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ABSTRACT

A comprehensive treatment of the receiving and i{ransmitting properties
of the thin-wire circular loop antenna is provided. T..e response of the loop to
both c¢cw and transient excitation is considered.

The development of the theory is given, numeri<al data and examples
are provided, and listings of the applicable FORTRAI! srograms are appended.
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AN ANALYSIS OF
THIN-WIRE CIRCULAR LOOP ANTENNAS OF ARBITRARY SIZE

I. Introduction

The purpose of this paper is to present an analysis of the transient and cw trans-
mitting and receiving properties of loop antennas. Although loop antenna theory dates
back at least to 1897, size restrictions have always limited the application of the theories.
Hallen1 and Stor-er2 used a Fourier series solution which, according to an approximation
made by Hallen, diverged after only a finite number of terms were used. Direct computa-
tion of the Fourier coefficients showed that the series did not diverge at the point predicted
by Hallen. (Hallen and Storer could not calculate such a large number of coefficients be-
cause today's high-speed computers were not available to them.) In this report, a Fourier
series solution is applied to loops of any circumference, provided the thin-wire approxi-

martion is satisfied.

The computer programs that were used to solve the equations are listed in Appendix

B. Graphs of the results are shown in Appendix A. The graphs show:

1. Transient open-circuit voltage and short-circuit current of a loop when

illuminated by a unit-step plane wave electric field.

2., Transient voltages across a load resistor when illuminated by a unit-step

plane wave electric field.

3. The distant transient electric field radiated by a loop when driven by a

voltage pulse.
4, The transient current on a loop when driven by a voltage pulse.
5. Field patterns of a loop when driven by the voltage v(t) = Vert.

6. The effect of §2, a shape factor, on the open-circuit voltage and short-

circuit current transfer functions.

7. The effect of 2 on the transient open-circuit voltage and short-circuit

current.

The necessary equations are developed in Section II.



II. Derivation of the Integral Equation

for the Transmitting Current Distribution®

Both the transmitting and receiving properties of the loop can be calculated from

the transmitting current distribution It(qb, w).

Figure 1 shows the geometry of the problem. The loop is located in the x-y plane‘
and is driven at ¢ = 0 by a voltage Veﬂwt applied across a thin terminal separation such
that the electric field on the loop surface is ey = —%—’eﬂwtcﬁ (p). Here §(¢) is the Dirac

delta function and b is the loop radius.
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Figure 1. Geometry of the Loop
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the scalar potential

e
1}

the current density on the loop

p = the charge density on the loop

2 . 2 2
r=J(x-x’) +(y-v) +(z-2") (4)
c = the velocity of light

It will be assumed that the thin-wire approximation is satisfied (a.2 << b2 and
k2 a2 << 1 where a = the wire radius, b = the loop radius, and k = w/c) and that the

. s jw
current on the loop has a time variation of the form e t.

Then
2.—_ Jwt/\
ra'i= It(d),w)e ag, (5)

where @¢ is a unit vector in the ¢ direction.

It will also be assumed that the loop is made of perrectly conducting wire. Then the
component of electric field tangent to the conductor surface must be zero and Equation 1

imwniies

_ 189, .
—S(d’) B% Jqub (6)

in cylindrical coordinates and —; and A¢ are evaluated on the conductor surface (& and A

3d>

are the Fourier transforms of ¢ and a). On the conductor surface

5 i
rzb‘/(%) + 2(1 - cos (b - b)), (7
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(bdg')

LT AL\ -ikbR(B-¢)
P = - 2
f (jwb 34’ ) BR($ - &)

1 T e-jkbRﬁﬁ-¢W 31,(¢")
] / R(G-7 —op O

Here

2
R{(#h) = '[(%) +2(1 - cos o).

The continuity equation

L(6")
b 3¢ 2
Ta

was used in Equation 9 and the time variation ert

-

Equation 3. Integration of Equation 9 by parts yields

. -jkbR(d-¢7) [ =7
P = ———J——B I_t(d)') <

477600-’ R4 - ¢)

e-jkbR(cb-cb') 5 - jkbR(p~")
- __ 9 e
3¢’ | R(d - o) T T 8d| R(d-P)

Equation 12 can be written

, 4 T e-jkbR(¢-¢’)
- __i__ —_— ’ ’
®= 4me_wb dd>/ It(‘b ) R(s - ¢’) de’.
-T

was dropped in all equations after

- jkbR(¢p-o")

i )
-] L) = &
& = - [ﬂ t7 3¢

Because It(-n-) = It(n), the first term in Equation 12 is zero. Since

(9)
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Substitution of the ¢ component of Equations 8 and 13 into Equation 6 yields

Jkbf T
Va(@) = —— / LV K(gh, &) dp’. (14)
-
Here
7]
(o]
P
o
and
. 2 e—jkbR(¢-¢’)
Kl(é,b") = | cos (P - @) + . (15)
(kb)2 d¢2 R(# - ¢")

Solution of Equation 14 for I(¢") gives the current distribution on a loop when driven

AN
by the voltage V(t) = Ve ¢,

2
III. Solution of the Integrul Equation Using Fourier Series

In this section, Equation 14 is solved for I(¢’). The technique is particularly
- jkbR(p-9’)
amenable to computer processing. The bounded, periodic function TRG-P) can be

expanded into a Fourier series as followc:

ikbR(®) 2 .
e_RE_ - Z K_ R (16)

n=-oo

where

]
I

7 -jkbR(p) .
1 e 'Jn"Pd
n 277[ R(¢) © ¢

-

ST

m ~jkbR(¢)
/ e—w-cos ne de . (17)



Substitution of Equation 16 into Equation 15 gives

3 L2 jnip-¢)
K(¢ - &) = K_ (IES) (n)° + cos (¢p-9) b e
n=-o
_ i (e e )2 ()
- n 2 (E €
n=-=
_ i {Knﬂ FKo1 (nf | @)
D LILENES PR
n=—uo
- Z o 7P (18)
n
n=-o
where
K + K. 2
_ _ _ntl n-1 (n
@ =a = (kb) Kn . (19)

The integral Equation 14 can now be written as

. JebL, Z‘” i jnlp-¢)
Va(p) = i an/ It(g‘) )e de¢’ . (20)

n=-o -

Expansion of I{¢’) into a Fourier series gives

It(gb) = I e (21)

n=-co

n 2T

i -jng’
1 = —1—/ L () e de’ (22)
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and substitution of Equation 21 into Equation 20 gives

jkbCo < ind
Vé () yp E @ In 27 e

=-c0

. JKbL & ineé
E a1l e . (23)
2 nn

)

From Equation 23,

m ind

T A s e 0 dg

n jkb{ o PXa

-

Vv
= jk—bgﬂ (24)

Substitution of Equation 24 into Equation 21 yields the solution of Equation 14

[« o] 1 ’
I(¢) = —0—— ik
t jﬂgokb a
n=-«
o0
_.V 1+2§:cosnrb
iml kb \« @
o o nel n
o0
A\ ’
—m E Bn cos (n - 1) ¢’ (25)
° n=1
Here
1
B =&
o)
g = 2 n=2,345...1. (26)
n a
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The solution to Equation 14, It(gb'), cannot converge at all points on the interval

-m < ¢’ < 7 because the kernel K(p,¢’) is bounded, the integration is over a finite interval,

and the left side of Equation 14 is not bounded at ¢ = 0. Other convergence difficulties

were treated by Wu.

In this paper, the divergence of Equation 25 was treated in the following manner.

Figure 2 shows graphs of the imaginary part of It(¢), Im[It(gb)], where each graph was

constructed by summing the first q terms in Equation 25. Graphs for q = 10, 25, and

60 are shown. In each graph kb = 9 (the loop is 9 wavelengths in circumference) and
Q = 2 1n (EE) = 10.
a

12.0
10.0 =10
kb = 9
8'0 ...... cree 10 Terms
2] | 25 Terms
ch 6o+ =---- 60 Terms
= )
2 4.0
RS
=y
_E 2,04 g
0.0 "l : + \J +— 1
2.0 v& 3Q, 35 4.0
-2.0 4 ¢
-4.0 1
-6.0 4
Figure 2. The Imaginary Part of the Transmitting Current

Distribution on a Loop

The results show that after approximately 30 terms are used the shape of the graphs

oscillates about the 30-term graph except at $= 0. At ¢ = 0, the graph grows larger with
each term added. This behavior near ¢ = 0 results because a delta function generator
V&(¢) was used to approximate the actual drive terminals in the mathematical model. As

a consequence, too large a number of terms results in anomalous behavior in the vicinity

12
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of the origin. For this reason, the number of terms used in the calculations in this

report was limited to:
q = max {5, [:Skb:]} . (27)
Here [3kb] means the largest integer n such that n < 3kb.

The real part of It(qb) shows much the same characteristics as the imaginary part
except that it does not continue to become larger at ¢ = 0 as the number of terms used

in Tquation 25 increases.

IV. Radiated Far Field

1
The radiated field due to a loop driven by a slice generator voltage V e Jot can be

calculated from the following equations:
E =-joh -V® (28)
VA =-joued | " | (29)
Substitution of Equation 29 into Equation 28 yields

1

E = -jwA + —— V(V ' A) (30)
Jwu €
oo
1 - . i s
It can be shown that the term WV(V * A) has components with multipliers _1.‘
oo
é, and é Only the first of these has significance in the far field and it is canceled

by the @r component of -jwA. Thus, in the far field Equation 30 reduces to

= - s a a
E = ]w(Ae &+ A¢ a¢) (31)

In the above (see Figure 3)

D= '/(r sin 8 cos ¢ - b cos d)’)2+(r sin 0 sin¢-;5 sin ¢’)2+r2 00529

=r -bsinfcos (¢-¢). (32)

13



Loop Antenna

\ Drive Terminals

B ‘900

Figure 3. Antenna Coordinate System

The vector potential at the point {r, 0, ¢) is

_ buo m e-jkD
A= I(¢')@¢, o d¢’
-
bu, i e-;ikD . :
=4 Uo”) ) {sm@sin (d)-dJ’)’afr+cos 0 sin (¢-¢')’a‘6 + cos (¢ - ¢’)
-7
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In Equation 33, use of the following three equations was necessary.

