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1. Introduction

Report No. FA-162 [1]* gave the results of the analysis of the response of a
mlticonductor cable to excitation at an open, circumferentially complete, break
in the shield. The present report presents the analysis leading to those
results, Figure 1 shows schematically the type of situation to be analyzed.

A cable containing N conductors runs between two sets of arbitrary termina-
tions. The whole arrangement is shielded continmuously except at a circumferential
break in the cable shield, assumed uniform in width, and narrow enough

compared to a wavelength to be treated as a negligible portion of the total
length of the cable. A voltage,vg, (rms) at radian frequency, w, is assumed
imposed across the gap. This voltage causes TEM transmission line currents

to travel along the cable (cross-section much less than a wavelength) and

local fringing-field currents to flow across the gap. This report is concernmed
only with the TEM transmission-line currents.

*Numbers in [ ] correspond to Reference list, page 32.
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2. Mathematical Model

A mathematical model for studying this transmission-line response is
obtained by considering the broken cable to be two cables with certain inter-
acting terminal conditions at their junction (the shield breesk point), and each
with its own terminal conditiohs in the respective terminal boxes of Figure 1.
Figure 2 shows a simplified schematic representing this model. For convenience
the figure is shown as a conventional two-conductor line, or rather, as two such
lines driven in series by a source emf, Vg. However, in the diagram, each of
the upper traces (i) represents N parallel conductors of arbitrary but unvarying
cross-section geometry, while the lower traces (%) represent the broken shield
and its impressed emf, Vs. Each part of the broken shield is taken to be at
reference potential for its associated N conductors. Such an arrangement will
be called an N-line,

Bars under the symbols indicate that the symbols are matrices. Thus,

E?F = nx]l matrix, or column vector

4]
L
3
I
- (1a)
)
1
- N.—
vhere I® is the input current to the m" conductor on the right-band line,
n= 1, e o oy No
Similarly,
Ia i v
1 .l 1
I v
- 2 -2
‘I-- - . 2 » -v-i = . » !& = . (1b)
.1 .1 Gi
1 v
L--N_ N N_J L "N_

Similar notations apply to the output quantities ;: ’ !: « The electrical

line lengths, 8, and 6- are given by
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where v is the velocity of wa.ve propagation on the line:
v (uc)'% (3)
and W = 27 x frequency

The impedance matrix of the line is

Z = (Z)nen (%)

where zm = znn- pm/v’ m,n = l’ ssey N (5)

where the P, 8¥e Maxwell's poteatial coefficients for the line (1N, Chapter 2),.*
The terminal admittsnce matrices, Y, , are

- (1)
m, In = 1, ..., N (6)
- (0 o)
The elements Y:n,tn of the terminal admittance matrices are computed from
the elements of the terminating network according to the following scheme:
Consult Figure 2, which shows conditions at the 1:1"h output terminal of
the line of Figure 1. In general, N load admittances are connected to this
terminal. Y, is connected betwsen the terminal and the shield (indicated as
ground); the remaining admittances Y:n » m ¥ k, are connected to the remaining
(N-1) output terminals. The output potentials of the various terminals with

respect to the shield are also indicated.

#"LN" refers to lecturs Notes for the April 1970 Seminar [2],
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The terminal admittance matrices are defined in terms of the terminal
voltages and currents by

L~ W (7)

N
o o .0
1° = Y v (8)
k El km nm

On the other hand this current mst be the sum of the currents entering
the several branchesof the termination on the kth terminal in Figure 2, i.e.,

1.yv+2$ ;‘:-V:),k-l,...,N (9)
T

vhere the symbol (k) under the summation sign indicates that the term correspond-
ing tom = k 1is excluded from the summation.
Comparison of (8); and (9) yields

-Yo

Y -.YL mk ’

L
m ™ Yim ™ Ymk
© 3 o
Xk E o

Equations .(19) constitute the connecting link between the load networks and
the line termination matrices.

