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ABSTRACT

A theoretical-numerical solution technique is presented for the
treatment of the scattering from thin wire structures of arbitrary con-
figuration. The formulation of the scattering problem leads in general
to coupled integral eguations for the current distributions. It is found
that the arising integral equations are Fredholm integral equations of
the first kind which are traditionally difficult to solve. In general,
the number of equations is equal to the number of wires. The unknown
current distributions are obtained by using piece-wise constant representa-
tions which are forced to satisfy the integral equations over a set of
discrete points along with the appropriate boundary conditions. Thus, the
integral equations are reduced to a system of linear equations allowing the
problem to be solved by a high-speed digital computer.

General considerations are presented in the first part of this thesis.
Then a detailed analysis is made for two perpendicular intersecting thin
wires to determine the distributions of current induced-in the wires by a
plane-wave incident field. The wires are assumed sufficiently thin so
that the phase change of the incident plane-~wave across its diameter
may be neglected.
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CHAPTER I
INTRODUCTION

In the present day missile studies it is necessary to
know accurately the electromagnetic wave scattering charac-
teristics of finite-length cylinders. Also with the defense
of the country depending upon the radar detection of attack-
ing aircraft and missiles, more than ever before a know-
ledge of electromagnetic wave scattering from various shaped
objects is needed. To date the most fruitful theoretical
approaches to these scattering problems have been the so
called theoretical-numerical investigations that require
the use of a high speed digital computer. The theoretical-
numerical solution techniques are used in this thesis to
treat the scattering from thin wire structures of arbitrary
configuration,

In theoretical treatments of electrical circuits that
are large in terms of wavelength, ordinarily the current
distributions along the conductors comprising the circuit
are unknown, The objective of this thesis is to find these
distributions. The formulation of this type of boundary
value problem, based on Maxwell's equations, almost inevi-
tably leads to the integral equations which are

found to be the Fredholm integral equations of the first



kind. The unknown function is represented by using a piece-

wise constant representation which is forced to satisfy the

integral equations over a set of discrete points along with

the appropriate boundary conditions. Thus the integral

equations are reduced to a system of linear equations

allowing the problem to be solved by a high-speed digital

computer, !
The first part of this thssis discusses general con-

siderations. To illustrate the basic technicues, the scat- ‘

tering from an arbitrary single thin wire and from inter-

secting straight wires are treated. Then a debtailed

analysis is made later for two perpendicular intersecting

thin wires to determine the distributions of current

induced in the wires by a plane wave incident field, It is
assumed that all the wires are perfect conductors, and the
radil of the wires are small compared to their length and
to the wavelengths of the monochromatic 1lluminating
radiation.

Although the theoretical-numerical sclu-ilon technique
is quite simple, it may be used tc treat relunively sophis-
ticated problems. For example, it can be used to cbtain

; . . . 1 sk
the scattering from inhomogeneous cylinders, resistive

lClayborne D. Taylor, "Electromagnetic Scattering by
Thin Inhomogenecus Cylinders," Radio Science, vol. 2 (new
series)l, no, 7, 729~738 (July 1967).
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cylinders,2 arrays of cylinders- and all types of straight
wire antennasou Modern high-speed digital computers have
made possible by theoretical-numerical techniques the solu-
tion of many problems in electromagnetics that have tra-
ditionally been solvable only by experimental methods.

With electromagnetic wave scattering problems formulated in
terms of integral equations, the techniques described yield
answers with an accuracy and completeness unobtainable by

experimental methods in a small fraction of the time and at

much less cost than by the experimental approach.

27, H. Richmond, "Scattering by Imperfectly conduct-
ing Wires," IEEE Transactions on Antennas and Propagation,
AP-15, no. 6, 802-806 (November 1967].

3Ronald W. P. King, The Theory of Linear Antennas
(Cambridge, Mass.: Harvard University Press, 1956).

uClayborne D. Taylor, "Cylindrical Transmitting
Antenna: Tapered Resistivity and Multiple Impedence Load-
ings" to appear in March 1968 issue of IEEE Transactions
on Antennas and Propagation.