@qb’ = - gin &' ’a\.x + cos ¢’ ﬁy (34)
§x= sin9cos¢@r+cosecos cbﬁe - sin ¢’:9\.¢ (35)
A . . A . A A

= ] 2 + cos A sin ¢+ cos 92 36
ay sin 6 sin ¢ - ¢ P ey b (386)

Substitution of Equations 25, 32, and 33 into Equation 31 yields

. q m 1
-jkr ; ’
E = ';f e ! cos f E Bn/ cos{(n - 1)¢>'}sin (p-9) e‘]kbsm fcos(é-@ )d<,>’ a

am r n=1 -

q - )

+ E : an cos{(n _ 1)¢’}cos (b= eka sin @ cos(¢p-& )dQ, a{f)
n=1 —7r s (3 7)

The approximation D= r was used where the term (1/D) appearced in the integral. Note,

however, that this approximation cannot be used in e-JkD
Equation 37 yields the radiated far field solution.

An approximation for Equation 37 when kb << 1 will now e found.

By expanding eka sin 6 cos($-4") into a McLaurin's se: ‘s and retaining onl: the

first two terms, the two integrals in Equation 37 become

7 sin ¢ n= 2
4
jkb sin O cos{p-¢') ;
/ cos{(n - 1)¢'}sin(<p - 9’)’)eJ PP do’ = J—kzlﬂ gin @ sin 2¢¢6 n = 3
-
0 otherwise
(38)
and
jkb 7 sin 0 n=1
7 jkb sin 8 cos(¢-¢") T cos ¢ n= 2
cos{(n - 1)90'}cos (P -9Ne d¢’ = .
kaﬂ . 6 -
-7 5 sin U cos 2¢p n=3
0 otherwise

(39)
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Equation 37 reduces to

2 e

—  -v -jkr :
E = e {cos 9[,7[32 sin¢ + j-lngB sin # sin 2¢]’§
an r

+[jkbn sin681+nB2 cos¢+j¥33 sin 6 cos 2¢]/5¢}. (40)

From Equation 17 for kb<< 1

m
1 do .
(o]

n
o

I
1 cos no do _
;/ a0 n=1,2,3. ..

o}
and from Equations 19 and 26

Bzﬂyl

—

2,2
Bgz-2nkb Y1

7.2 2
B —gkb }’2 . (41)

xQ

w

Here

~
1

1 COS 2
R(®)

% ! (42)

2 7 os 29
cOSs
] R °°

0

Using Equations 41 and 42, Equation 40 can be written

LI ) PR 93 -|jy, sin 6-2kb =
= 1 sin ¢ cos at(9 - [3 Y, sin 0 - y, cos qS] aq5
-j\/'kby1 -kr R
~— e sin 6 B (43)

Equation 43 provides a simpler solution for the radiated far field under the constraint

that kb << 1.



- —
it

V. Loop Response Due to an Incident Plane Wave

The response of a loop to an incident plane wave electric field can be calculated from

the transmitting current distribution It(t;b) by a three-step procedure:

1. Solve for the open-circuit voltage Voc of the loop when driven by the

incident electric field Einc ert by using the equation

1 — _
Voc(w) = I(_O)[ E, - I dL. (44)
t L

The integration is along the length of il e wire.

2, Solve for the load voltage and load cur:ent using the following equations:

ZL(w)

VL(cu) = Voc(w) ZA(w) T ZL((") (45)
I (@)= V(o) L (46)
L oc ZA(w) + ZL(m)

ZA(m) = the antenna impedance

= V/It(O)
-1
q
= jnm Co kb E Bn (47)
n=1
ZL(w) = the load impedance

3. Multiply Equations 45 and 46 by the Fourier transform of the incident

electric field and take the inverse transforms of the results.
Step (1) will now be explained,

A relationship, Equation 44, between the transmitting current distribution and the
open-circuit voltage is derived inReference 5 by use of the reciprocity theorem. An

incident plane wave electric field has the form

. F-7)- N (F-7) N
=8 f4-——2 Jult-—2— (48)
(o] c

ol

inc

17



with

A ~
E - N= 0. (49)

A= 3 + a + -~
N lax may na , (50)

ﬁo is a constant unit vector pointing in the direction of the electric field and

Eo EX a Ey ay Ez I (51)

f(t) is an arbitrary time function, u(t) is the unit step function, c is the velocity of light,

T = a + a + 4
r=xa yay z4 , (52)

and FO is used to define the position of the wave at t = 0.

Time will be defined such that t = 0 when the wave first contacts the loop. This

definition of t requires

T -.Q:—b‘/l-(ﬁ"é)z ' (53)
(o] A

The Fourier transform of Equation 48 is

. TR
#e, 0] = B OV TN g
inc o

Einc Flw) . (54)

Here F(w) = the Fourier transform of f(t) and

. ‘/ 2 o
B = ﬁo e-'ka 1-n e-Jkr'N . (55)

inc
Evaluation of Equation 55 at the loop and substitution of Equations 25 and 55 into Equation
44 gives
-1
q —
2
-ikbV1-
V_ (@) =b E B, ei'k"/ &
oc i

i=1

g9
-jkb({cos¢+m sin ¢)d¢ . (56)

w
Bif cos{(i- 1)¢}(-Exsin¢>+Ey cosPle

1=1 -

Equation 56 is the general solution sought in Step (1).

18



If kb << 1, Equation 56 can be simplified in a manner similar to that used for the

radiated electric field when kb << 1., For i = 1, the integral in Equation 56 can be

written
m ' Z .
f (-E_ sin ¢ + Ey cos &) o~ Jkb(£ cosgtm sin qb)d¢
-7
m
= / (-EX sin ¢ + Ey cos c;’)){l - jkb(ﬂ cos ¢ + m singb} de
-
= jkb 7(mE_ - lEy) (57)
and

v (w)zjknbz(mE - LE)
oc x y

. nb2 {
- il (e - mEL)] . (58)
c y x

Equation 58 provides a simplified form of the solution in Equation 56 under the constraint
kb << 1, These two equations complete Step (1). Step (2) is self-explanatory. In Step (3),
the results of Step (2) are multiplied by F(w), and the inverse transform is computed in

order to obtain a time-domain solution. The time-domain solution of Equation 58 is

5 b, (1)
Voc(t) = -mb ot (59)
where
bz(t) = the z component of the magnetic flux density
fxB_
= —— f(t)
c z component
=lue - mE) . (60)
c y X

Figure 4 shows a low-frequency equivalent circuit for a loop when illuminated by a

plane wave electric field.
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¢ is the magnetic flux linking the loop
bz(t) is the magnetic flux density
NxE
b () = ——=2 £(t) =
b c
z component

0

(lEy - mEx) £(t)

¢ is the velocity of light, ¢ = 3 x 108 meters/sec
L=1.257x10"° b[ln(%’-) - 2} henries

b, a are the loop and wire radii in meters

The loop is small (kob = 2’?’ < 0. 1)

at highest frequency of interest.

Figure 4. Small Loop Model

The magnitude of the open-circuit voltage (Voc(w) of Equation 56) is plotted versus
kb in Figure 5. The plane wave is propagating in the direction of the positive x axis and
the electric field is polarized in the direction of the y axis. Figure 6 is a graph of the
short-circuit current (IL(w) of Equation 46 with ZL(w) = 0) of the loop for the same inci-
cent plane wave electric field. These graphs show that the first and largest resonant

frequency of the open-circuit voltage occurs when the circumference of the loop is one-

2
half wavelength (% = kb = 1/2) and that the resonant frequency of the short-circuit-
2
current is double that of the open-circuit voltage (-—:—b = kb = 1) . The loop must be a

full wavelength around for a reinforcement of the current to occur.

™
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In all cases studied, it was found that the open-circuit voltage has a resonant
frequency where the circumference of the loop is one-half wavelength and in all cases
but one the short-circuit current resonates where the circumference is one wavelength,
It was found that when the plane wave propagates in the direction of the negative y axis
the first short-circuit current resonance occurs when the circumference of the loop is
two wavelengths. Since the loop terminals are shorted when the short-circuit current
is calculated, the two cases mentioned above differ only in the position where the current
is measured, which shows that the resonant frequency of the short-circuit current on a ..
loop can vary with position on the loop. These results are discussed further in the follow-

ing material.

Transient signals may be derived from the steady-state solutions found above by use

of

r{t) = -27;-/ Re[F(w) T(m)] cos wt dw, £t >0, (61)
o

Here r(t) is the transient response, T(w) is the transfer function for the parameter of
interest [T(w) = R(w)/F(w) and R(w) is the Fourier transform of r(t)], and F(w) is the

forcing function. Equation 61 is valid for all real causal functions.

All transient responses presented in this report except the transmitting current
distribution were found by a direct application of Equation 61. The transient transmitting

current distribution can be simplified as follows.

Substitution of Equation 25 into Equation 61 gives

0 q
2 Re L(w-)— E B cos (n - 1)é| cos ot dw
7 jnl kb n
) o n=1

i(t,®) =
q 0
= 22c Z / Re[lj(z—) n] coswt dwpcos (n - 1)P
w €Ob n=1 o
. .
- ﬂf;b D £t costn-1)¢ (62) _
n=1
)
where
fn(t) = / Re [XJ(%) Bn] cos wt dw. (63) (.
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Note that the current on the loop can be evaluated at any position on the loop when
the numerical values of {n(t) forn=1, 2,..., qare known at time t. In Equation 62,
the position parameter ¢ can be separated from time t. Equations for the transient radi-
ated field and the receiving load voltages and currents cannot be factored into functions
of t only and position only and, therefore, the inverse transform must be computed at

each position of interest.

VI. Discussion of Results

In this section, various specific resulis of interest are presented, along with a dis-

cussion of the salient features of the solution behavior.