The various terminal conditions are as follows:

At the juncture of the + line and - line:

k¥m
(10)

(1)
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wheret_ﬂc is the m:i unit columm vector:

pr -

o (12)

-

He o ¢ pp

_"JN

At the line terminations (loads) the terminal relations have already been
stated by Equations (7).

3. Derivation of Formilas for Iy , IO , Vo , ¥o.

We agsume the lines to be lossless and write

a, = -J cot 84

b, = J csc B (13)
3= /I )

then [IN, page 2 - 21, Equation (22)]

i i o)
Goee 2L +b, 2L
o i )
Vieoh, ZI -2 22
vies zziev 212
¥eon zzt-a 212

Use Equations (7) and (11) to eliminate f—' , ﬁ » and ;: from Equations

(1k4); then writing

By =230 (15)



and «’= N x N unit matrix

- -
1l 0
- . (16)
0 ] .
! iw

reduces Equations (14) to the form

o

i
v—jt‘- b, BH Y, ., 2L, =0
(L+ 8,207 %, 2L - 0 )
17
i )
v W zIi-v 2 =Voy
i ) o
b_ZI,-(+a B)V- =0
Define
My = 8y L+ By
(18)

N, ~f+ 2y By

N; is used in Equations (17) to simplify algebraic manipulation. M, Will
be required later,
Equations (17) become

i o i
L N N s ., 2L, - 0
A b, 2L -0
v vo_ZI, -b BV =V I
i o
b_ 21 -N-V- -0

Solve the second and fourth of these for y_?_ and !9 respectively:
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o] -1 i
V=, N"Z1I,

(20)

o w~1 i
V2 eb N ZI,

Substituting the first of Equations (20) in the first of Equations (19)

and solving for !i:

1 2 -1 1
Ve=(a, -b P, N7)ZI, (21)

Substituting Equations (21) and the second of Equations (20) in the
third of Equations (19), and collecting terms,

(a+.f-bf§+£l-b€gl-lj_:l+aq/’) gf;.vs.._(g (22)

By Equations (13) and elementary trigoncmetry,

bf = - cace'et - - cot? at -l = az -1 (23)

Therefore, with the help of Equations (18) we have

2 =1 2 -1
a: /- b, By Ni = [ay N, + (1 - a5) B,] ]

= lay (4o, B) +(1-ad) BN

= (s '+ B) N1

- M, N (24)
Then Equations (24) in (22) yield

B -5 25 - v (25)



Vrite
-1 -1
A= M, N+ NN
Thus
i
AZI =V &
and, finally,
i -1 i
L=V, (A2) "= -1=
by the first of Equations (11).
Using Bquations (24) and (27) in [o1),
i =1 -1
VoM Kz
-1 =1
-vou, vzt
=V M, £ hp7t
= = c
=1
v oM AR g
Using Equation (27) in Equations (20),
o 1 -1
-1
- + b, V
A S SN
o 1
Ve =¥V, (AN) T,

(26)

(27)

(28)

(29)
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Substituting Equation (28) in the second of Equations (11),

vé-yi-vgﬁ

Loy w2 RIARI,

+ M- NI, A B A

vie v M- (AN (30)

Finally, Equations (29) in (7) yleld

eFn VR W) (31)

'For convenience, these results (namely, Equations (27) to (31)) are grouped
together as follows:

et D7y, (a)
G- N QR4 (v)
(32)
WaFn v AR ()
L=F5, V.12 W5 o (a)
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A is defined by Equation (26), M, and N, are defined by Equations (18),
a,, b,, and P, are defined by Equations (13) and (15). Z: are calculated from
the terminal network admittances using Equations (10).

One additional result can be stated at this time. The internal input

admittance at the break in the shield is (see Figure 2)

1 (& s N
Bt re( 5
- t(;feén/vg

where (_I_+)T is the transpose of I_ .

