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ABSTRACT

In computing the response of a buried insulated conductor
to an incident broad-band electromagnetic pulse, knowledge of
the propagation constants for the buried conductor is required
over the frequency range 10-2 Hz < f < 108 Hz. If the buried
conductor is near the earth's surface, then the asymmetry in-
troduced by the air-earth interface may be important in deter-
mining these propagation constants. The propagation constants
in the absence of this interface can be found by straight-
forward methods. The present study presents a method for com-

puting the propagation constants in the presence of this inter
face. Because of the frequency range of interest, the theory
is developed without any approximations concerning the values

of the electrical parameters of the media. The electric and
magnetic fields in the neighborhood of the conductor are
represented by two components: the primary (fundamental Trans-
verse Magnetic mode) fields generated by the driving current

and the secondary fields which arise from reflections of the
primary fields from the air-earth interface. The reflected
azimuthal magnetic field is found to be very small while the
reflected longitudinal electric field is shown to be a signifi-
cant part of the total field at the conductor surface. For

two sets of soil parameters, the propagation constant is deter-
mined as a function of frequency for burial depths of 1lm, 1lOm,
100m, and 1000m. Compared to the results for an insulated con-
ductor buried in an infinite medium, the imaginary part of the
propagation constant is shown to increase near some character-
istic frequency by as much as 35%, and the real part to decrease
by as much as 10%. Both the size of the'change in the real

and imaginary parts of the propagation constant and the frequency
at which these changes take place are reduced with increased
burial depth. |
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CHAPTER 1

INTRODUCTION

The analysis of buried conductors has most often been
performed by neglecting the presence of the air-earth inter-
face and treating a line source immersed in an infinite
homogeneous environmentl. While a complete solution to the
actual problem is impossible (due to irregularities in the
earth’s surface and its lack of electrical homogeneity) the
solution to the problem where the actual earth is replaced
by a plane homogeneous semi-infinite solid is of considerable
practical and theoretical interest. It is this problem that
is considered here in detail,

The problem of a line source of alternating current sit-
uated near the interface separating homogeneous air from
homogeneous earth has been studied by several authorsz_4.
These investigators'derived expressions for the fields and
propagation constants that were valid only at low frequencies
since displacement currents were neglected. There are how-
ever cases of great importance where the frequency range is
high enough that displacement currents are dominant and cannot
be neglected. Perhaps the most thorough analysis has been
performed by Waits, who treated a very simple driving field
in detail.

In this paper a detailed study of the buried insulated
conductor is presented. No specific reference is made to the
actual characteristics of any medium, and the electrical
properties of no medium are restricted in any sense, Specific
attention is given to the determination of the axial propagation
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constant over a wide frequency range (10 ° Hz < f < 10

as a function of the proximity of the interface.

Hz)

In Chapter 2 the solution to the buried insulated con-
ductor (neglecting the air-earth interface) is summarized.
Chapter 3 contains the detailed analysis of the effects of
the air-earth interface, and Chapter 4 is devoted to presen-
tation of numerical examples and discussion of results.,




CHAPTER 2

THE BURIED INSULATED CONDUCTOR
(NEGLECTING THE AIR-EARTH INTERFACE)

The present section is a summary of the determination of
the propagation constant for an infinitely long insulated
wire buried in an infinite earth. Consider a cable of circu-
lar cross section imbedded in a conducting medium. The
origin of coordinates is located at the center of the wire
as shown in Figure 2-1, The center oconductor is denoted medium
(1) and has an outer radius a; the insulating layer, medium

(2), has an outer radius b; and the earth, medium (3), extends
to infinity.

b
MEDIUM (1)
MEDIUM (2)
MEDIUM (3)
FIGURE 2-1

GEOMETRY OF INSULATED CABLE
BURIED IN AN INFINITE MEDIUM
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The determination of the propagation constant for this
geometry has been discussed in detail by Ware, et al1 who
showed that the only mode of excitation of the cable that has
small attenuation is the angularly symmetric Transverse