A, Currjent Distribution

The current distribution on a loop when driven by the voltage

-t

v = {1+ t/a)e_t/a>e ult) (64)

where

1.33 x 10-9 sec

jol
i

(Figure 7) was calculated by using Equations 62 and 63. Equ tion 64 was chosen to give a
fast rise time (about 6 nonoseconds) and a long fall time (0. 7 second to half value). For
this drive voltage §1(t) does not have a Fourier transform because

Iim =
M §1(t) constant =+ 0.

¢,(t) was found by calculating

dgl(t) ®
- Re |:V(w)[31 ] cos wt do (65)
o
dg, (t)
and then numerically integrating T

Figure 7 shows that a positive current wave is launched from the loop terminals
and is propagated in both directions around the loop. As the current wave propagates

around the loop the slope of the leading edges is rapidly reduced.
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Figure 7. Transient Current Distribution on a Loop. £ = 10, b = 1 Meter
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Also shown in Figure 7 is a plot of the transient driving voltage which is plotted as
if it were propagating undistorted around the loop at the speed of light. The graph of the

voltage pulse has been scaled so that the maximum value of the voltage pulse is the same

height as the current curve at t c/b = 7. Note that the rise time of the current is shorter

than that of the drive voltage for an observer located at 0 < [¢| < (~%) and tc/b < (~—g—).

It is interesting to compare the value of the current in the loop to that in an inductor,

with the same low-frequency inductance, when driven by a unit step. For an inductor

1 10 -
1(t)=-ft:= -6( il )=6.7X1033mp
3.9x10 4x3x10
at tc/b = —1-2—” From Figure 7
. -3
i=6.4x10 amp
10rm .
at tc/b = — Thus the two results are quite comparable.

B. Transient Radiated Far Field

The high-frequency content of the driving pulse is accentuated in the transient far
field as can be seen by examihation of Equations 1 and 2 or 31. Equations 1 and 2 show
that the electric field is proportional to the derivative of the vector sum of the current
density on the loop. As noted above, the rise time of the current near t = 0 is faster
than that of the applied voltage. This fast-rising current near t = 0 causes the high-

frequency content of the drive voltage to be accentuated even more.

Figure 8 shows the calculated transient electric field, for an observer located at

6=n/2and ¢ = 0, of a loop driven by the voltage v(t) = u(t).

This voltage pulse has an infinite derivative at t = 0 and, as a result, the electric
field has its maximum absolute value when the leading edge of the eleciric field pulse

arrives at the observer for observers in the ¢ = 0 plane. In Figure 8, time is retarded

r - b sin 6 cos &
c

radiated field first arrives at the observer. Equation 2 shows that a¢(t) has its maxi-

so that t = 0 corresponds to the time when the

by the amount

mum rate of change at t = 0, As the current pulse travels around the loop there is no

change in a¢(t), as viewed from ¢ = 0, at the time when tc/b = #/2, that is,

d ad)(t)

at |¢=0
t

nb/2c
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Figure 8. Transient Radiated Far Electric Field for a Loop
Driven by a Step Voltage v(t) = u(t)

Time is now retarded by the additional amount b/c (the leading edge the current pulse is
moving away from the observer) so that the electric field should go to zero at

te/b = g+ 1 = 2,6 as is shown in Figure 8. As the current pulse progresses on around

the loop, ag.J begins to have a negative derivative which reaches a local maximum

¢=20

(in absolute value) at tc/b = 7+ 2, Another zero should occur at te/b = -37” + 1 and

another local maximum absolute value at te/b = 27, This pattern should repeat as the

leading edges of the current pulse make another revolution around the loop and have a

period of tc/b = 27, All of the above features are evident in Figure 8. The rapid de-

crease in the slope of the leading edges of the current wave (Figure 7) causes a change

in the shape and magnitude of the otherwise periodic signal.

Now, consider an observer located at 6 = #/2 and ¢ = #»/2, At¢® = 7 /2, the current
wave must be considered in two parts: the wave propagating around the loop in the direc-
tion of increasing ¢ and that one propagating in the opposite direction. Separate analysis

of these two current waves and addition of the results give a transient of the same shape

as at @ = 0 except that the frequency is doubled as shown in Figure 9.

g =nm/2 ¢ = n/2
=10
0 .

G ﬁ,” \ ANV NIV + + ; : {
= /5% o 15 20 25 30 35 40
tc/b

jasd
™
m‘&
NOTE: The observer is located at @ = #/2 and ¢ = n/2,

Transient Radiated Far Electric Field for a Loop

Figure 9.
Driven by a Step Voltage v(t) = u(t)
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Transient radiated electric fields for a loop when driven by a voltage of the form
given by Equation 64 are shown in Appendix A. The voltage waveform has a rise time of
5a = 6.66 x 10-9 sec and has a zero derivative at t = 0. This zero derivative cuts down
the high-frequency content of the radiated field and changes the appearance of the electric
field for values of t near zero. The loop has a radius of 1 meter and = 10, 12, and 14.

The field is evaluated at several values of ¢ and ¢ when Q = 10,

C. Electric Field Patterns

Field patterns in the planes ¢ = 0, ¢ = 7/2, and 6 = » /2 were calculated for

kb= 1, 1.5, 2, 2.5, ..., 10 and for = 10.

In the planes ¢ = 0 (Figure A18 of Appendix A) and 8= #/2 (Figure Al7 of Appendix
A), the 6 component of the electric field E(9 is zero. Therefore, these patterns are pat-

terns of the total electric field Et as well as of the ¢ component E,. In general

Et= E6E6+E¢:E¢

where the asterisk denotes the complex conjugate.

The patterns of E¢(Figures A19), EH (Figure A20), and Et' (Figure A21) were cal-
culated in the plane ¢ = 127- .

D. Receiving Transients

Transient load voltages and load currents were calculated from Equations 45 and 46
for a loop when illuminated by a unit-step plane wave. The frequency respc:rie of the loop
falls off at the high-frequency end fast enough that the inverse integral of the Fourier trans-

form can be truncated at kb = 10 with negligible effects on the results.

Transient responses are shown in Appendix A for various directions of propagation
and polarization of the incident electric field. Graphs showing the effects of a load re-

2
sistor and = 2 In %b are also shown.

Consider Figure 10 which shows the short-circuit current induced in a loop by a unit-
step plane wave which is propagating down the x axis and the electric field is polarized in

the y direction. An explanation of the shape of the transient short-circuit current follows.

Since t = 0 at the instant of time when the wave first contacts the loop, no signal can

be seen at the terminals until te/b = 2. At tc/b = 2, the electric field arrives at the loop
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terminals and is parallel to the wire at this point. By assuming that a current wave,
which is proportional to that component of the incident electric field parallel to the wire,
propagates in the clockwise and counterclockwise directions from each point on the wire,
it can be seen that a negative current should flow at the terminals and should reach a
maximum in absolute value when te/b = 1+ #/2, Note that tc/b = 1+ #/2 corresponds
to the time when that contribution to the total current from the points ¢ = +#/2 arrives

at the terminals, At points on the loop where 7/2 < ’(}5] < 7 positive current waves are
launched. Maximum current contributions should arrive at the terminals at tc/b = 3—2” + 1,
Since the loop is shorted the current waves continue to propagate around the loop in their

original directions. The next minimum of current should occur at tc/b = (27 + the first

minimum) = 1+ 7/2 + 27, All of the above features are evident in Figure 10,

3
D Q=10
E 4.01 NN
a , \
.cn-i“ 2‘O+ ‘\_ _l/
= 1.o+
E 0.0i Al —1 t = { - i T —
2 .10t | 5 10 15 20 25 30 35 40
3 2.0+ / ' tc/b
3.0+

NOTE: The loop orientation is shown in Figure 1.

Figure 10. Short-Circuit Current in a Loop When Illuminated by a
Unit-Step Plane Wave with E0 = (0,1,0) and N = (1,0, 0)

A similar line of reasoning can be used to predict the loop response when the wave
is propagating down the y axis in the negative direction and the electric field is polarized
in the direction of the negative x axis. Here the analysis is more complicated than the
first example and is best handled by considering each of the four quadrants of the loop
separately and then adding the results. The final result in this case is a current which
has a resonant frequency twice as high as the first example. This double resonant
frequency is similar to the case of the radiated field at ¢ = 8 = #/2, A line of reason-
ing to predict the open-circuit voltage waveform of a loop can also be devised. This

explanation is the same as the short-circuit explanation except that the voltage waves are

reflected and inverted at the open loop terminals. An example of an explanatory analysis

follows.
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Consider Figure 11 which shows an incident plane wave propagating down the x axis
and the electric field polarized in the y direction. Since t = 0 at ‘he time when the lead-
ing edge first touches the loop, no signal is seen until te/b = 2. Consider quadrant 1 as
marked on the diagram of Figure 11. At tc/b = 2, the electric fizld step arrives at and
is parallel to the loop terminals. Effects of clockwise propagating waves from quadrant
1 will continue to accumulate at the loop terminals during the time interval from tc/b = 2
until te/b = 1 + 7/2. This effect is shown in the top curve of Figire 11. The voltage wave
will be reflected at the open-loop terminals and will appear at a time interval 2#(b/c) later.
3ince the wave is inverted when it is reflected, the reflected wa" - will cancel the effect of
the original wave for the next time interval of length 2n(b/c) as shown in the top curve of

Figure 11,

The wave of quadrant 1 which propagates in the counterclockwise direction has no
effect until te/b = 1 + %’—’ and will continue to accumulate until tc/b = 2 + 27(the second
curve from the top). This procedure was followed for the 2nd, 3rd, and 4th quadrants and
the resulting eight curves were then added to form the result shown. For small values of
te/b, this curve looks very similar to the curve (also shown in Figure 11) which was cal-
culated from Equations 56 and 61. For larger values of tc/b, the high frequencies neces-
sary to form the sharp spikes of the waveform are lost because of radiation from the loop,
and the resonant frequency of the open-circuit voltage is all that remains. Note that the
second spike in the waveform begins to appear at tc/b = 1 + 7 2 + 27 for the thin loop

(2 = 14). For loops with lower values of Q2 the second spike cannot be seen.