4, Discussion of Results

It must be stated immediately that, except for the case of a l-line,
(N = 1), hand computation of the quantities in Egquations (32) is quite
laborious, and the labor increases exponentially with N.

For instance, for N = 2, the elements of the §+ and N, matrices are,

respectively,

(o] .
My =8, %2, Yy 429, Y5

[o] (o]
Mg = 295 Y35 + 205 ¥pp

[»] o
Moy = Zpy ¥qq + 25 Ty

(o] o
Moo = 8, + 2,y Yo + 25 Ypp

and

Nyg=l4e, 2,1, +2,%5

(o]
Nip =8, 2y Yoo 8, 2, ¥p

(o]
Npyy = 8, Zpy Yoo + 8, 25 Yoy

N22 = )1 + a, 2., Y

21 12+a.+2 Y

22 22
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In order to compute M, g;l it is necessary first to invert N . This
requires evaluating the determinant

N.. N
n Mo

Dy = . ® =Ny By = Hpp Ky
o1 M

From these we can write

Having obtained the product M, g;l, the process must be repeated for
M- g'-'l The two products may then be summed to obtain A. After A has been

multiplied by Z, the result is again inverted, after which, multiplication by

./7 yields, esgentially, the two input currents I:]". and I;.

However, the case of N= 2 is not very interesting for the present
invegtigation. The case of a 7-line is of typical interest. Clearly,
solution of Equations (32) by machine camputation is indicated.

It is of interest to check the analysis of the response of the system
under certain special conditions, namely, with matched loads, and, in general,
with the output admittance matrices proportional to the line admittance matrix.

4,1 Matched lLoads
Sufficient conditions for matched loading will be stated as

23 =o (33)

that 1isa

Yazlay (34)

where Y is the line admittance matrix.
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Under condition (33) Equations (18) become

M = (8, +1) L= N,

Equation (26) becomes

A=2f

Equations (32a - 4) become, respectively,

L=tV A2V 1k (2)

Vimtv (s, +2) Jlo(a, + DAL =2 RV L ()

Vo = ¥ b, v [2(ay + l)]-lc_& (35)
e R AT A ¥ (c)

L-edv o ade (@

Note that if we write

Y: = common mode characteristic admittance of the

mth conductor with respect to ground

= 36
gaymk (36)

then the quantity ¥ J_):_ appearing in Equations (35a, d) may be written

1 & = * - Ic (IEY) ( 37)
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Implications of the results in Equations (35a - d) are:

1. When both ends of the cable are match-terminated, the input voltages
to all conductors have the same magnitude, | % Ve |, but voltages on the
opposite sides of the break have opposite signs.

2. The input currents to the two sides of the break satisfy the
equations for waves travelling in one direction only, - away from the break.

3. The voltages at the terminations are all equal in magnitude, and have
the values of the corresponding input voltages with phage delays equal to
the electrical distance from the break to the termination.

These results accord with our usual notions for matched terminations
which, in essence, require that no wave be reflected at the termination.

Thus Equations (33) and (34) are consistent with normal requirements for matched

terminations.
Equations (34) and Equations (10) together imply

o
o] __L'_L =Y =Y ,k,lm (38a)
Y] = Y] Y] Y mk mk mk
and, consequently
-N N
o ‘.[L L
Y = Y = =Y - Y
(x)
whence
ZNi ¢ (38b)
L Y. =Y 3
Y” = kn n

by Equation (36). Thus for match conditions, the terminating admittance

from each terminal to ground is the common-mode characteristic admittance for
that conductor. The terminating admittance required between any pair of
terminals is apparently the negative of the mutual admittance coefficient for
that pair of conductors. However, since by Equation (35¢), all terminal
voltages at one end of the cable are equal, no current flows in the terminating
admittances joining these terminals. Consequently these admittances may have
any values, including zero.
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4.2 Termination Matrices Proportional to Line Admittance Matrix.