Magnetic mode (the fundamental TM mode),

The remaining analysis is based upon a fundamental TM
mode of excitation of the cable. The non-vanishing electric
and magnetic fields in the jth medium can be written in terms

of a single component Hertz vector6

() _ .2 ()
E_ = xJ. I, (2-1)
' i) (3)
) A . JE
) _ z _ ih Z
E. = ih T = 5 5T (2-2)
A<
J
. ik2  ap Q3 ix2 3E(3)
()Y _ 73 z J z -
Hg My ar ukz ar (2-3)
ol Al
where
k2 = pow(E.w + ic),) (2-4)
J J J J
and
2 _ .2 .2 _
Aj = kj h (2=5)

Standard notation is used: By Ej, and o; are the permeability,
permittivity and conductivity of the jth medium; and h is the
propagation constant to be determined as a function of frequency.

Cylindrical symmetry allows the Hertz vectors to be
expressed in terms of Bessel functions of order zero:
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1D < a sy et ©@ircn @
Iléz) = [BJ (1) + C No(x..zr)]eihz'i“’t (a < r < D) (2-7)
Ilés) = DHél)O\sr)eihz-i“’t (b= r=<=) (2-8)

The Hankel function of the first kind has been chosen to insure

the fields behave like outgoing waves as r - =, (We choose Re)x>0).

The constant A, appearing in Equation (2-6) is related to
the total current in the wire. The current density in the
conductor is given by Ohm's Law, J, = clEél), and therefore

the total current is

LR VIPITr TS TR ~ ¢ 3 ) A TR T O T P DRI T e oA PPN ey hysirer § Ve e -~

a 27
_ (1)
I = J’ J- clEz r dr de (2~-9) :
o o '
a
= 2ﬂcl A elhz_lwt Jo(llr) r dr (2-10)
o
ihz-iwt
I = ZwaolklAJl(Ala) e . (2-11)

The total current is sinusoidal with amplitude Io,

I = IO eihz-—iwt (2_12)

hence

I

A = o . (2-13)
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The electric and magnetic fields in the centér conductor are

written

1)
Ez =
(1)
Er =

(L) _
Hy

The fields

(2

. &
(2)

EI‘

H{2)

Mlo . ToMT)  anaeige
Eﬂacl JIleaS

-ihI, I3 yr) Jihz~iwt
2ra0, - J,0qa)
~ik21 J. (A1)

15, 1Ay 1hz-iwt

2mao L, w * S CEY e

in the insulator are

= A2[B J,(\pr) + C N (1,r)] elhZ-iut

- -ihlsz_Jl(sz) + C Nl(xzr)]e‘““z"i“’t

-1k§k2'
= o [B 30,0+ € MO, e

ihz-iwt

Finally, the fields in the earth are

(3)

EZ

£(3)
r

(3)
Hg

- 22 p D) () eihm-iwt

2 .
=-iko\ :
- 33 (1) ihz-it
W D H1 (x3r) e .

(2~-14)

(2-15)

(2-16)

(2-17)

(2-18)

(2-19)

(2-20)

(2-21)

(2-22)
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The determination of the remaining unknowns (B, C, D, and h)

is made possible, in the usual fashion, by requiring the tan-
gential components of the electric and magnetic fields to be
continuous across the surfaces separating different materials.
Application of these boundary conditions at r = a yields

xlIo Jo(lla)

.2
Zrag, I (i ga) Ay [B Jo(Ag2) + C N (A,2)] (2-23)
kf1, K2),
2mag iy - o (B J;(Apa) + C N;(Ap3)] (2-24)

Application of the boundary conditions at r = b yields

AS[B I (Agb) + € N (01 = A2 D (D (1 0) (2-25)

ko A
3 "3 (D
—E;_— D H1 (Xab). (2-26)

ﬁ—zz-EB 31 (gb) + C Nj(Agh)]

Equations (2-23) - (2-26) form a set of four simultaneous
equations which may be solved for the four unknowns B, C, D, and
h. However, all that is desired is the determination of the
propagation constant h, so that Equation (2-25) may be divided
by Equation (2-26) and the coefficient D eliminated at once.
Similarly division of Equation (2-23) by Equation (2-24) reduces
the coefficients B and C to their unknown ratio 8 = B/C. The
simplest form of the result is the following two simultaneous
equations in the two unknowns 8 and h.