The explanations given above for the various waveforms give an intuitive picture of
the transient behavior exhibited in the calculated solutions. This provides a feel for what

is going and also demonstrates the validity of the numerical results.
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Figure 11. Shape of the Transient Open-Circuit Voltage Waveform




VII. Conclusions

The transmitting current distribution on a circular lcop antenna when driven by a

voltage of the form v(t) = Voe

Jot was obtained by a Fourier series solution. Using the

transmitting current distribution the following loop antenna responses were calculated.

1.

2.

The effects of Q on the responses of circular loop antennas were also investigated.

The transient transmitting current distribution.

The transient load voltages and load currents when illuminated by a transient

plane wave electromagnetic field.
Transient far field waveforms when driven by a transient drive voltage.

Field patterns when driven by the voltage v(t) = Voert.

2nmb

Herc 2= 2 n - b is the radius of the loop, and a is the radius of the wire which

forms the loop.

It was shown that the calculated transient waveforms were in good agreement

with intuitively constructed waveforms.
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APPENDIX A

Results

Transmitting Current Distribution

Figure Al shows the transient transmitting current distribution on a loop when

driven at ¢ = 0 by the voltage
v(t) = {1 -1+ t/a)e-t/a}e-t u(t)

The current distribution is plotted versus ¢ for the instants of time such that tc/b = in/4,

i=1,2,..., 10.

o]
I

10

1A
\

tc/b = 10n7/4

illiamps

f

-nl2  -ni4 0 ald ol 3n/4 ;r
&

- -3n/4

Figure Al, Transmitting Current Distribution
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Effect of Q on the Transfer Functions

2
Figures A2 and A3 show the effect of = 2 1n 272 on the open-circuit voltage and

short-circuit current transfer functions for ﬁo = (0, 1?0) and ﬁ = (1,0, 0). Values of the
transfer functions are normalized by the radius of the loop b. To find the actual value of
the magnitude of a transfer function, multiply the value of the ordinate of interest by the
radius of the loop under consideration. For example, if b = 2 meters and Q = 14, the value

of the open-circuit voltage transfer function at kb = 0.5 is 72 (2 meters) = 144 meters.

That the indicated normalization is valid can be seen by examination of Equations
56, 45, 46, 47, 26, 19, and 17, These equations show that the load voltage or load current

can be written as b times a function of kb and §2, that is, for VL’

V. = bT (kb, Q)
or (A1)

v, /b= T (kb, )

100.0-

AT
1

(o}

Q
o|m

Ro)

@ 10.0

P T

% I

S I

.4: T y

5 T Z ==
g T / L
5 X

! T /
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© .0l /

- - / E =1(0,1,0
B T /

2 I “

: / 8- (1,0,0
(o]

S ¥
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Figure A2, Effectof 2= 2 1n 2—:9 on the Open-Circuit Voltage Transfer Function
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Figure A3. Effect of 2 = 2 m—:—b on the Short-Circuit Current Transfer Function

Effect of § on the Transient Response

Figures A4 and A5 are transient responses which correspond (for a unit-step incident
plane wave) to the transfer functions of Figures A2 and A3, respectively. These curves are
also normalized with respect to b. Using Equations 61 and Al, the load voltage can be

written as

% f Re [bT(kb, Q) F(w)] cos wtdw
0

v L(1:)

- %b/wRe[T(kb,Q)F(kb %)]cos (kb %)d(kb) 2.
0

If F(w), the Fourier transform of the incident electric field, has the form

1
Flw) = ?’3
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then

or

VL('E)

VL(t)/L =

2.0
1.5+
1.0
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0.0
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Figure A4.
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o

Figure A5,
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Effects of Resistive Loading on the Transient Response of a Loop

Figure A6 shows the effects of resistive loading on a loop. It is apparent that, for
the loop considered, RL 2 1000 ohms appears about the same as an open circuit,

< 50 ohm is a transition region where the loop is nearly critically damped,

500 ohm < RL
and RL < 1 ohm appears as a short circuit,
Q=10
R =
‘., 1,5 L
)
® 1.0 5000
=
= 0.5 1000
0
= 0.0 ¢ 4 ) } —k — ¢ —
SO V 5 20 25 4 30 3 40
a o g te/b
—~, -1.0
= 1
Z -1.54
y
+ R'L
X
o .15%
= .50t
a .25
S
0.00 : 1
Z 35 40
~_ =257
-
> -,50+
RL =1
5 4.0 0.5
1
s 3.0
2.0
9 1.0
2 0.0 : + e — ) | 1 -
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= -1.0
o =-2.0 te/b
T4 -3.0
>
Figure A6. Effects of Resistive Loading on the Transient Response of a Loop
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Effects of f)o and N on the Loop Response

Figures A7 through A10 show the effects of the direction of polarization and the

direction of propagation of the electric field on the transient open-circuit voltage and

short-circuit current.
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Figure A7. Effects of flo and N on the Unit-Step Response

of a Loop Antenna (Open-Circuit Voltage)
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Effect of Q= 2 In —— on the Transient Far Field

The effects of  on the radiated far electric field of a loop when driven by a voltage

pulse, for an observer at § = ¢ = 7/2 (see Figure All), are shown in Figure A12. The

drive voltage has the form

where

v(t)

{1 -1+ t/a) e'”a} et uct) (A3)

1.33x 1072 sec.

[\
1]

The transient radiated electric field cannot be normalized with respect to the radius

of the loop b, as was done in the receiving case, because the drive voltage v(t) is not a

step function.

Loop Antenna

\ Drive Terminals

Figure All. Antenna Coordinate System (the Loop Is in the x-y Plane)
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Figure A12. Effectof &= 2In L? on the Radiated Electric Field

Effects of the Location of the Observer on the Observed Transient Electric Field

of a Loop Antenna

Figures A1l3 through A16 show the observed transient electric field for various

observer locations (see Figure All).
nent of the electric field is zero, and therefore, the total electric field is the ¢ component

of the electric field. At 8= 0, ¢ = 7 /2, the ¢ component of the electric field is zero. ¢
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For observers in the 8 = n/2 plane, the § compo-
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figure Al5. Effects of the Location of the Observer on the Observed
Transient Electric Field of a Loop Antenna
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Figure A16, Effects of the Location of the Observer on the Observed
Transient Electric Field of a Loop Antenna

Loop Antenna Patterns

Loop antenna patterns for three different planes are shown as functions of

o
kb = QCE = —“—;3 in Figures A17 through A21. In the plane § = 7 /2 and the plane ¢ = 0,

the 8 component of the electric field is zero.
The electric field in the plane ¢ = #/2 has a ¢ compo-

Therefore, Figures A17 and A18 are also

patterns of the total electric field,

nent, Figure A19, and a 6§ component, Figure A20. Figure A21 shows patterns for the

total electric field Et’ where

| kS *
E| = '/E E'+E E’
|| G
and the asterick means the complex conjugate.

The value of the electric field times the distance of the observer from the origin
at the angle of greatest electric field intensity is given in Table Al for each pattern. For
example, in Figure Al17 for kb = 4.5, the value of |E¢| at a distance of 104 meters from

the loop and at ¢ = 7 is 6. 60 x 10-5 volts /meter if the loop is driven by a 1-volt source.
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NOTE: See Figure All for the antenna coordinate system.

Figure Al17. Loop Antenna Patterns

49



50

[

= 1.5 kb = 2,0 kb =

[} [ [ [}
.Dl‘ . .[p . .& . . .
. [ ° [}

kb = 3.0 kb= 3.5 kb= 4,0 kb = 4,
[ [}

kb

L ]
H
oM o

= 9,5 kb = 10,0
Q=10
¢ = 0 plane
E
5]
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Figure A18. Loop Antenna Patterns
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Q= 10

¢ = n/2 plane
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NOTE: See Figure All for the antenna coordinate system.

Figure A19. Loop Antenna Patterns
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Figure A20,

Loop Antenna Patterns
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Q =10

¢ = /2 plane

‘Ett '/EE + B E}

NOTE: See Figure All for the antenna coordinate system.

Figure A21, Loop Antenna Patterns
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TABLE Al

Values of the Electric Field in Volts/Meter, at the Angle of Greatest
Electric Field Intensity Times the Distance of the Observer from the Origin

Figure N

_kb_ Al7 Ais Al9 A20 A21
1.0 0. 411 0.587 0. 0859 0.586 0.586
1.5 0.184 0.398 0.180 0.393 0.393
2.0 0.426 0.576 0. 460 0.271 0.472
2.5 0.363 0.536 0.246 0.211 0.259
3.0 0.543 0.698 0.118 0.346 0.348
3.5 0.537 0. 666 0.292 0.389 0. 404
4.0 0.670 0. 782 0.472 0.292 0.488
4.5 0.660 0. 733 0.298 0.245 0.329
5.0 0. 751 0.801 0.145 0.326 0.343
5.5 0. 1732 0. 755 0.324 0.421 0.429
8.0 0.1773 0. 783 0.476 0.345 0.483
6.5 0. 726 0.727 0.313 0.283 0.363
7.0 0.1733 0.733 . 0.179 0.352 0.391
7.5 0.771 . 0.668 0.346 0.455 0.475
8.0 0.829 0.637 0.471 0.406 0.490
8.5 0.874 0.564 0.329 0.341 0.414
9.0 0.898 0.528 0. 266 0.393 0.429
9.5 0.904 0. 486 0.399 0.483 0.524
10.0 0.930 0.596 0.477 0. 460 0.551
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APPENDIX B

Computer Programs

Listed in this appendix are the computer programs which were used to calculate the
curves of Appendix A, Each program contains comment cards which explain the program’s
use and the input and output variables. Also listed are the subprograms which are cailed
from the four main programs. The subprograms used in each main program are listed

in the main programs.
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PROGRAM LOOP RE({INPUTsOUTPUT,,TAPELD)
THIS PRCGRAM COMPUTES THE VOLTAGE ACROSS THE LOAD IMPEDENCE OF A LOOP ANTENNA
WHEN TLLUMINATED RY A TRAMSIENT ELECTROMAGNETIC PLANE WAVEs LOAD CURRENTS CAN
RE CALCULATED BY A SMALL CHANGE AS INDICATED IN A LATER COMMENT CARD,
THE LOOP IS IN THE X=Y PLANE AT Z=0 AND IS DRIVEN AT PHI=0e A=THE WIRE RADIUS
AND R=THE LOOP RADIUSs BOTH IM METERS,