The foregoing is a special case of the more general class of termina-
tions in which the terminal admittance matrices are proportional to the

admittance metrix.
Write

o

Ye =% X
where k.t are scalar constants., Then
By =k

M, = (a8, + k) of

N = (148, k)
Write .
' a; +ky
Li"]_+a.tk_,:
L=L +L
Thus
-1
M Ny =Ly &
A=LJ
AZ=12Z

AN = L(1+ay k)

Equations (32) become, respectively,

(39)

(ko)

(L1)

(k2)
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v

;:.:-iﬁ Y© (a)
L,

Go=tVog— de (v)

£ (43)
o1& s 4
Yy = L 1+a, k, = (c)

V. b,
-I-:-tktiﬂl'i'a.tki !-c (a)

For matched conditions, k, = 1. Note that again, for the proportional-
termination case, the whole line acts in the common mode, with all conductor
potentials equal.* Each conductor carries a current proportional to its
common-mode characteristic admittance. Only terminal admittances to ground
need meet the proportionality requirement.

Operation in the common mode implies that all conductors (except the
shield) operate in parallel, so that the system is, in effect, a l-line
with characteristic admittance

N N

N
Ygl-gl Y;-E EYKJ (L)

by Equation (36). Then k, are the VSWR's (or their reciprocals) corresponding
to the total load admittances at either end of the cable,
From the first of Equations (41),

(o]
Y
4
-J cot 8, + Y—c-
Lt = Yd 2 (h5)
YQ

vwhere Y: are the total output admittances in parallel at either end. Equation
(k5) is recognized as the usual normalized mapping of the load impedance of a

*At any one line cross-section.
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1-line to its input. ([Reference 3, page 22-4.] The quantity, L (Equations

(41)) is therefore the sum of these normalized impedances in series. The
admittance seen by the voltage scurce at the break is then -t mltiplied

by Yg (cf. Equation (43a)). Equation (43b) then states that the driving voltages
on opposite sides of the break divide in proportion to these input-impedances,

4.3 Interpretation of M, 1[;1 and A

The interpretations above suggest that in the general case, (Equation (39)
not satisfied), the quantities M E;l are to be interpreted as normalized
mappings of the load impedance matrices to the input (break-point) terminals,
A is then the sum of these normalized impedances, while A Z is the total actual
input impedance matrix, since the line impedance matrix, Z, is just the factor

required to neutralize the normalization. The quantity

=M (AN

which appears in Equation (32b) is easily transformed to

' -1
Q = (% N)(, N;& + M- 571

vhich expresses the input voltage division factors in prcportion to the input
matrix impedances, and so on.

Note that k* = O implies an open-circuited termination admittance matrix,
while kt = ® implies a short-circuited admittance matrix.

5. Impedance Matrix For & Seven-Conductor Cable
The configuration to be analyzed is shown in Figure 4, Results of this
analysis were previously submitted as a memorandum identified as FA-163 [4].
The analysis is approximate, based on the assumption that conductor
radii, a, are small compared to distances between their centers and from their
centers to the cuter shield, The method is explained, with examples, in IN,
Chapter L. »

*A relatively easy analog check on limits of accuracy may be made by modelling
the configuration with Teledeltos (resistance) paper. See Appendices A and
B of Reference 5,
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Fig. 4. Cross-Section of Seven-Conductor Shielded Cable

(Numbers addacent to conductors correspond to subscripts of impedance
coefficients, Z 13° .)
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As a first step, the configuration under study is located in the camplex
z-plane with the outer shield tangent to the y-axis and the x-axis coinciding
with its diameter (Figure 5). This configuration is next mapped onto the
w-plane by means of the transformation

W= l/z (46)

(LN, Chapter 4, p. 45). Figure 6 shows the result of this operation. The
shield circle has been mapped into the plane (line) parallel to the v-axis
with equation

us= ZR_}- ('-ﬂ)
8

The centers of the seven small conductors, which, in the z-plane were
located at

o
2 =R +R HdEDI ko, ..., 6

_—y (u8)

are located in the w-plane at

w-!-— ,k‘l’ol.,?

