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In a pruccdinﬂ' note, ! two equivalent time domain integrodifferen-
tial equations were obtained which govern the currents induced by
transicnt fields incident on a perfectly conductmg body immersed in
a lossy time varying plasma. In this note, we will reduce one of
thesc equations to the special geometrical case of a finite length,
circular cylinder illuminated by a plane wave propagating perpendic-
ular to the axis of the cylinder with the E-field parallel to the axis.
The time varying plasma will be represented as a transient pulse of
ionization propagating at the speed of light in the same direction as
the EM wave and characterized by a constant collision frequency v
and an electron density n which is uniform in a direction parallel to
the z axis (Figure l). On the basis of this equation, we will attempt
to show that, for times earlier than the rise time of the current, the
effect of the time varying electron density is to decrease the current
induced on the cylinder to a level below that which would be produced
by the same field incident on the same cylinder in frée space.

Equation 42 of Reference 1 gives the following integrodifferential
equation for the current density J as a function of the retarded time
T =t - R/c in terms of the magnetlc field Hj incident on a perfect
conductor immersed in a plasma with a time varying electron density.

- - A - A -
J (r,r) = 20 xH(T) + 2n xV x B[J (T, r)] (1)
A .
n = unit vector normal to the surface

where all quantities are to be evaluated on the 'surface and the linear
operator B[ -] is given by

B[-]=38_[-]+B,[-]+3B,] . - (2)
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Figure 1.
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While Equation 1 involves some extremely complicated integral
and differential operators, the relatively simple form of this ex-
pression permits a straightforward physical interpretation: The
induced current density at a given point on the conductor is given as
the sum of four terms. The first term is the primary contribution
due to the incident magnetic field at the point. The second term is
the current induced at the point due to EM-fields produced by cur-
‘rents flowing at all other points on the body. We note that this term
does not depend explicitly on the plasma parameters, and thus it
may be interpreted as the current which would have been induced by
currents at other points on the conductor, if the conductor were in
{ree space. The third and fourth terms are currents induced at the
point due to fields produced by the interaction of the plasma with
current and charge distributions along the conductor. The magnitudes
of these terms depend most strongly on the electron density n(T ) and
vanish as expected when n(7) = 0.

We can simplify Equation 1 somewhat by first noting that the ef-
fect.of the operator B, will be negligible compared to B] except
possibly at late times. B involves integrals over a surface charge
distribution which will require times on the order of the missile

length divided by the velocity of light to become appreciable.
Accordingly we will not include B2 in the following considerations.

The remaining terms in Equation 1 can be simplified if we ignore
time delays less than the diameter of the cylinder divided by the
velocity of light. This is equivalent to assuming that the incident
EM-field and the ionizing pulse are propagated instantaneously across
the diameter of the cylinder: Thus, we have '

A (r) = 80 o - - (6)
i i A : . _
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n(t) = n(t) (7)
Since most cylinders of interest are on the order of a few feet in
diameter, this assumption will limit our considcration to events

greater than 2 - 3 ns in duration.
. \

Dropping the term involving BZ['] and employing Equations 6 and
7, we can rewrite Equation 1 as follows:

- - AN = A - - A - -
F(r,7) = 2n xH.(t) + 2nx v xB [T (1,r)] + 2n x v x B. [T (7, 1)]
s i o s 0 1 s

(8)
where
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The quantity wp(t) defined as follows
2
2 _ e n(t) .
wp(t) = em . (11)

may be interpreted as an instantaneous plasma frequency in analogy
to the conventionally defined plasma frequency. The usual antenna
theory assumptions of an axially directed current den51ty

- A
Js(‘r,z)dv = iz I(T,z) dz (12)

and

: 1 &
T R U (S S (13)

can now be employed to simplify (8) still further. Since 3'-5(1', z)
consists of a single component, the curl operator in cylindrical co-
ordinates reduces to

6 3p . : T



Hence

Rxwx) = xval) =L <k 2] 20

= ' 14
p 4 dp 1zap__ (14)

Using (12), (13), (14) and a conS1de1ab1e amount of algebra we can
reduce (8) to a single scalar equation in I(T, z):

I(T,2) = ZHé(t) + a° dL'Z [1 51(7’ (91N U7, 2) ]

-h R R
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Equation 15 remains a very complicated expression; however, it is
now in a form which is suitable for treatment by a modified form of
Bennett's time domain method. 4> Without going into this method,
let us attempt to gain some qualitative information about the effect
of the plasma by estimating the relative effect of the terms on the

right hand side of (15) for representative values of wp(t) V, and a.

As noted previously, the second term in (15)

is

1 =a I_?;_ [ BI(T g) I(Tf{C)] (18)
-h R , |
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can be interpreted as the current density which would have been
induced at a given point by currents at other points on the conductor,
if the conducter were in free space. The third term

4 2
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is the induced current density due to the plasma.

Comparing these terms, we note that, in general, the free space
and plasma contributions tend to cancel owing to the difference in
sign. This will always be frue in the ecarly time recgime, since the
integrands in (18) and (19) will always have the same sign when 7T is
small. That is, in the neighborhood of T = 0 we have

1 31 I

- — += >0 20)
c T R (20
1 31 1 U\

_—— _— L - >

c T+(R c)l 0 . (21)

since I and I' will vanish more rapidly than 31/3T as 7 = 0. In the
intermediate regime where

that is, the time regime where the current reaches its first maximum,
(20) and (21) reduce to '

> 0 - (22)

(-Z)r~=o. | (23)

Equation 23 is based on the assumption that

VT ax >> 1 (24)
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since in this case we have from (16)
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Thus, when (24) is satisfied, Ip) << Ifg and the plasma contribution
to the induced current is negligible compared to the free space con-
tribution. This will occur, for example, when

T p-3 10-85 and ¥ 2 109 s.1 .
max

At later times (T> 7T ) when
max

o’

I coandI> 0

o/
~

one or both of the integrands may change signs r nending on the
behavior of the exciting field and the magnitude '~ v. In this regime,
it is difficult to determine if the plasma contrib. .on will add to, or
subtract from, the free space contribution. Hov -ver, we can esti-
mate the magnitude of the plasma contribution re. atlve to the free
space contribution by forming the ratio '

al(T- 2, ¢ ~
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where the bars indicate spatial ’a.ﬂa'f:'é'mgbral averages. Since
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For a cylinder of radius 1 meter and an average electron density

n(t) =~ 1074 m3
we have
|1
L _ 0.28
lIfs l

In this case, we would expect the plasma contribution to be less than
28 percent of the free space contribution on the average.

From the preceding observations, we conclude that, for times
earlier than the rise time of the current, the effect of a lossy, time
varying plasma is to reduce the induced current below that which
would occur if the cylinder were in free space. For any time later
than the rise time, the plasma could lead to induced currents greater
than the corresponding free space currents, wiich would occur at
the same time. 'However, this effect, if it exists, will be small for
most cvlmders of interest, if the average electron density is less
than 1014 m-3 .
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