iXq Jo(x;2) _ Hodg [ B I,(Ag2)+ N ,(Ag2)

. = (2-27)
k% J;1 (A ;2) kg B J;(x52)+ N;(Ay2) ]

———
A e i A e

.o s

B
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1
iohg [B Io(Agb)+ Nonb)] gy V0 228

2 B J, (A, D)+ N, (A, D) 2 " (M
k, 142 142 k3 Hy ™" (Agb)

It is worth repeating that Equatioms (2-27) and (2-28)

are exact; no reference has been made to the specific proper-
ties of any medium, and no medium has been restricted in any
manner,

A computer code7

has been written to solve Equations
(2-27) and (2~28) for the propagation constant h in the fre-
quency range 0 < f < 103 Hz., These results are shown in
Figure 2-2, For some cases of practical interest, approximate
analytical solutions for h can be obtained., Appendix A con-

4

tains a low frequency (f g 10~ Hz) solution for the case where

medium (2) is a good insulator.
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THE PROPAGATION CONSTANT FOR A BURIED INSULATED
CONDUCTOR (NEGLECTING THE AIR EARTH INTERFACE)

THE SOLID LINES ARE THE EXACT SOLUTION TO EQUATIONS
(2—27) AND (2—28), WHILE THE DASHED CURVES ARE THE
LOW FREQUENCY APPROXMATE SOLUTION DISCUSSED IN
APPENDIX A. GEOMETRICAL AND ELECTRICAL PARAMETERS
ARE THOSE FROM TABLE 1 (in Chapter 4).

t L
10 I

107

102~

107

1074

10~°

1077}
—— EXACT SOLUTION FROM EQUATIONS (2—27)—(2—28)

107° —— LOW FREQUENCY APPROXIMATE SOLUTION FROM -
EQUATION (A—6)
10~* | | ] | | | | | | | |
107 1072 10°' 10° 10! 102  10° 10* 10° 10° 107  10°
FREQUENCY (HZ)

-
o
°

FIGURE 2—2

PROPAGATION CONSTANT FOR THE BURIED INSULATED CONDUCTOR
(NEGLECTING REFLECTIONS FROM AIR—-EARTH INTERFACE)
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CHAPTER 3

THE EFFECT OF THE AIR-EARTH INTERFACE

The insulated conductor of the previous section is now
placed at its proper position, a distance d below and parallel
to a horizontal interface separating medium (3) and medium (4).
the origin of coordinates is at the cable and the interface is
defined as the plane y = d. The analysis is performed without
identification of the physical characteristics of any of the

four media.

The buried cable is of course a source of traveling
electromagnetic waves. Consequently, the electric and magnetic
fields in the neighborhood of the cable have two contributions:
the primary fields of equations (2-20)-(2-22) and the secondary
fields which arise from réflections from the air-ground inter-
face. The resultant fields can be represented as the sum of

these two components

ETOTAL - E(3) + EREFLECTED (3-1)

ﬁTOTAL - ﬁ(3) + ﬁREFLECTED (3-2)

It is these total fields to which the boundary conditions
should be applied at the surface of the cable,

In general, the reflected fields do not have the cylin-
drical symmetry characteristic of the primary fields, however

they can be decomposed into a symmetric part and a non-symmetric

part. It is obvious that the non-symmetric part of the re-

flected fields can only excite non-symmetric modes in the cable
which damp out quickly, Therefore it is only the cylindrically
symmetric part of the reflected fields which contribute to the

RO
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fundamental TM excitation of the cable. For this part of

the reflected fields, the boundary conditions at r = b can

be satisfied without altering the form of the fields on the
cable interior. Also observe that according to Equations (2-1)-

(2-3), knowledge of E_ alone is sufficient to describe all the
Z REFLECTED

fundamental TM fields, so that only Ez need be evalu-

ated,.

