since Us = 0, it is clear, from Equation (17), that an antenna current cannot

exist in this circuit, since there is no driving mechanism for this mode.



Inasmuch as the circuits shown in Figures 2 and 3 differ in no geometrical re-
spects, the final formulas for the load currents I%(O) and IaB(S) in the loads of

Circuit B may be written down by analogy with Equations (28) through (30). Thus,

a mine, o=l -1 , : ]
IB(O) = -J4E, (0)8 DB sin Bb[ZcB sin Bs + ;|2Zs(1 - cos Bs)- s (36)
12 (s) = 4E%(0)8" D sin fb]Z _ sin s + 22 (1 - cos Bs)] (37)
B z B cB %% 1
where
- (2 .
DB = 2ZcB(Zo + ZS) cos fBs + J(ZCB + 4ZSZO) sin Bs , (38)
and
g
_ "o 2b
Zeg™ 7 o (“a—> | B9

Terminated Two-Wire Transmission Line Oriented Edgewise
With Respect to a Perfectly Conducting Ground Plane
(Circuit C)

Figure 4 shows a two-wire transmission with terminating impedances ori-
ented with respect to the incident field and infinite perfectly conducting ground
plane to obtain maximum load currents. The ground plane may be dispensed with
by introducing an image transmission line and incident field, as was done for Cir-
cuit B. The ground plane represents the exterior surface of a missile of infinite

length and radius (refer to Figure 1).

The simultaneous integral equations for Circuit C are

15
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L

-1 e-JBRl1
4nuo Al(z) = Il(z') 5 dz! +
0 11 0
S . s
e-JBR13
- 1,(z') ————— dz! -
2
0 R'13
0
_ 4r R
= -j +—<¢C, cos Bz +D smBz+U},
! 1 1
s -jBR2 s
-1- e 1
4nu TA_(z) = I.(z!') ————dz' +
o 2 1 R21
0 0
s . s
e‘.JBst
- I (2") ———— dz' - I.(zY)
-2 R23 1
0 0
_ .477C Bz + D. sin Bz + U
= - g—o{zcos z o Sin Bz 2},
where

2 2
= = -z
Rll R22 J(z z)Y +a

z')2 + b2

2]
"
o
i
-
N
'

12 21

2

z')2 + 4d

Ri3= Ry, =WZ

R23 =J(z - z')2 + (2d - b)2

R14 =J(z - z')2 + (24 + b)z /
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ne&
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-;iBR12
dz!

R12
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dz!

R14
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dz!
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In writing Equations (40) and (41) use has been made of the symmetry conditions

I,(2) = -1 (2)

. (43)
IS(Z) = -12(2)

Although total currents appear in the integral equations, these currents be-
come transmission line currents at z = 0 and z = s, Consider the first integral in

Equation (40). It may be writien in the form

S S

e-JIBR11 -JBRg
Il(Z') sz' = Il(Z') -e——R‘-——dZ'
0 0 g
s . .
+ Il(Z')l R - ) dz! , (44)
11 g
0 .
where
2 2
Rg = J(z -z +g . (45)

But Equation (44) is in the same form as (20). Hence,

° -iBR, iR,
e e ~
I (z" - dz' =L (2)¥_, (46)

R, R,

0

provided that 2ko(b +d) << 1, \Ita will be defined presently. In Equation (45) g is
the equivalent radius of the transmission line and its image. It can be determined

easily but is of no importance in the present analysis.

Every integral in Equations (40) and (41) is treated in the manner described

above., The result is

17
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where

Jg(z)

2d

Y9 d+b

¥24-b

Jg(Z) + Il(z)\lza + Iz(z)qu - Iz(z)\I/Zd - Il(z)\Ifzd+b

~j %Z{Cl cos Bz + D

sin Bz + Ul} ,
o

1

3 2) +111(z)\1'b +1,(2)8 - L, (2)¥ L, (2)¥%,

2d-b ~

. 4m -
-] C—O{CZ cos Bz + D, sin Bz + UZ} ,

[\™]

5
o'loa
SN’

Do
2
Eifes
.

—2
2 m<2d —b)

Subtracting Equation (48) from (47) yields

.4 .
Il(z)al = I:Z(z)ct2 -j -Z—Z-{(Cl - Cz) cos Bz + (D1 - DZ) sin Bz + (U1 - Uz)}.

(47)

(48)

(49)

(50)

(51)




e In Equation (51),

= ¢ -9 - +
@ = - - Y T g

. (52)
U =T ¥, Yoy T ¥y

The next step is to add Il(z)oz2 to both sides of Equation (51). The result is

% 8nm a a a
Il(Z) = IT(Z)(Q—l—_T—aZ> | W{C coSs BZ + D sin BZ +U } . (53)

Cc? and D? are defined in Equation (19). By Equation (16)

a_ 1
U = §(U1 - UZ) .
! By one of Kirchhoff's laws,

IT(O) = 11(0) + 12(0) =0

. (54)
IT(O) = Il(s) + Iz(s) =0
It follows that
12(0) = -j 5o—{C?+ Ua] , (55)
1 Z
cCL
19(s) = -j 2 c? cos Bs + D* sin Bs + Ua] , (56)
1 Z
cCL
where
¢ L 2,2 .2
_ o _ o b“(4d” -b")
Q ZcC- Z;(al + az) =3~ In 4a2d2 . (57)
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Observe that Equations (55) and (56) are in the same form as Equations (26)

and (27), respectively. Also, Il(O) = IT(O) and Il(s) = Izli(s).

