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SCATTERING OF TRANSIENT ELECTROMAGNETIC
WAVES FROM CONDUCTING SURFACES IN A TIME
VARYING PLASMA: LINEAR APPROXIMATION

By Richard L. Monroe, U.S. Army Mobility Equipmenf Research and
Development Center, Fort Belvoir, Virginia

If a perfectly conducting body is immersed in a cold, lossy, elec-
tron plasma containing transient sources of current and ionization,
the electromagnetic fields (E, H), velocity field V and electron density
n satisfy the inhomogeneous Maxwell-Euler equationslz
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In these equations, J is the current density consisting of the sum of
the induced current js on the surface of the body and the primary
currents J; within the plasma; S is the electron density source func-
tion which gives the net rate of production of electrons due to ioniza-
tion, attachment, recombination and any other processes which may
be present; and vV is the electron-neutral particle collision frequency.
As usual, the quantities P, and €, are the permeability and permit-
tivity of free space, respectively; and e and m are the charge and
mass of the electron. In the general case, equations (1) - (4) are
highly nonlinear and, thus, a simple decomposition of the total fields
into the sum of incident and scattered components, as employed in
classical scattering theory, is not possible. However, if we assume
first that the velocity and magnetic fields are such that the nonlinear
terms V-7V and V X H can be neglected and second that the electron

29




TMP-67178

transport term V-(nV) in (4) is negligible compared to the source
term S, then equations (1) - (4) reduce to

= 6H
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In this approximation, the electron density variation is completely
specif’:d by equation (8) which has been decoupled from the remain-
ing Maxwell-Euler equations. When (8) is solved for n, equations
(5), (6,, and {(7) reduce to a set of nine linear equations for the nine
vector quantities (E, ﬁ,V). Since these equations are linear, we can
employ the usual decomposition of vector fields into the sum of inci-
dent and scattered components as follows:

E =E +E (9)
1 S

A =H +H (10)
1 S

7=V AV (11)

Substituting (9), (10), and (11) into (5), (6), and (7) and separating
components, we obtain independent sets of equations for the incident

fields. "
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and scattered fields _
VX B = Bis, (15)
s “o 6t
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where we have used the fact that
T=7 +7 (18)

to associate the primary current .-]';_ with the incident fields and the
induced currents on the surface of the body Jg with the scattered
fields. Conversely, we can add equations (12-14) and (15-17) using
(9-11) to obtain equations (5-6) for the total fields. Thus, if equa-
tions (12-14) are solved for the incident fields and (15-17) are solved
for the scattered fields then the total fields will satisfy the Maxwell-
Euler equations as given by (5-7). In the following, we will assume
that equation (8) has been solved for the electron density and that
equations (12-14) have been solved for the incident fields. We will
attempt to obtain solutions to equations (15-17) in terms of Jg . Since
the two sets of equations are formally identical, it is clear that any
method of solution applicable to one set is also applicable to the other.

Solving equation (17) for Vs in terms of Es , we obtain

RIS mf e V(- >‘)E(, A) da (19_}

where we have assumed V(r,o) = 0. Eliminating V. from (16) using
(19), we obtain the set

- 6Hs T
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VX H =€ (7)) +n () f VA Eo(Fayan + T
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We can simplify (20) and (21) by introducing a vector potential A and
scalar potential ¢ satisfying the Lorentz condition

- 6¢
Vo —r—— = 0- 22
At F, (22)
In the usual way, we let
“ﬁs = YX A (23)
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E o= 34 g (24)
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and introduce (23) and (24) into (20) and (21). With the aid of (22), we

obtain
L) 92_92". _v?r o Bs (25)
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where pg, the charge density on the surface of the conductor, is
related to Jg through the continuity equation

7 o= .00
v Js T 6t @7
Equations (25) and (26) together with (8) constitute a set of five equa-
tions with five potential functions (n, ¢, A) as unknowns. If solutions
to these equations can be obtained, the scattered electromagnetic and
velocity fields can be determined from (23), (24) and (19). Examining
these equations, we find that equation (25) for the scalar potential is
identical to the corresponding equation for a current source in free
space. The exact solution to (25) is well-known.