LI
For sufficiently small raddi, a, in the z-plane, the traces of the
conductors in the w-plane are well-approximated by circles with centers at
v (LN, Chapter 4, pp. 47-51). However, the radii of these circles are
different from their common radius in the z-plane, and, in fact, are
generally different from one another. If .ﬁ?’ is the radius of the kth
conductor in the w-plane,

(k) o |&¥] o, &2 _. 2 4
M dz'(1‘:) e "] 9
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Fig. 5. Seven-Conductor Cable Cross-Section Situated in the Complex z-Plane
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RstR

|

Fig. 6.

Rs- R,
LB
Rst._ zc\—

A

shield

Seven-Conductor Cable Mapped onto the w-Plane by Meens of the

Trensformation w = 1/z
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where 'gzl is the derivative of the transformation evaluated at the kth
k

conductor (IN, ibid.).
Since electrostatic potential coefficients remain invariant under a

conformal transformation, the problem has been changed to finding the
coefficients of a number of small circular conductors above a ground plane.
This problem is discussed with examples in IN, Chapter 4, pp. 1k - 21, 1In
general, the impedance coefficients are given by

P W, -
k 60 k
7 =-df. fiep, = 2 1n |=—d| , x4
Jk v Jk "fe_r. wk w 3
- (50)
7 = 2= 1n * -( wSk
Je_ 'k
r oW
where
th th
ka = potential coefficient between j  and k™ conductor
v = velocity of propagation, m/s
g = permeability, H/m
¢ = permittivity, F/m
€.= relative dielectric constant
‘wk - wj\ = distance between centers of Jth and kth conductors in
w-plane, j § k
th th
= distance between k  conductor and image of j

W, -W
e 'jf conductor, J # k

) is given by Equation (49).

distance between kth conductor and its own image

e ~

< ?n‘.“
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A seven-conductor cable has 72 or 49 impedance coefficients. However,
by virtue of the fact that zi 3 = Z 34 for every i, j, the number of independent
coefficients reduces to #(7x8), or 28. Fu-thermore, in the present instance,

because of the symmetries involved, many o~ the independent coefficients are
equal. In fact, the arrangement or-Figure 4 yields only six different values
for the various coefficients.

By inspection of Figure 4 one can readily determine which coefficients
have a common value. Thus,

(1) zll-zaz-233-zm’-z,/_5-z66
(2) Zyy = Zpy = Zgy = By = Zg = Zgy
(3) Zyg = 2y, = 235 = Zyg = 255 = Zg
(4) Z,y, = 225 = 236

(5) Zy7 = Zyg = Iy - Zur = 257 = o7

(6) Zz.,

All other coefficienta of the Z matrix

Zu, 212’ ¢ o o Zl7
-Z.- Zal, 222’ e e o 227

Zoys Zpgs + o 1 2qq

are Obt‘in‘d byu‘ins Zid - Zdi, i’ J = l’ ess 7.

Details of calculation of the various coefficients follow.¥*

¥#Tt is recommended that future coefficient calculations for N > 7 be handled
by computer, with numerical substitution directly in Equations (50).
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(1). Zyys etc.,

Write
(51)

then

2, = £0 ,, le(1 - 22)3 (52)
3

r



(2). z.., etc.