SURRQUTINES OR SUBFUNCTIONS TO BE USED WITH THIS PROGRAM ARE
SUBRQUTINE YOCZA
SUBROUTINE RETAN
SURROUTINE RR
SURROUTIME SICOINT
SUBFUNCTION E
SUBFUNCTION ZL
ALL DIMENSIONED VARIABLES MUST BE LEFT AT THEIR PRESENT SIZE,.
COMMON/A/ VO(301)sIS(301)YsVE(301)9VT(2144+8)9VSPACE(283)
COMMON/B/ AOBsBK 9 GAMMAL, JBK 9 AOROLsFRRB
COMMON/C/ EXSsEY3EZsL sMsN9sBIERRIERINCALL
COMPLEX JBKsZAsVOCIVEsZLWsZL »E
REAL LsMsNyIS :
DIMENSION BKM({301)sZA(3N1)9VOC{301)9TA(S)
NATA Pl1sC/361415927434F8/
NCALL=N
AOBOL==1,
READ 14 4NIMP¢NFUNCT
NIMP IS THE NUMBER OF LOAD INPEDENCES TO BE USED FOR EACH DRIVE FUNCTIONs
NFUNCT IS THE NUMBER OF DIFFERENT DRIVE FUNCTIONS TO BE USED o
14 FORMAT(215)
READ 1sEXsEYsEZsLoMaNsASB )
EXsEYsAND EZ ARE THE COMPONENTS OF THE INCIDENT ELFCTRIC FIELDs MUST HAVE
EX¥#2+EY XX LEZ%¥H2=]====| sMyAND N ARE COMPONENTS OF THE UNIT VECTOR POINTING
IN TNE DIRECTION OF PROPAGATICMN OF THE PLANE VAVEe MUST HAVE L#¥%2+MeX2+N¥%2=1
AND EX*L+EY*M+EZ%N=0¢ A=THE WIRE RADIUS AND B=THE LOOP RADIUSsBOTH IN METERS.
1 FORMAT(8E1N,40}
PRINT 9sEXsEYsEZsLsMoNsASB
PRINT 10
ERRRB=0,
AOB={A/8)*x2
ERR=1sE=3
EXA=EXP(1ls)
cOB=C/B
BOC=R/C
AKM(1)=B0C*1+sF=3
RK=ROC*3,140327711/FEXA
PO 2 I=1s19
DBK=RK /6
JA=6%(1=1)
DO 3 TA=2,7
JB=JA+IA
3 BKM(JB)=BKM(JR=1)+DBK
2 BK=BK*EXA
DO 25 1=1164135
25 BKM{1}=BKkM(I=-1)+0.01
DBK=(10e=BKM(135)) /166
DO 4 1=136,301
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4 BKM(T)=RKM(I-1)+DRK
NO 5 I=14301
AK=RKM(T)
CALL VOCZAIVOC(I)eZACT))
5 CONTINUE
PRINT 9sVOC T LT o
C VvOC({I)=THE VALUE OF THE OPEN CIRCUIT VOLTAGE TRANSFER FUNCTION AT BKM(I)s
DDIMT 10
PRINT 992A
C ZA(IY=THE VALUE OF THE ANTENNA IMPEDENCE AT BKM(I),
PRINT 10
PRINT 9sBKM -’ o ST

C BKM(I) IS A MATRIX OF THE VALUE OF BK=2#PI*FREQUENCY*B/(THE VELOCITY OF LIGHT)

PRIMT 10
9 FORMAT(1NF1344)
10 FORMAT(///777)
CBP1==24%COB/DI L
R=1400475 '
DT=0015
VO(1)="y
DO 11 1=2,201
VO(1)=VO(I-1)+DT ’ ST
11 DT=DT#*R
PO 12 ID=1sNFUNCT
DO 18 IB=1+8
DO 18 IA=1s214 _
18 VTUIAsIR})=0, L L
DO 13 1A=1,301
13 VE(TA)=VOCITA)*F(BKM(IA)*COR,ID}
NO 24 1A=1,NIMP :
DO 16 IB=1,301 _ o
ZLW=ZL (WsTA)

C LOAD CURRENT CAN BE CALCULATED BY REPLACING THE NEXT FORTRAN STATEMENT BY__

C 16 I1S({I8)Y=REALI(VE(IB)/(ZA(IR)+ZLW))
_l6 IS(IB)I=REAL(VE(IB)*ZLW/(ZA(IBY®ZLWY Y o o e
DO 15 IB=1,201
DO 17 IC=1410946 . :
CALL SICOINT(BKM(IC)sBKM{IC+6) s69VO(IB)sIS(IC)aVSPACE V1 sV29V3,yV4)

17 VT(IBsTA)=VT(IByIA)+V] .
CALL SICOINT(BK%(IIS)oBKM(lBS)oZOoVO(IB)915(115)0VSPACE0V1’V29V30V

_14) et e+ e e e e

VT(IBs 1A =VTIIBs 1A} +V]

- CALL SICOINT(BKM(135),BKM(301)01669V0(IB)QIS(135)DVSPACE *V1eV2eV3

1sV4)

15 VT{IBIA)=(VT(IBsIAY+V1)*CBPT __ = ___ . e i fen e

24 CONTINUE

PRINT 9sVT
C VT(T)=THE VALUE OF THE TRANSIENT LOAD VOLTAGE AT THE TIME SUCH THAT

C TIME*(THE VELOCITY OF LIGHT)/B=vO(I}e
PRINT 10

PRINT 9sVO oL el e e

PRINT 10

12 _CONTINUE e e _——
END
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PROGRAM LLNOP TRIIMPUT »NUTPUT 3 TAPF10)
THIS PROGRAM COMPUTES THE TRANSIEMT FAR FIELD THETA AND PHI COMPONENTS OF THE
RANIATEN L RCTRIC FIELD DUST TO A LOOP DRIVEN BY A TRANSIENT VOLTAGE. THE LCOP
IS IN THE X=Y PLANE AT 2=0 AND IS DRIVEN AT PHI=0e A=THF WIRF RADIUS AMND
R=THE LONP RANIUSy BOTH IN METERS.

SURROQUTIMNKES OR SUBFUNCTIONS TO 2E USED WITH THIS PROGRAM ARE
SURROUTINE FAR E
SURRQUTIME BETAN
SURROUTINE RR
SURROUT INE SICOINT
SURFUNCTIOMN E

THE DIMEMNSIONS ARE===EP(N1)sEPTINTP)ETTI(NTP)sTINTP+1)e HERE NI=N+1 AND
MTP=NT+12s N AND NT ARE RFADR IMTO THF PROGRAM,

NDIMENSION SP(301)sET(301)

SIMENSION FEPT(301)sETT(301)sT(302)

COMMON/A/EFG(3199)

COMMON/E/AORB sRK s GAMMAL y JXB s AQOBOL s£RRR

COMMON/C/THETAsPHI sCONsMgERRsETHETA «ZEPHI s AORO 93KD9ERROR

TYPE COMPLEX JKBs ETHETASEPHIsEsCONSTsJsrY

NDATA PIsCeJ/361415927934F89(Dasls)/

AOBQO=~1a
BKO==14
ANBOL==1,

READ 13 yNRUN
NRUN IS THE NUMBEPR OF TRANSIENT WAVEFORMS TO BE CALCULATED,
13 FORMATI(13)
DO 5 L=1,NRUN
READ 1sResTHETAPHIsAsBsDTNT 4N
(ResTHETASPHI) ARE THE COORDINATES OF THE OBSERVER
A AND 3 sIN METERSs ARE THE RADII OF THE WIRE AND THE LOOPs RESPECTIVELYe
NT IS THE NUMBER OF TIME POINTS AT WHICH THE TRANSIENT RADIATED FIELD IS TO BE
EVALUAT™Ns DT IS THEINTERVAL BETWEFEMN TIME POINTS.
N+1 IS 74E NUMBER OF POINTS AT WHICH THZ TRANSFER FUNCTION IS EVALUATZD ON THE
INTERVAL Oel oeLEs 8K oLEs 10,
PRINT 99sRsTHETASPHI AR INTyMTeN
PRINT 8
FORMAT({6E10a0N9215)
FORMAT(1NE1344)
FORMAT(//7777)
FORMAT(6E17e692110)
ERROR=0,
ERRB=O.
BK=N,1
DBK=949/N
AOB=(A/B)**2
CON==0425/(PI%PI%R)
EFRR=14E-3
N1=N+1
CcoOB=C/R
CONS=24*COB/P1
SICO=SIN(THETA)Y*COS(PHI)
DO 2 I=14N1
JKRB=J¥*BK

ol JEN I
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M=3 4 #RK

IF(MeLTe5) M=5

CALL FAR £

W=COR%*RK

EW=F (W2 ) ¥CEXP{=JKB*SICO)

ET(I1)=REAL(FTHETA%EW)

FP(T)=RFAL(EPHI*FY)

? RBK=RK+NAK

T(1)=0,-

NT=NT*COR

PO 3 I=14NT

CALL SICOINT(ND41310esNsT(IVaETIEPSETTITISUNYEPTIUTY sUM)

T(I+1)=T(I)+DT

ETT(IY=ETT(I)*CONS

3 EPT(I)=EPT(1)}*CONS

AA=(=B*GAMMAL*SIN(THETA) /{2e#PI*R%C) ) *COB

EPT(1)=FPT(1}+0s1%AA

PO &4 1=2sNT

4 FPT{I)=FCOT(TI+AA#SIN(OQI*T(I))/T(T)

PRINT 7+ERRORS$ERRR
ERROR IS RETURNED FROM SUBROUTINE FAR Ee IF ERROR=0 THE NUMERICAL INTEGRATION
IN SUBROUTINE FAR E IS ACCURATE TO ATLEAST 3 SIGNIFICANT FIGURESe IF ERROR=
X#10%#%(=N) le¢ eLTe X oLTe 10e THE INTEGRATION IS5 ACCURATE TO ATLEAST N=1
SIGNIFICANT FIGURKSS
ERRB IS SIMILAR TO ERROR EXCEPT THAT IT IS RETURNED FROM SUBROUTINE BETANG