¢ =f——dv (28)

With n determined from (8) and ¢ given by (28), A can be determined
by solving equation (26). The presence of integral operators in (26)
immediately suggests perturbation techniques as possible methods of
solution: If the initial electron density is zero, then, for small values
of t, equation (27) reduces to the standard Helmholtz equation for the
vector potential

2 —
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since the remaining terms involve products of small quantities in the

neighborhood of t = 0. Hence, we can write a solution to (26) as
follows
A=A0+A1+A2+,.. (30)

where the zeroth order term

- R
_ /Js(t- )
AO = e ——41TR dav _(31)

is the solution to (29) and the higher order terms are solutions to the

recursive equation
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Since the terms on the right side of (32) are equivalent to known cur-
rent sources at each step, this equation is identical in form to (29)
and, in principle, can always be solved for A1 AZ’ A3 . . .in
succession.

Following the steps indicated by (29-32), we can obtain a *epre-
sentation of the vector potential in the form '

A'=B[JS(T)] . (33)

where B[-] is a linear operator which depends on the retarded time
T as well as the spatial variables. In general, B will consist of an
infinite sum of operators involving iterates, of the zeroth order

operator

B = Ldv [-] (34)

o 4 7R

In practice, due to the rapidly increasing complexity of these opera-
tors, it will be necessary to truncate this sum after two or three
terms. A two-term approximation to B can be written explicitly as

follows:
B = Bo[-] + Bl['] (35)
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where Bo is given by (34) and Bl is given by the following:

t- R
[ e 2 an(t-B)

1=_.-9.¢ <! -v(t- -A) 5[]

R’

-—c
L= 2[ f -v(t- A)f ,
v
€ 4" d\ e dl [ ]
(36)
Using (23) and (24) with A given by (33) and » given by (28), we ob-

tain the following expressions for the scattered electromagnetic fields
in terms of the induced current density

dVn (t

ﬁs = VX B [JS ()] (37)
6B[T (1)] " T Ve T (1)
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Es = o 6T * V‘/\-fdv‘éd'r 41TeoR (38)

where 7 = t - R is the retarded time. In tiie final term of (38),
have used the cocntinuity equation for the curr. it (27) to eliminate [
If J's (1) is known, the scattered fields can be .ectermined from (37)
and (38); thus, the scattering problem reduces to the problem of

determining the induced current density on the surface of the conduc-
tor.

With ‘he aid of (37) and (38), we can obtain two equivalent intégro-
differential equations for JTS by a.pplyin§ the _ollowing boundary con-
ditions on the surface of the conductor:

ﬁ><17:=ﬁx(ﬁi+f.‘s)=o (39)
J =4AxH=AHE + H) (40)
s i s

(i = unit vector normal to the surface)

where the incident fields ITL‘i and H, are assumed known. Equation
(39) together with (38) leads to

~ - T e ¥z
s GnXB[Js(T)]+“xV[ded’V—JS—(T—) (a1)
n i T 51 n T "T4nR

while equation (40) with (39) leads to

34



by W e e

J:s(") = 2aX ﬁi(ﬂ + 2AX V X B[@(ri] o (42)

where it is understood that all quantities are to be evaluated on the
conductor. Equations (41) and (42) are two time dependent integro-
differential equations for the current density. When one or the other
of these equations is solved for Jg , the scattering problem is essen-
tially solved. Bennett3: 4 has recently developed a direct time do-
main method of solving integro-differential equations of the same
general type as (42). There appears to be no reason why his method
could not be applied to the present problem. This approach is cur-
rently being explored for the specific case of a perfectly conducting
body in the form of a circular cylinder of finite length.
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