As with any solution to the wave equation, the electric
field of equations (2-1) and (2-2) can be constructed from
plane wave solutions by the Fourier integral:

B(x,y,2) = B(@) =I 2(®) oiE°R g%, (3-3)

The Fourier amplitudes are obtained by inverting this expression
to yield

B(k) - —-1—3-‘[ B(@) e KR 4R, (3-4)
(27) .

Thus, the scattering of the primary fields is reduced in the
usual manner to the scattering of plane waves.

The scattering of a single plane wave is depicted in
Figure 3-1 where Eo’ ER’ and kj are the wave vectors for the
incident, reflected and transmitted waves respectively, and
fi is a unit vector normal to the interface.
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For a source located at the origin, the fields are written

B -

o

O.R

wl

i
Ee
o

-t

ik,-R + i &
Ep e R R

ik, .®R + i @T

and of course,

= (2
%yl

The problem is to determine the amplitudes E

- (2 .2 .
Bl ° = k5 = paw(€gw + ioy)

2 ,
ky = nyw (€4w + 104)

R

and ET

in

(3-5)
(3-6)

(3-7)

(3-8)

(3-9)

terms of Eo with the aid of boundary conditions at the sur-

face y=d.

Apa o mipe b e gl ey

T T
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A necessary condition for the boundary conditions to
be fulfilled is that the phases of all three waves be iden-

tical at the interface.

= Kk X + kR d + kR zZ + @R (3-10)
z

Since these relations must be maintained for all values of

x and z, k_ and kz are invariants of the scattering,

k, = k, = k (3-11)

k, = kp = kg (3-12)
z Z Z

By virtue of equations (3-8) and (3-9), and Figure 3-1, it is
apparent that

k = <k (3-13)

y
2 .2 2
k —'\/ k4—k3+koy (3-14)

The relations (3-11) - (3-14) are readily identified as
Snell's Laws, which allow the phase factors to be written

explicitly as

®p = 2 k_ d (3-15)
y

&p = (k, - kg )d. (3-16)
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The field amplitudes are

E

o Eoexp{i(kox X + koy vy + koz z)} (3-17)

= B exp{i(k. x + k_ (2d-y) + k_ 2) (3-18)
ER R ox oy o, }

ﬁT = ﬁTexp{i(ko X + kT (y-d) + ko Z + ko a)}. (3-19) iy
x 4 z y

The incident plane wave ﬁo is in the general case, neither ,
perpendicular nor parallel to the plane of incidence (the plane ;'

defined by ﬁ and Eo), It is therefore convenient to define a ;

new coordinate system whose unit vectors are given relative 1“;
to the wave vector Ej for each wave E, (j = 0, R, T): ﬁV?
~ ~ ~ i
k X + k. v+ k z
R k. o J o L
|kj' J 1
A xR k. X - k z .
ald) o 3 . z = (3-21)
- |n x k_| 2 2
J '\/ko + k
X z
~(J), A 2 2 A o
x Kk, kK k. x=(kK_ +k_Dy+ k. k_ =z
(s 41 J o_ ] o o Jj, o
~ J —
n - x kj! kj kox + koz

ﬁi?) is normal to the plane of incidence,_ﬁﬁJ) is in the plane
of incidence, and both are transverse to ij, as shown in Figure

3-2.




MEDIUM (@)
'MEDIUM (3)

ko

FIGURE 3-2

THE RELATIVE ORIENTATION OF THE BASIS VECTORS
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Since ﬁj is always transverse to ij’ it can be represented

by components along ni?) and ﬁﬁj)

_ a(0) a (0) -
E = qunl + Eoun" . (3-23)

And since ﬁo is known, its polarization components can be found
by

- 5(0)

Eo, = E,- 0 . (3-24)
- a (0)

E, = i"‘o' o (3-25)

These polarization components transform according to the standard

Fresnel coefficients fR ’ fR ’ fT ’ fT (Appendix B), so that
L I 1 1]
T.-(, E )a® L. 5 ) a® (3-26)
R R (o] 4 R (o]
L L T I
%.=(t. E ) aM L (¢ £ ) aD (3-27)
T T %o L T “o i
4 4 i [
where
2 2
k4“31‘?X k3“41‘Ty
T P k2. k (3-28)
il aH3%o 3haTT,

s = 'y y (3-29)
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2

y |

Iy = \kxn, )° 2 ) (3-30) i

!