PRINT 8 _

PRINT 7sETT . .
FTT(1)=THE VALUE OF THE THETA COMPONEMT OF THE TRANSIENT ELECTRIC FIELD AT
T(I)e FPT{I)=THE PHI COMPONENTS

PRINT 8

PRINT 79EPT

5 CONTINUE

END
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PRAGPAM CUPR{INPUTsQUTDUT,TADELO)
THIS PROGTAM COMPUTES THE TRANSIENT TRANSMITTING CURRENT DISTRIBUTIOM OM A
CIRTCULAP LOCP AMTEMNAS THE CURRENT IS CALCULATED AS A FUNCTION OF PHI AT
17 INSTANMTS OF TIMEe THE LOOP IS DRIVEN AT PHI=0. THE WIRE RADIUS =Ay THE
LOAD PADILIS=0,
SUNOITINES OR SUAFUNCTIOMS T2 2F USED WITH THIS PROGRA!IM ARE
SURROUTINE RETAM
S1BRAUTINE BR
SHRIANUITIMNE SICOINT
SYRFUMCTICON E
DIVENSTION TUINY HRE(1C 3Ny 9sC=T(19293N)sTA(B)»TBI(B)sTC(6)
NIMENSICM G(1N0)
TOMMON/ZA/ZZURD 301)ePHI(1751) 9¢K(21)4RETA(3C)IHR(1025)
TOTMOMN /R /7 A0R 9B 9 GAMMAL 5 JX Ry ACROL
TLRE COMPLEX JeJ¥P ey RETAZEW,E
NATA PIeCeJ/ 3414152270764 R3(Tesla)/ .
2T VALUZSE OF A AND B ARE SUCH THAT OMEGA=2*ALOG(2%¥PI*B/AY=10s OTHER VALUES
OMEGA CAM PE USED 3Y CHANCING A OR B OR BOTH,
A=4,423387F=2
=1,
ACR=(A/B)*%2
cCB=C/R
ACROL=~-1,
TTR=1sE=3
T{1)=P1#N425
ATI=T(1)*",1
NO 4 I=2,410
4 T(IY)=T(I=1)+PI*#0425
TON=2¢#C/(PI%PI*120,%P1%P)
YO 6 TA=1,410
DO 6 IR=1,3N
6 RE(TIAIB)=0,
EX=FEXP(1ls)
DEL=3e/ (EX*EX)
12=6
Ivy=12+1
IYO=TY
W=14F=2
RK=W/COR
JKB=J%*8K
CALL RETAN(3NsFERR)
FW=F (COB*RK42)/JKB
BET(IYO9l1)=REAL(EWBETA(1)*JXB*COR)
DO 17 I=2930
17 BET(IYO»1)=REAL(EWHBETA(T))
NO 3 IR=1,18
DO 16 1=1430
16 BET(1sI)=85T(IYO»I)
DEL=DEL*EX
NBK=PEL/(COB*1Z2})
RKL=BK
IF(IRsNFa18) GO TO 18
RKU=10,
1Z=198
NBK=(BKU=~BKL)Y/1Z

THE
n
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13

14

15
3

IYy=12+1

DO 1 I=2y1Y

3K=RK+DBK

JKR=J¥BK

CALL RETAN(304ERR)

Fu=F (COR%8K2) /JKR
PET(T91)=RFALIEWXRETA(1)*J*¥BK*COB)

NC 2 TA=2,3"

RET(T19IAY=REAL(EM%BETA(TIAY)

COMTINUE

AKU=8K

DO 5 TA=142Ny2

N 5 IC=1,17

CALL SICOINT(BKLBXKUSIZsT(ICIIBET(19TA)$BET(LsIA+1)9UAIUZIUBIUY)
IF(IAEQLL) 50 TO 13

RE(TCYIAY=2E(TICsIAY+ CONx*UA
RE(ICsTA+1)=FC(ICsTA+1)+CON*US

CONTIMUE

TI1=DTI

PO 14 1=1,100

CALL SICOIMTI(BKLsBKUSTIZsTIsRET(151)9BET(192)9G(T1)sUZsUBsUY)
TI=TI+DTI

DO 15 I=2,100

G(1y=G(1)+GI(T)

IF(MOD({1s10)eNESQ) GO TO 15

ISUR=1/10
RE(ISUBs1)=BE(ISURs1)+(G(1l)=0e5%#G({1))*CON*DTI/COB
CONTINUE

CONTINUE

DP=P1/15N,

€ PHI(I) I=1+2s00e93C1 ARE THE ANGLES AT WHICH THE CURRENT DISTRIBUTION IS
C CALCULATED.

11

9

PHI({1)==PI
PO 7 1=2,301

PHI(I)=PHI(I-=1)+DP

DO 8 I=1,10

DO 9 1A=1,301

FORMAT(10E1344)

CUR(TA)=BE(Is1)

NO & 1IB=2,30
CUR(IAISCUR(TIAY+BE(T9IB)I*COS((IB=1)#PHI(IA)) _

C T(1)=1#P1/4=TIME*(VELOCITY OF LIGHT) /By I= 19290009104

PRINT 11,T(I)
PRINT 12

C CUR(J})=THE VALUE OF THE TRANSIENT CURRENT AT PHI{J) AND AT T(I)e

10
8

PRINT 11,CUR

PRINT 12 : e e o —

Iy=301%{1~1)

DO 10 IA=1,301
1Z=1Y+IA
BET(1Z)=CUR(IA)
CONTINUE

~ PRINT 1148E e — - .. -
€ BE(TsJ) ARE THE FOURIER COEFFICIENTS AT T(I).
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PRAGTAM
THIC
SAANAUTINES
AURTANTINE RETAN
SURRAUTINE RR
cuRPANT[NE BICK
JIUENSTON

YD AN

DATTERN(IMPUTSOUTRPUITsTAPFLIN)
PRANRAN COMPHTES THE FISLD SATTERMS 2F A CIRCULAR LOOP ARTFMJA.
O” SURFUNCTICNS TC 285 USED WITH THIS PROGRAM ARE

X(1721)sY(101)9ANGLE(1IN1) s TA(S)»TR(S)

PIMEMSION U(1NTs1995)sV(10751995)92(1C1)

COMOM/A/EFGL3199)

e
e

TCHMUOM/C/THETASPHI 9 CON

MOMN/R/AOR $RE g GAMMY » JKB 2 ANROL
MeERRSET

HETASEPHI 9 AOBN ¢BKOsERRCR

TYRE COMPLEX JeJKBoFTHFTASFPU]
OATA PT1eCsJ/3e141522793eFR9(Nasle)/

CALL HDZOPY(1NM)

CALL ENTFLM(1)
COM==Na 25/ (PI*P 1)

WIRE RADINS=As THE LOOP
THE DISTANCS FROM THE
VALUES OF A AND 8 ARE

THZ
2 IS
THELE

NN

Q=1.E"+
CoOM=CON/R
A=4423357F=-2
B=1.
AOBR=(A/RB)#%2
AOROL=~=1
AOPC==14
TKO==1,
IRROR="4s
ZRR=14E=3
DA=P1/50,
BK=1,
DRK=N4e5
AMGLE(1)Y==P1/2s
NC 1 I=2+101
1 ANGLF{I)=ANGLE(I=-1)+DA
DO 20 1I=1s5
DO 2N TA=1,419
DO 20 1R=1N2,10C7
UlIRsIAI Y=
VIIRyIApI)=N,
70 2 I=1919
PRINT &
PRINT 5»AsRsRBK
C A=THE WIRE RADIUSs B=THE LOOP
C THE VELOCITY OF LIGHT)s
PRINT 6
M=13 4 #BK
IF{MaLTe5)
JKB=J*BK
C FROM HERE TO STATEMEMT NUMBER
C CALCILATED,
THETA=PI*0,45
DO 3 1A=26476
PHI=ANGLE(TIA)

20

M=5

RADIYS=R,
LOCP TO THE QSSERVER.
SUCH THAT ot
OF CMEAA CAN PE JSED 8BY CHAMNGING A OR 2 QR ROTH,.

RADIUS,

9

ROTH IN METERS,

EGA=2*#ALOG(2#PI%B/A)Y=10,

BOTH IN METERS.