12

vwhere

1
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R3+Rc=xl+30

0§
z, =R+ R e33=(Rs+=}Rc)+;j%J§Rc

= x2 + J y2
11
21 %"
1 1 *5 Yo
= = — - § S5 =14, + Jv
2y X +d Yo rg rg 2 2
2. 2 2 2
X3 ¥y =R+ R R+ R,
X Y

1 1 % 2
R "SRt =g -32*33
8 s r, r,

1 X Yo (pexyx)+ix oy,
W2=§———2-+J-—§= )

1, 1 X T
- x ¥
"2':%'?11“*_2'3"%

1 8 r, r,

- (Ra Ty = Xy Tp Xy Ry x2) -3 % R ¥,
I -



-27-

2 2. 2 2
bt W] B (75 - % %)% + % 35
=1 =% 2 2 2 2 .2 2
V1= ¥ (Rgrp = xy75 + %) Ry %,)° + x) Ry v,
- r2(r - 2x, x, + xl)
= s | 7 ( -2R, X, R x, + xzvhz)
r 1 2 1 8
(R+R R +R3) - (R +R)(2R +R) + (R, +R )2
R2 8 8 ¢ [ 8 c 8 c 8 c
=8 12,2 2 2 2
RC(RB+R8 Rc+Rc)-Rc Rs(Rs+Rc)(2RB+Rc)+R8(Rs+Rc)
2 Ra 22
=R T 2 7% ° 5%
R + R 1 -2 + )
8 8
V. =W
212-601n wl_w‘?«{
./E; 17 "2

(3). zli’ ete.

Same as 226
o= (R +3R )+ VIR =% + Iy,

*
2 = 2y = %y - I
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*

x Y
1 *»_ 1 1 .2 2
Y6 "R """ R, V2" R, ~ 2 +J 2
2 2
2y2
==z
Ts
_E-JE_L+.J{_2_J¥2.
-2 r2 R 2 2
To 2 &8 T To
-G &
=\Z7 "r ) -J 3
1‘2 8 . 1‘2
2 2 2 L 2 .2
1 hxa R, - hxz R 1y +r,+ hyz R,
- 2
Rs hy2

2 .2 2 4
hrzRa-hxaRsr +r

2 2
= 2 .2
1Wz Rs
r2
2 2 2 2
L 2 R2 [hRa - 2Rs(2Rs * Rc) * (Rs * Rs Rc * Rc)]
Y2 Tg
r2
2 2 2
'h—2;§(Rs -RsRc+Rc)
Y2 %q

2 2\ 2 2
(Rq f Fﬂ R, + Rc)(Rs - R, R, + R

= T anl o2
3R R,




VA = Z =
13 26 JG; 312
W), Zy),» etc.
Zl=xl=R8+Rc
zl}:xh_Rs-Rc
W ‘l— W 3-—'; X =—— = W
1%’ A L
- l__xh'Rs'
w -wh i} xl Raxh
W, = W 1 1l
4 = .=
xl xh_
- +
S b il e e ™
R' Xu-xl
2 2
Rs -2Rc -3 ¥

-29-

(1L +\ + 12)(1 - A +_12)

122 et

2 L
3L1n[l+l +x]

N2

L
3)‘2

o

Rs xh



wl -Wu

2
_ 6o 1n [1 + A }

wl 'wu

(55)

(56)
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1 - 1 1
= R H W, & = 3 Vo & = = == 0
Zg = Rg 5 Yoy R, T TR, TR

60 Vg = Vo 60 1
=2 5 =
z'77 €, l a£7f4' JE; v, 8
60 Ry 60
=~—In—=>1np (57)
a
on €,

For convenience, Equations (52 - 57) for the 28 independent coefficients

are collected below:

2
Z =.222 = z33 = zhh = z55 = 266 =¢ In [p(1 - )]

2 y
= = = = l—_—x_—.'-}.'_
12 = Zo3 = g = Bys = Zgg = %y =30 In [ 2 ]

YA =
13 = %4 = %35 = B = %51 = Zgp SR
5 .
1+
zlh=z25.z36=cm—-2-r- (58)

1
Zy = Zgp = gy = By = 2oy = Gy = € 1n ()

zn-CInp

zdi-zid’ i,J.l, se o ’7

= 60K

—
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