¥ 374 k4“’3k0 + k3}.L4kT .
y y !

2.,k -

e o _ 9% : (3-31) .
T, wgko +ugSp B

y y

The reflected field is expressed in cartesian coordinates :
by virtue of definitions (3-21) and (3-22), e.g., H

-k
- GO N °x o
L -\/ko + k) ! |
x z - 1
Iz
X
- k k "y
o] o j
v (B ﬁ'(°)) y _Z , (3-32)
I ! k‘\/kz K2
-3 o.t %o
X Z

The primary field of Equation (2-20) may be transformed
into cartesian coordinates by the integral8

o0 . 2 .
(1) _ 1 i iy J/A“- 2
HW (r) = = j lbx + 1y 3 de

m
—co XZ-FZ

Cd

, (3-33)

where the variable of integration is real even though )\ may be
complex, With this representation for the Hankel function,
the primary electric field is

F igx+ipAi-¢2
e

e (x,y,2) = -,? A3 gthz-iwt f
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The Fourier coefficient for EZ can be written down by compar-
ison of Equations (3-3) and (3-34) (identify ¢ with ko )

X
E. (k) =222 22— [k, \A2-¢2) 5(x, -n (3-35)
o o 7 °3 o 3 o]
zZ XZ_ 2 y .4
V 3~€
The x and y- components of io can be derived from Ej by
means of the Hertz vector, z
3) 3
83 (x,y,2) = in iﬂé_i . B3 (x,y,2) = in Eié-i (3-38)
x 'Y 3% ’ y ' Y Y e

However these derivatives may be taken under the Fourier
integral to obtain

T - _ &h T -
Eo (ko) 5 Eo (ko) (3=37)
X A3 z
k° h
z - ¥y ___ T -
E, (Eo) > E, (k) (3-38)
y Xs z
Thus
k k k k
L d —-—p o oz ~ o oz ~ ~
E(k)=E (k){-2_ 2 x - L 2y, 2z}, (3-39)
oo oZ o 12 A2
3 3
whose polarization components are
, 2
ko k3
E, = - E| X (3-40)
) z AZWVQZ 2
3 ot %o
X zZ
and
k3 ko ko
E =E Y
2 °z\ ,2 2
Xs kO + k
X

l--——‘_w L T ST I R T S IR I
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The complete, reflected z-component electric field is then

found to be

-~}

. 2,2
L ilgx+(2d-y)J/A5-€
Eg(x,y,z) _ % oihz-iwt je [ 3 ] kgng

-0

R,

- hz(Ag_gz)fR _dg

(3-42)
I (£2+h2) xg_ez

Of this result for the reflected field, only the cylindrically

symmetric portion is desired.

Any plane wave can be expanded into cylindrical waves
according to
itk x + k y) = .
x 7o) @® J_QOr) ™9 (3-43)

= =0

e

e 2 2
where A = kx + ky

Thus the cylindrically symmetric portion of the reflected
field is formed entirely from the n=0 term in the expansion,

and 8 is fhe angle between X and T.

ELTRECTED (r 2) = p oMBZ-10E 5\ r) F(ky,k,, b, 4),  (3-44)

where

124 f2 .2 ,2
- 12 k3-h -£

= 1 2,2
F(kz,k,,h,d) = FI e k3t “fp

-0

- n?ad-n?-¢?) e, dé

| 2+ /kg_hz_gz
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with
2 .2 .2 2 2 2
£ “‘4.\/ € “3-\/k4-h - (3-46)
R, -
N 2 2 .2 2 2 .2
LL4‘\/"3"h €7 g\ kymhg
and

2 53 TN -
Lok '\/ %2 _ k2-hZ-¢
£ = ¢ 43 (3-47)

2 .2 2 2,2
~h"-£% + 1-1-4 BV ~h" - !

Consequently by virtue of relation (2-3), the cylindrically

QJN

=
wN

symmetric reflected magnetic field is

s 2 ¢

Dik . .