THE PATTERN IN

OTHER VALUES

BK=B#2%¥P I #FREQUENCY/ (

THE THETA=PI/2 PLANE IS
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CALL FAR E
12=1A=25
3 X{IZy=CARS(EPHI)
CALL PICX(X9519XMAX)
POINT 5eXMAX
NO 2 TA=268476
DHI=ANGLE(TA)
17=14A-25
I(TZyI el ¥=X(1Z)%COSIPHI ) /XMAX
VITIZaTel)=X(IZY#SIN(PHIY/XMAX
UE102=TZ91s1)= UlTIZsIs1)
Q V(172=T74T91l)==V(1Z4191)
C FRO'Y HFERF TO STATEMENT MNUMBER 8 THE PATTERN IN THE PHI=0 PLANE IS CALCULATED.
PHI=Ng,
DO 7 I1A=1s51
THETA=ANGLE(TA)
CALL FAR =
7 X(IAJ=CABS(FPHI}
ZALL PICK(Xe519XMAX)
PDIMT 5¢XMAX
NO R IA=1y51
THETA=ANGLE(TIA)
UlTAsI $2)=X(TAYXSIN(THETA) /XMAX
VIIAgT92)=X{TAY*COS{THETA) /XMAX
12=102=1A
JUIZ4T92)= UlTA»T2)
8 V{IZsIsZ2)==YV(TA»Is2)
C FRO™ UERE TO STATEMENT NUMBER 2 THE PATTERNS IN THE PHI=PI/2 PLANE ARE
C CALCULATEDS,.
PHI=P1/2.
DO 11 TA=1426
THETA=ANGLE(TA)
CALL FAR &
X{IA)Y=CARS(EPHI)
. __XY(1A)Y=CABS(ETHETA)
11 Z{TA)=SQRTIX{TA)Y#%2+Y(TA)*#2)
CALL PICK(Xs269sXMAX)
CALL PICKI(Y9269YMAX)
CALL PICKI(Z32697ZMAX)
PRINT 5¢XMAX s YMAX sZMAX
_ DO 12 TA=1s26
ST=SIN{ANGLE{TA})
CT=COS{ANGLE(TA})
U(TAsT93)=X(TIAY#ST/XMAX
VIIAsI 93)=X{TIAY#CT/XMAX
UITAsTs4)=Y(TAYXST/YMAX
O V(TAsIs4)=Y{IA}*CT/YMAX . . - _
U{TAsI95)Y=Z(IA)*ST/ZMAX
VIIAsI95)=Z(TAY®XCT/ZMAX
12=52-1A
UIZeIe23)==U(TA»I93)
UlIZsTs4)==UlTAsIs4)
U(TZsle5)==UU(TA9I45) . _ el e
VIIZyI193)=VIIAsI«3)
CVIIZsIea)=VITA»Isd4)
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17 L1713 )=(TIAsTs%)

"D 13 TA=1,51
17=172=1A

N0 13 IR=3,5
THTZlaIT )= {TASTIT)
VEIZ7 sl IR ) ==V (TAsTsIN)

fonry
(3}

THT OATVAININAG PANTICH OF THE DROGRAM IS USTN =132 BLGTTIMG OMLYe
2 =X +DRK

TA1T7 IC=145

N0 14 I=1492094

VYY=11le=2 o33 (I+4)/L6-1)

nY 15 A=l 44

TI=1+1A=1
TF{17eENe2N) =D TN 15
KA=2475+24 3% (TA=1)

RO 18 ID=1,2

UINF1IN] 017 IC)=XX+IN=T,
TIT+171412IC)=YY
CUIDELT 417910y =X

Y LA+ IDSIZs I =VYHIN=T,

"3 15 18=1,171
CUIRGIZATC)I=U(IRI75 10 )+ XX

16 {17 12917 )=V {IRegIZ4ICY+YY
15 TouTIMes
14 ZoNTINMUE
17 ZONTIMUE
S0 17 IC=145
I1Ns9291C)=120
12 V{17629 IC2)=120%
MPS=107*x109
PO 21 I=145 .
CALL GRIDIVI(49Ne31249Na8]209NasNsNgMgmy=ygfig(9g293)
CALL ADLOTVIMPS el (1s2 9T sV {1s19i)929191l9s2,I5PP)
21 CANTINUE
4 FOPMAT(6ALIT)
3 TORMAT(1INE13.4)
5 FORMATL//7777)

CALL EXTFLM(?D)
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QURRINNTING  VYACZA(VAC,ZA)
THIS SURROUTINE CALCULATES THE OPEN CIRCUIT VOLTABE TRANSFER FUNCTION AND THE
ANTEMMA IMPEDFMCE FNR A LOOP ANTEMMAS

COWHON/A/INTG(I”Zé)yK(31)9BETA(30),R(1025)
COMUOM/R/ACB PV yGAMMAL y JEK)AOBOL sERRB
AOMMOM/C/FX9EY9EZ 3L s MyMsRsFRReERYNCALL
TYEE COMPLFEX INTGsKsRETAZJBKWINTSINTOZASVOC
TYPS REAL LMol
STMENCION STI257)
NDATA PI1/341415927/
IFINCALLSFOQWl} GO TO 1
MCALL=1
NTHETA=PI/512,
THFETA=",
ST(11="4
no o2 1=24257
THETA=THETA+DTHETA

2 STIIY=SINITHETA)

1 JBRK=CHMPLX({N4yRK)
.’\l():’,.v‘E-BK
IF(NQeLTeZ) NN=5
CALL BETAN(MQ4ERR)
ZA=BFTA(1l)
NO 2 I=29N"

2 ZA=ZA+8ETA(I)

J=0
INTD={({"Na9 s}
VOC=IMTO

nO 7 IR=1,MQ
NTHETA=PT/16,
DTHETAZ2=DTHETA
Al=12~=1
THETA=Cs
MM=1
MN=132
NO 4 I=1,6
IF(JeGEel) GO TO 6
J=1
DO 5 TA=MM,286sMN
JA=258-1A
INTGITAY=CMPLX{EY*ST{JA)~EX#ST(IA) 08 ) ¥CEXP{CMPLX (0 »=BK*(L*¥ST(JA)
1+M%STI(TAY)))
JBR=256+TA .
INTG(JB)=CMPLX(=EY%ST(TA)=EX*¥ST(JA) 90 ) *CEXP(CMPLX (00 9=BK* (=L *¥ST (]
1A)Y+M%2ST(JAYIY YD
JB=JB+256
INTG(JB)=CMPLX(EX®*ST(IAY=EYAST{JA) 90 ) *CEXP(CMPLX (00 s +BK*(LXST(JA)
1+M%ST(IAYY))
JB=JR+256
5 INTG(JBY=CMPLX(EX*ST(JA)Y+EYRST{IA) 9300 )*¥CEXP(CMPLX (04 9~BK*¥(L*¥ST(IA)
1-M%ST(JAYY Y)Y
6 INT=("4e904)
NO 8 TA=MM410244MN
INT=INT+INTG(IA)*COS(AI*THETA)
8 THETA=THETA+DTHETAZ2
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INT=IMT*#DTHETA+INTO*CMPLX(0e5904)
ER=CADBS{INT=INTO)/CABS(INT)
INTO=INT

IF(ERLTeFRR) GO TO 9
NTHETA2=NTUFETA

NDTHETA=CJ5*¥DTHETA

MM=14+2%%(5=1)

MN=2%%(6=1)

THETA=NTHETA

VOC=VOC+BETA( IR} *INT

CONTTHUF

ZA=(lesPe)/ZA
VOC=8+ZA*VOCHCEXP (CMPLX(Ne 9=2K%#SQRT (1 e—N*N)})
ZA=ZAXCMPLX (0esPIX*PI*BK#1204}
RETURN

END
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SUBROUTINE BETAM(MyFRR)
I5 SUBROUTINE CALCULATES THE FQURIER COEFFICIENTS FOR THE TRANSMITTING
RREMT DISTRIRBUTION ON A LOOP WHEN DRIVEN BY THE VOLTAGE V=CEXP{(+JWT}e

ETA(I)sI=19290es9Ms IS RETURNED THROUGH COMMON/A/

COMMON/A/EL1023)2X(31)38ETA(30)sR11N25)
COMMON/R/AOR s BK yGAMMAYL 9 JKR 9yAQBAOL »ERRA
TYPE COMPLEX JKZ9E»39SMNsKBFETA

NATA P1/241415627/

CALL RRI(1,322)

M1=M+1

=4
S=ry5HHE(E(11+E(1N25) #COS(AA#P L))
PO 2 J=3351724422
SN=SN+E(J)#COS(X%AA)

2 X=X+H
S=SN*¥H +§
DO 3 J=145

MM=142%% (5=}
'1!\]:2*-}% (5= )
IF(JeLTeL) GO 7O &
L=L+1
CALL RR({MMsMN)
4 H2=H
H=0.5*H
X=H -
SN=0, -
NO 5 JJ=MMg1N24 ¢MN
SN=SN+E(JJ)*¥COS{X*AA)
5 X=X+H2
SN=SN¥H+S#0,45
IF({CABS{SN}eEQeQs) GO TO 6
C=CARS{({SN=S)/SN)
GO TO 7
C=CABS({SN=3}
IF({CsLTeERR)Y GO TO 8
S=5N-
IF({CeGTsERRR}Y ERRR=C
K(1)=5N/PI
CONTINUE
BETA(l)=1e/KI(2)
NO 10 I=22M
_L=1=-1
0 BETA(I)=4e/ (K (I+1)+K(L)=2a*(L/BK)*%2%K(T))
RETURN
END

W~ o
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SURRAOUTINF RR(Mytt)
C THIS SUBROUTINE IS CALLFED FROM SUBROUTINE BETAN ONLY. R(IVeI=19250e04910259 IS
C RETURNED THROUGH COMMON/A/

COMMON/A/E(1025) oK (31)sRETA(30)sR(11025)
COMMON/R/AOB 8K s GAMMAL s JXR 3 ADROL s FRPR
TYPE COMPLEX JUKBsEsKsRFTA
IF(AQRSNESAOROL) GO TO 1

4 DO 2 I=Me10254N

2 E(IV=TEXP(=JKB#R(I))/R(I)
RETURN

1 NDX=341415927/1024
X=nNX.
S4=",
S2="4
NO ? 1=249172442
CX=rnS(X)
R{I}j=SORT(AOR+2¢%(1e=CX))
S4=54+CX/R (1)
X=X+"X
CX=C0S{X)
RIT+1)=SQRT(AOB+2s%*(1e¢~CX})
S2=""+CX/R(I1+1)