The potential differences (on voltage drops) across Z_ and ZS are

a
¢1(0) - $,(0) = -Il(O)Zo ; (58)

a
¢’1(s) - ¢2(S) = Il(s)Zs , (59)

respectively. Now,

0A (z)
0\ . w 1
¢1(s> BRI T , (60)
B 0
19
and
0A_(z)
0\ _ 2
¢2<s) Y] T ? (61)
B 0
1|

where Al(z) and AZ(Z) are given by Equations (40) and (41), and @w= 2#f is the radian

frequency.

It follows that

a a
-11(0)z0 2D (62)

and

Ii’(s)zS 2[—Ca sin Bs + D? cos Bs] . (63)




These equations are the same as Equations (25) and (24). Evidently, to complete
the problem requires only the determination of UZ = (U1 - Uz)/2. This calculation

is modeled after Equations (31) and (32). Thus,

inc

2EZ (0) b
2EiZ“°(0) .
U2 = -j T— sin B(d - E‘) B (65)
so that
ine
a . 2Ez (0)  /Bb
U™ = 4 —p— cos Bd sin kT) . (66)

The final solution to the problem may now be written down. It is

a . .inc -1_-1 . . b . .
10) = -j4E (0)8 "D cos Bd sin —g—[zcc sin Bs + ]Zs(l - cos Bs)] , (67)

1 i "'1 - . .
I?:(s) = -j4Elzn°(0)B DC1 cos fd sin §2£[ch sin Bs + jZ (1 - cos BS)] ) (68)
where

{2
De= ZcC(Zo + _zs) cos Bs + J(ZCC+ ZSZO) s (69)

and

The above formulas for I?:(O) and Ié(s) apply only to a two-wire transmission line

oriented edgewise with respect to a perfectly conducting ground plane (see Figure 4).
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Bounds on the Current in the Load | mpedances of Exposed
One- and Two-Conductor Transmission Lines
Arranged Longitudinally on the Surface of a Rocket

The objective of this section is to justify in a heuristic manner the following

inequalities:

RHERHIEESR
a9 <7, < 3. -

0
where Ia[s] and Ia[g] apply to the circuits pictured in Figure 1. The subscripts
2
indicate the number of wires involves. It is assumed that Ba < Bb << 1, Bd > BE,
and Bd << 1. Moreover, a, b, s, and E;nC(O) must have the same values throughout

a given calculation whether either Equation (70) or (71) is in use.

The discussion in this section is limited to establishing Equation (70)., Cre-

dence may be given Equation (71) by use of a parallel argument.

Low-silhouette telemetry antennas in the form of a shunt--driven inverted

L7’ 8 are frequently used on rockets having velocities under Mach 6. These anten-
nas are sometimes only 1 inch in height and operate in the 225- to 260-MHz range.
They are mounted on a large aluminum ground plane and matched to a 50 -ohm line;
i.e., for an SWR not exceeding 1:1.1 at the desired operating frequency. Follow-
ing this, the antennas are placed in position for service on a rocket that may not
exceed 12 inches in diameter. The remarkable thing is that the SWR on the feed
line remains under 1:1.,1 so that the power supplied by the generator is constant
irrespective of the ground plane size and ’its contour. This situation is altered only

when the dimensions of the ground plane become small in terms of the wavelength.

The single conductor with terminating impedances grounded to a perfectly
conducting plane may be regarded as a low-silhouette antenna. Let the structure

be driven by an impedanceless generator Ve in series with Zo’ as shown in Figure3,
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Figure 5. Single Conductor with Terminating Impedances
Grounded to a Perfectly Conducting Plane
as a Transmitting Antenna

In the far zone a dipole with an impedanceless ammeter in series with the
conductor at its center is placed. Note the orientation of the dipole with respect
to the transmitting antenna. With only the voltage, Ve, operating, a traveling
wave exists on the ground plane as long as it is infinite, and radiation is confined
to 27 steradians. Now, progressively reduce the size of the ground plane. Reson-
ances occur, and a radial field (tangential to Zo and ZS) is developed. In addi-
tion, radiation takes place in 4n steradians. The ammeter reading is oscillatory
because of resonances, but the peak readings become less and less because radi-
ation increases on the back side of the ground plane, and the size of the reflector
is being reduced. In other words, the field strength in the direction of the dipole
is decreasing. (An antenna always becomes less directive as the reflector dimen-
sions are made smallér.) It is to be remembered that constant power is being
supplied by the generator during this process. The current Ia(O)1 is always avail-
able. It is the reading of the ammeter in the dipole, for by the reciprocity theorem
one may interchange ammeter and generator with no change in the ammeter reading.

Note that when veis placed in the dipole, E;nc(o) at the ground plane is fixed.
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When the ammeter is in series with Zo for fixed E;nc(o), its reading will fluctuate
as the ground plane size is reduced, but the maximum and minimum readings will

be within the limits prescribed by Equation (70).

Conclusions

What the author set out to do is to set bounds on the load currents in the im-
pedances Zo and Zs for the circuits shown in Figure 1. This is accomplished. In
addition, accurate expressions are developed for these currents when the rocket
is of infinite size. The problem is also solved for the case of the terminated two-

wire transmission line when the rocket is completely decoupled from the line.
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