REFLECTED _ 3 ihz-ipt ]
(3-48)

The addition of the reflected fields to the primary fields

provides a new set of fields which must satisfy boundary con-
ditions on the cable's surface., The simultaneous equations
are handled in exactly the same manner as in the previous sec-
tion, resulting in the following equations to be solved for
the propagation constant.

pidy T 002) wgd, [B Io,(Ag8) + No(xza)] (2-27
K> J1A2) ko |8 J10g) + N Qp2)
Horg [ B JoOgP) + N (Agb)
ngrg [ESD gb)+d (Agh) - Flkg,k,,h, d)/x3
5 (1) (3-49)

The net effect of the air-earth interface is to introduce a

modification to the right hand side of Equation (2-28),




CHAPTER 4

NUMERICAL EXAMPLES

S LA 145 b AT A Mt T Ao B N & gt mA

Numerical values of the electrical and geometrical
parameters of the buried insulated cable are contained in
Table 1. Unless otherwise specified all the calculations

of the present chapter are based on these values.

The integral appearing in Equation (3-45) can, under
certain approximations, be treated analytica11y3, however
no attempt has been made to do so., A computer subprogram has
been written to evaluate this integral numerically using a
simple Simpson's Rule technique. The value of the integral
F was then used in the simultaneous solution of Equations

(2-27) and (3-49) for h, Before presenting these propagation

constants, insight into the problem is developed through some

intermediate results.

Figure 4-1 shows the reflection coefficient at normal
2 Hz < £ < 108 Hz.

RLE fRa. The frequency
Hz is shown to be most interesting

incidence for the frequency range 10~
(Note that at normal incidence, f

range from ~ 104 Hz to ~ 107

since it is in this region that the soil makes the transition
from "good conductor®™ to '"good insulator.”" Figure 4-2 shows
the variation of the reflection coefficients as evaluated

at different values of ¢{ from the integration of Equation
(3-45) at the arbitrary frequency of 105 Hz. Similarly the

entire integrand of Equation (3-45) is shown as a function of

£ in Figure 4-3. These figures are presented without much
comment since they are included only to give the reader some
feeling for the numerical integration.

TR T N T A TR T R s TR
P i ;-ﬁﬁ&.f'\:“ﬁ??._ 5 Re _ﬁ??ﬂfé! ¥ ﬁ TTNR LN Ry A R T O ORI A A L R L Wt oo )
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TABLE 1
ELECTRICAL AND GEOMETRICAL PARAMETERS USED IN THE NUMERICAL EXAMPLES

MEDIUM CONDUCTIVITY PERMITTIVITY PERMEABILITY
(mho/m) (¢_= 8.854x10~12 (ny=4mx10=7
farad/m) henry/m)
conductor (copper) 5.8 x 107 Go Lo
Insulator 0 4 Eo o
Earth 1073 4 €

o Ho
Air 0 €o Lo

radius of central conductor, a

]

0.01794 m

outer radius of insulator, b 0.03588 m

(4)9-02-S82~-NY
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In the final analysis, any change in the propagation
constant must be the result of a change in the electromagnetic
fields near the cable (Ez and He). Figures 4-4 and 4-5 show'
the relative magnitude of the reflected fields (TM components
only) at the cable surface for a burial depth of 100 m. The

REFLECTED

reflected azimuthal magnetic field, H is never

- 8 ’
more than ~ 10 8 of the primary azimuthal magnetic field,
Hés), and could probably have been neglected throughout. On

the other hand, the reflected longitudinal electric field

g REFLECTED
z

near the cable. Physically, the electromagnetic environment

near the cable has been altered by the presence of the air-
earth interface through the large reflected longitudinal
electric field. Finally, the correction factor F/kg which
makes Equation (3-49) different from Equation (2-28) is plotted
as a function of frequency in Figure 4-6 (again at a burial
depth of 100 m).

makes up a significant portion of the total field

The propagation constant h has been determined from
Equations (2-27) and (3-49) for burial depths of 1 m, 10 m,
100 m, and 1000 m. These are presented in Figures 4-7 through
Figure 4-10 as the fractional change in h relative to h_, the
"infinite burial depth'" result of Chapter 2., The results will
be discussed shortly,.