3 X=X+nNX
R{1Y=SQRT(ACB)
R(17"5)=SQRT(AOB+44)
GAMM.I1=(1e/R(1)=1/R(1025)+4¢¥#S4+24%S2)#¥DX/3
GAMMAL=1,./GAMMAL '

AOP~"_=A0R
GO ™) 4
FEND
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SURRQUTINE FAR F .
THIS SURROUTINE COMPUTES THE FAR FIELD COMPONENTS OF THE ELECTRIC FIELD FROM A
LOOP WHICH IS DRIVEN 8Y THE VOLTAGE V=CEXP(+JWT). THE COMPONENTS ARE IN THE
THETA AND PHI DIRECTIONS, THE LOOP IS IN THE X=Y PLANE AT 2=0. ETHETA AND
FPHI ARE RETURNED THROQUGH COMMON/C/e
COMMON/A/SE(S51319CE(513)sK(31)sBETA(30)sR(1025}
COMMON/B/AOB 9 BRK 9 GAMMATL 9 JKB9yAOBOL sERRB
COMMON/C/THETAPHI sCONIMHIERR $ETHETASEPHI » AOBO9sBKOERROR
TYPE COMPLEX JKBsSESCESETHETASEPHIWSTHIESETOIEPOIETHET 9EPHIK 9BETA
NATA P1/341415927/
IF(AOBeEQeAOBOANDWBK 4EQ+BKXO) GO TO 14
AOBRO=AOR
BKO=BK
CALL RETAM(MsFRR)
14 ST=SIN{THFTA)*JKR
ANGLE=PHI+P1
DA=P1/16.
DO 1 I=19513416
CA=COS({ANGLE)
F=CEXP (ST#*CA)
CE(IY=CA*E
SE(T)=E*SIN(AMGLE)
1 ANGLE=ANGLF=DA
L=1
ETHETA=0,
FPHI="
NO 2 I=1lM
AA=1=-1
ETHET=0s
EPH =04
DA=P1/16,
ANGLE==PI+NA
CA=COS(PI*AA)
ETO=0+5%DA*(SE{1)+SEt513) ) *¥CA
EPO=0Qe5%*DA*(CE(1)}+CE(513))*CA } L
NO 3 J=17+512,16
CA=COS (ANGLE*AA)
ETHET =ETHET+SE(J)*CA
EPH =EPH +CE(J)*CA
3 ANGLE=ANGLE+DA
ETO=ETO+ETHET *DA
FPO=EPQO+EPH *DA
DO 4 J=1s4
MM=142%%(4=J)
MN=2%% (5=
DA2=DA
DA=045%DA _
ETHET =04
EPH =04
IF{JeLTeL) GO TO 5
L=L+1
ANGLE=PHI+PI-=DA
_ DO 6 _JI=MMy512¢MN . . . S
CA=COS(ANGLE)
E=CEXP (ST*CA) . . .

NnNAaNN
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10
11

CE(JJ)=E#CA
SE{JJ)=E*SIMN(ANGLE)
ANGLF=ANGLF-DA2
ANGLF==PI1+MA

NO 7 JJ=MY14512¢MN
CA=COS(ANGLE*AA)

FTHET =ETHET +SE(JJI*CA
EPH =FPH +CF(JJ)*CA
ANGLE=ANGLE+DA2

FTHET =FTHET*DA+FETO#0,45
FPH =FEPH#*DA+EPO#*04¢5
STM=CABS(=THET)
TM=CABS(EPH )
IF{ETMaGT4EPM) GO TO 8
FTM=CABS(FPH —-EPO)

GO TO 9

SPM=FTM

ETM=CABS(ETHET «~ETO)
IF(EPMsENeNs) GO TO 10
EPM=ETM/EPM

GO TO 11

EPM=ETM

IF(EPMsLTeERR) GO TO 12
ETO=ETHET

FPO=EPH

IF(EPMsGT 4 FRRORY) ERROR=EPH
ETHETA=FTHETA+ETHET#RFETA(I)

FPHI=FPHI+EPH*RETA(T)

ETHETA=ETHETA*¥COS(THETA)*#CON

EPHI=ERHI*CON
RETURN
END
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SUBROUTINE SICOINTI(LSUINsWeF1eF29F1COsF1SIsF2C0O9F2ST)

INTEGRATION OF FL(X)*COS(WX)s FLIX)®SINIWX)s F2(X)*#COS(WX)y AND

F2UX)y®SIN(WX) s WHERE (LsU) IS THE RANGE OF INTEGRATION»
AND N IS THE NUMBER OF MESH INTERVALS TAKENs THEREFORE)»
IT IS REQUIRED THAT THE FUNCTION ARRAYS Fls AND F2

EACH HAVE N+1 POINTSe N MUST BE AN EVEN INTEGERe

W MAY BE ZERO OR A POSITIVE OR NEGATIVE REAL NUMBER,

THE FUNCTION ARRAYS Fls AND F2 AND THE COMPUTED '
INTEGRALS F1COs F1S519 F2C0O9 F2S1 ARE REAL VARIABLES,
METHOD=-~THE FUNCTIONAL VALUES OF THE F-=ARRAYS ARE FITTED
8Y SUCCESSIVE MOVING ARC PARABOLASy AND THE RESULTING
POLYNOMIAL*SINUSOIDAL EXPRESSIONS ARE EVALUATED IN CLOSE FORM,
BY COMPUTING BASIC COEFFICIENTS DURING THE INITIAL PHASE THESE
CALCULATIOMS REDUCE TO SUMMATIONS WITH CONCURRENT EVALUATION
OF TRIGONOMETPIC FACTORS BY RECURRENCE RELATIONS.

DOUBLE PRECISION ARITHMETIC 1S USED FOR CERTAIN
CALCULATIONS TO PREVENT LOSS OF SIGNIFICANCE,

ALPHONSE TACOLETTI

ORGe 94229 SANDIA CORPORATION

MARCHs 1966

DIMENSION F1(1)sF2(1)})

TYPE INTEGER M

TYPE REAL LsUsLAM29LAMI L AMOsMU2 MU0

TYPE NDOUBLE DL sPUsDHsDWsDWH » DWWHsDCWH s DSWH e DDEL 1
1DCWX aDSWX s DC2WHsDS2WH D1 sD29D3 9D 4

TYPE DOUBLE DHOV3sF1SUM1sF1SUM2Z3F2SUMY1sF2SUM29CleS19C2952
IF(N)1100,411019102N0 :
IF(N=2%{N/2)Y)11005104041100

C1=0.D_

S1=0eD

C2=NeD

S52=04D

NMI1=N-1

DL=L

bu=uy __ _

DH={NU~-DL) /N .

IF(DH}108MN,1900,41080

IF{W)12004200091200

PRINT 1110sLsUsNsW

FORMAT(38HOERROR DETECTED IN SUBROUTINE SICOINTe
137H THE ARGUMENTS Ls Us N» AND W ARE —=/
T21Xs2FE2041091163E20410)

sTOP

DW=W

DWH=DH*DW

DWWH=DWH*DW

___DCWH=DCOS(DWH) _ e

T DSWH=DSIN(DWH)

N1=DSWH/DWH

DDEL1=(2eN/DWWH) *(DCWH=D1)

LAM1=~24D*DDEL1

LAM2=DDEL1+DSWH/DW

_LAMO=LAM2. . o e o
“MU2=(D1=DCWH) /DW

__MU0=-My2 R
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D2=DW* (DL+DH)
DCWX=DCOS(N2)
DSWX=DSIN(D2)
D3=2 4 D*DWH
NC2WH=DCOS(N3)
NS2WH=DSIN(D3)

1500 DO 1800 I=1sNMI1,2
CWX=DCWX
SWX=NSWX

1600 F11=F1(1)
F1IP1=F1(I+1)
F1IP2=F1(1+2)
R1=LAM2*F1IP2+LAM1*F1IP1+LAMO*F11
R2=MU2%F11P2+MUO*F11
C1=C1+(R1*CWX=R2*SWX)
S1=51+(R1*SWX+R2%CWX)

1700 F21=F2(1)
F2IP1=F2(1+1)
F21P2=F2(1+2)
R3=LAM2#F2IP2+LAMI%F2IP1+LAMOXF21
R4=MU2*F2IP2+MUO*F21
C2=C2+(RIXCWX=R4#SWX)
S2=252+(R3*SWX+R4%CWX )
D4=DCWX*DC2WH=DSWX*#DS2VH
DSWX=DSWX*DC2WH+DCWX*DS2WH
DCWX=D4

1800 CONTINUE

1900 £1¢0=C1
F151=51
F2€0=C2
F251=52
PETURN

2000 NHOV3=DH/34D
F1SUM1=0,D
F18UM2=04D
F2SUM1=0,4D
F25UM2=0,0

2100 DO 2200 I=24Ns2
F1SUM1=F1SUM1+F1 (1)
F1SUM2=F1SUM2+F1(1+1)
F2SUM1=F2SUM1+F2 (1)
F2SUM2=F2SUM2+F2(1+1)

2200 CONTINUE

2300 C1=DHOV3%(F1(1)+(4eD*F1SUM1+(24D*F1SUM2=F1(N+1))))
C2=DHOV3*#(F2{1)+(4eD*F2SUM1+(2¢D*¥F2SUM2=F2 (N+11}))
GO TO 1900

3000 RETURN

1101 F1CO=F1SI=F2CO0=F251=0,
FETURN
END



FUNCTION F(WsI)

C THIS SUBRFUNCTION IS AM EXAMPLE OF THE FOURIER TRANSFORM OF THE TRANSIENT DRIVE

C VOLTAGF,
COMPLEX E
DATA A/143333333E=9/
GO TO (19291
1 S=(1e9Ne)/CMPLX(10st)
RETURN

2 E=(149Ne)/(CMPLX(LasW)*CMPLX(1osWHA)%%2)

RETURN
END

FUNCTION ZL{(WsI)
C THIS FUNCTION SUBPROGRAM IS AN EXAMPLE

COMPLEX ZL
GO TO (192939435965 T798) 1
1 ZL=CMPLX(1¢E50404)
RETURN
2 ZL=CMPLX(50004904)
RETURN
3 ZL=CMPLX(10N04900)
RETURN
4 ZL=CMPLX( 5004504}
T RETUPN
5 ZL=CMPLX( 250490}
RETURN
6 ZL=CMPLX( 504404}
RETURN
7 ZL=CMPLX! lasDe)
RETURN
8 ZL=CMPLX!{ 0e5504)
RETURN
END

SUBROUTINE PIC(FsNsFMAXsFMIN)
DIMENSION F{1)
FMAX=F (1)
FMIN=F(1)

DO 1I=2sN .
IF(F(1)eGTaFMAX)
CIFLF({I)eLTeFMIN)
1 CONTINUE

RETURN

END

FMAX=F (1)
FMIN=F(1)
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