CHAPTER II
GENERAL CONSIDERATION

This chapter is concerned with the theoretical-
numerical technique for treating electromagnetic scattering
from any structure formed by thin wires. First the field
equations are discussed, and then the vector and scalar
potential of a perfectly conducting open-ended cylindrical
wire are determined. Finally the boundary conditions for
any abritrary configuration of straight wires are deline-
ated. To illustrate the basic theoretical-numerical solu-
tion techniques, the scattering from two kinds of struc-
tures is treated; these are arbitrary thin wires and inter-
secting wires. The resulting integral equations must be
solved by using a high speed digital computer. In principle,
the theoretical-numerical procedure may be used to treat

scattering from any arbitrary configuration of thin wires.

2.1 PField Equations.

A valid analytical determination of the scattering
from a thin wire must proceed from the four Maxwell field

equations (in MKS system):

x E = ——g—é‘ (la)




.

TxH =3+ 550 | (1b)

V-8B =0 | (1c)
and .

v-D =0 | (1d)
where é :;LO;T , D = EOE? . (2)

These equations define the electric and magnetic field E
and B in terms of the density functions T and O and the two
constitutive parameters:}lo(the magnetic permeability) =
L7 x 10~ henry per meter and ¢_(the fundamental electric
permittivity) = 8.85 x 10712 raraa per meter. Consider
that the fields have the suppressed harmonic time depen-
dence exp (jwt); here w 18 the angular frequency. Then

Maxwell's equations may be written

¥ x E=-jwB |, (3a)
Vox H=J-juwe (3b)
vV - B =0, (3¢)
and VvV + D= O (3a)



_—

It is convenient to work with the potential functions A

and ﬁ), which are defined by the following equations:

-V O =E + A, (4)
'€XK=§) (5)
and v E:—d’—cz—d) (6)

S : a, (1)
el . X { m ers er seconda,

,————uo€o / e D o
and

LJ:27Tf:——2".ZTc=KCc) (8)

whereﬁ% = propagation constant for free space.

By using (L) and (5), the four Maxwell first order partial
differential equations may be transformed into two wave
equations of second order involving only the potential and

density functions when the Lorentz gauge condition, (6), is

applied.
2_—[ 2 —_— _ —
v A + K% A --—[LO J (9a)
and
Vet P =- =P (9v)
- E—O ]

The explicit solutions of the foregoing wave eqguations
which are the Helmholtz integrals yield 2 and @ in terms of

the density functions.,




On eliminating @ between (4) and (6), one obtains

Eo=-; 5[ VT A+ E] (10)

Equation (10) permits one to calculate the electric
field at points 1n space exterior to the wire in terms of
the vector potential and its derivatives at the same point.

In Figure 1, K‘(s,f) is the vector potential at any
point p in space caused by the current I, (s') in a linear
radiator which is of length,ﬁ and has 1ts axis parallel to
the s-axis. In order to obtain A (s,P), one has to use
Green's function to solve differential equation (%9a), i.e.,

VZK(S,F)-i-Kj X(s,f’):—/,LOJ'(S':f') ) (11)

The current density J can be expressed by

Fs) =5 L) § P (-7 § (12)
where @ = the radius of the cylinder.
$ = unit vector along the s-axis,
P’ = the radial distance from the s-axis.
é(ﬁﬁq)= the Dirac delta function.

. 1 when x =0
'l tx) (Heaviside function) =

——

0 when x<0
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Figure 1. Geometry for Equation (16).