Recently it has been determined by measurement that the
s0il parameters of Table 1 are less realistic than the fre-
quency dependent parameters:

6 -0.78
63 = 3x10 £ eo

=5 f2/3 mho/m for f < 10° Hz

8x10

3

3 mho/m for £ = 10" Hz .

5.3x10"
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As a comparison, Figure 4-11 shows the propagation constant
determined with these variable parameters., Figure 4-12

through Figure 4-15 show the fraction change in h as a function
of burial depth with o5 and €3 as given in Equation (4-1).

The form of the results with frequency dependent soil parameters
is essentially the same as the form of the results with the

soil parameters listed in Table 1, The two sets of parameters
give rise to differences in the details of the size of the
change in h and the frequencies .at which these changes occur,

The net effect of the air-earth interface on the propaga-
tion constant of a buried insulated conductor may be summarized

as:

a) The imaginary part of h is decreased by ~2% at
lower frequencies, but is dramatically increased
(by as much as ~35%) at some characteristic frequency.

b) The real part of h is increased at lower frequencies
by ~2%, followed by a decrease of as much as 10%.

c) At very low and very high frequencies, no variation

of h is observed,

d) Both the magnitude of the change in the real and
the imaginary parts of h, and the characteristic
frequency at which these changes take place are
reduced with increased burial depth.
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APPENDIX A

A LOW FREQUENCY APPROXIMATE SOLUTION
TO THE BURIED INSULATED CONDUCTOR

Under a variety of physical conditions, closed form,
approximate solutions to Equations (2-27) and (2-28) may be
obtained. These are permitted since the actual physical char-

acteristics of a particular material may allow either small
or large argument approximations to be made for some of the

Bessel functions,

The case of particular interest is when medium (2) is a
good insulator (02= 0), s;nce gor tgis cgse h is gxpected to
be close to k2’ so that X, = k2 - h™ < k2 = uzezw . If o
and €5 are the same order of magnitude as Ho and €os then
Az ~ fgc. Further since the cable dimensions are on the order
of 10 meter, it can be said that xzr is a small number even
for frequencies as high as f = 108 Hz, Consequently the fol-
lowing small argument expansions are permitted for all Bessel
functions representing electric and magnetic fields in the
insulator.

Jo(p) ~ 1

p<<1 2 2 (A-1)
No(p) =7 in (W- v = 1.78107
2 1

Using approximations (A-1l), Equation (2—27) is solved for B:
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2 2 hah 1K Io(X12)
B=g [*nGGa) - ks hEm (4-2)

Similarly, an independent solution for 8 is obtained from
Equation (2-28):

2 (1)
2 2 H3) 3Ky Hy " (A\3b)
2 KoAgkab H;™" (Agb)

Solutions (A-2) and (A-3) are equated, leaving a single
equation to be solved for h, namely:

2
en(—2—) Ly Ko Jo(A12)
n(~————) = .
Y A2 oA SkSa J1(02)
2 1 (A=)
en (—2 kg gky Hé )(lsb)
~ n -— .
~ ) ) @) .
Y A2 TR Hl (Agb)

Further since Ln(——%—;) - Ln(v X b) = {n(b/a), Equation (A-4)
2

upon rearrangement reduces to

(1)
ko bttt (b72) 1 2, T1a2) 2y 1\ (1 5b)
(A-5)

For low frequency h is very small compared with either kl
or k3, so that Al ~ kl’ and A3 ~ k3. Under these approximations
Equation (A-5) can be solved for the propagation constant

directly.

1 [ R

H(l)(k b)
IJ-244 n(b/a) : ]

kja ~ T (kKja) ~ Kb H(l)(k b)

(A-6)
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The propagation constant, h, was calculated from solu-
tion (A-6) for a representative cable configuration. As
shown in Figure 2-2, both the real and imaginary parts of h
are in excellent agreement with the exact solutions to
Equations (2-27) and (2-28) for the range of validity of the
approximations (f < 104 Hz).




APPENDIX B

FRESNEL COEFFICIENTS

The electric fields of Equations (3-5) - (3-7) and their
associated magnetic fields, found by applying Faraday's Law

H=-xl_ _TxB= — %x8&, (B-1)
1w Mt

must satisfy the following boundary conditions at the air-earth

interface:

1) The tangential electric field is continuous:

nx (EO + ER) =n x ET (B-2)

2) The tangential magnetic field is continuous:
nx (ﬁo + ﬁR) =nx HT

1 » - 1 -~ -

3) The normal magnetic induction is continuous @B = I o)
pg 0o« () + Bp) =p, 0. ﬁT

= 0. (B, x B+ Ep x =1 . (K, x B (B-4)

4) The free charge deposited on the interface is given by

~

n . (BO + BR - T) = p.
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|

Further the current flowing through the interface is governed f
by the continuity equation ‘

1 ‘
~ — i |
e @, +3p-Tp = - %% | w

;

Since the time enters only through the common factor

e_lwt, and by Ohm's Law J = oE, upon recognizing that D = €k
we have
2 ; E ) = 24.% 1
ugky - (Ej + BEp) = ugk, n - Eq (B-5)

|
There are two cases of polarization:
|

Case 1l: E normal to plane of incidence i
|

Equations (B-2) and (B-3) reduce to

EOJ_ + ERJ. = ETJ. (B-6) !

and
1 (E, k, - Ep k )= 1 Ep kq (B-7) :
Mg ~ 9 9 L % M y |

Equation (B-4) becomes identical to Equation (B-6) and
Equation (B-5) vanishes. Thus

g k°z = H3 er
E - B = £, E (B-8)
and
’ 2“4 ko
E = E = f E (B-9)
T, °, “4koy"‘“3f'ry T) o,
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Case 2: E in the plane of incidence:

Equations (B-2) and (B-3) reduce to

ko kT

- (E -E, )= —L E (B-10)
k3 "o Ry ks R,

and

k k
3 4

— (E + E, ) = — E (B-11)
kg o By he T,

Equation (B-4) vanishes and Equation (B-5) is identical with
Equation (B-11). Thus

2 2
kgugky = K3, k'ry
E = E = f E (B-12)
R o 2z 2 R o
I I k4u3koy+ k3l kTy i
and,.

2
K la 2k4“‘31‘0y , )
E = E ) - = f E B-13

T” 0” 3H4 kzu k +'k2 k T“ 0”

4-370 3k4 T
y y
The coefficients defined in Equations (B-8), (B-9), (B-12),
and (B-13) are the Fresnel coefficients appearing in standard

9 It is pointed out that there is a sign change in

texts,
Equation (B-12) due to the particular coordinate system adopted

(see Figure 3-2).




KN-785-70-6(R)

REFERENCES

1. Ware, W. E., et al, "EMP Induced Signals in Buried Linear
Antennas (U)," Kaman Nuclear Report KN-785-69-49(R),
15 April 1969, SECRET.

2. Carson, J. R., "Wave Propagation in Overhead Wires with
Ground Return," Bell Sys, Tech. J., Vol, 5, Oct. 1926,
p. 539.

3. Guy, A. W,, and Hasserjian, G.," Impedance Properties of
Large Subsurface Antenna Arrays," IEEE Transactions on

Antennas and Propagation, May 1963, p. 232,

4. Bannister, Peter R., "Electric and Magnetic Fieids Near
a Long Horizontal Line Source Above the Ground,” Radio
Science, Vol, 3 (New Series), p. 203; February 1¢68,

5. Wait, James R,, "The Fields of a Line Source of Turrent
Over a Stratified Conductor," Appl. Sci., Res., Sec. B,
Vol, 3, p. 279; 1953.

6. Stratton, J, A,, "Electromagnetic Theory,’" McGraw-Hill
Book Co., Inc., New York, N, Y., 360-61; 1941,

NI
e

7. Ware, W, E,, et al, op. cit., Appendix E, p. E-1.

8. Erdélyi (editor), Tables of Integral Transforms,
McGraw-Hill, 1,13(43), p. 56 (1954).

9. For example, J. A, Stratton, op. cit., pp. 493-494.