In the above the cylinder 1s considered sufficiently thin
that azimuthal symmetry may be assumed in the current dis-
tribution, and that the contribution to the vector potential
from the currents on the end faces is negligible., For thin
cylinders the vector potential is essentially independent

of the radius of the cylinder, For convenience we consider
the current to be concentrated at a = 0,

Green's function G(R) is the solution of
V) GR =-aTTOR (13)

Here R is the distance from the current element at ds' to

the point p, i.e., R =V(s-s'y +‘P2, G(R) is found to be

iR
GR) = “”Q“Q’R (14)

This is the Green's function for a point source. The vector

potential can be therefore expressed in terms of G(R):

A(s,P) = Ag(s,p) 5 (15)
where y
Ag (s, f) 24[717"f L (s) exP(’gK"R) ds’ (16)
(2] .

The sScalar potential ¢)(s,/0 may be derived in an

analogous manner. It is

) - o
@ (s.fp) = —_—47/T€ / q(s) EXPL g‘(o?) as’ (17)

Here g(s') is the charge distribution on the conductor. The
current I (s') at a point on the conductor and charge q(s?')

at the same point are related by the equation of continuity



ddIsS/(S') + d' W als) = 0 | (18)

Substituting equation (18) into equation (17) yields

)f ; S' exy(-g/(oBL ds’ (19)

‘¢(S P) = L/(

The Helmholtz integral equations (16) and (17) for
(s,P) andmﬁ(saﬁ) are the solutions of scalar Helmholtz

wave equations for the vector and scalar potentials.

2.2 Boundary Conditions

For any arbitrary configuration of straight wire

antennas, the following boundary conditions must be satis-

fied:1

(1) The taggential component of the electric
field is zero on the surface of all wires.
(Perfect conductors are assumed.)

(2) The current is zero at the open end of a
wire.

(3) The sum of the currents that are directed
forward the Jjuncture of two wires is zero.

(4) The scalar potential at all points on the

surface of the wires is continuous.

1c. W. Harrison, Jr., "Theory of Inverted L-Antenna
with Image," Technical Memorandum SCTM 11-58(1L), Sandia
Corp., Albuquerque, New Mexico, (April 8, 1958).

10



2.3 Arbitrary Thin Wirs,

In the subsequent development an integral equation is
derived for the current distribution induced on an arbi-
trary thin wire antenna following the procedure set forth
by K. K. Mei,? Figure 2 describes a curved cylindrical
coordinate system, where s is the arc length measured from
the origin, and S is the unit tangent vector at s.

In accord with the assumptions of a thin wire antenna,
the tangential component of the vector potential and scalar

potential on the antenna are given, respectively, as

uo , , /‘./\, ’
AS(S):‘JTT/L J(s) Gl(s,6)5-5 ds”, (20)
and
2 ’
# () = ¢ &l52) ) deS(,S) G(s.s) ds' (21)

A scalar functiond(s) is defined by

5 s ‘
D) =i [ pO4E =] [ GeT ¢ Ededl

Integrating (22) by parts and considering J(s) to vanish at
both ends yields

o 5/ J(sﬁ'ilgéé%ég ds’dé;_

Q(s) =~ 377,

(23)

For the s component of the electric field on the

antenna to vanish, it is required that

°K. K. Mei, "On the Integral Equations of Thin Wire
Antennas,” IEEE Transactions on Antennas and Propagation,

AP-13, 37L-378 (May 19657.

11



Figure 2. A curved cylindrical coordinate system.




ES(s) + Eg(s) =0 (21)

where E:(s) is the s component of the scattered field at the
surface of antenna; E;(s) is the s component of the incident
electric field when the antenna is receiving, or it is the
impressed field of the source if the antenna is transmit-
ting.

From equation (L), the following is obtalned

Ky Asls) =4 (*Cj %—i@s@ -j = Els) (25)
or 2 .
4 ®(s) - ~KEAG(S) (2/2 EXs) | 2 (26)

d s’

Adding/(:@(s) to both sides of (26) yields

‘i@( SL4K2 B(s) = K2[Bs) - Agls) | - 25 EX(S) (27)

O C2 5 .
The solution of (27) for s=0 is
B(s) =C cosk, s + D sink,s
+/<ofs[@<§)-A§@]sm K(s—8)dg
*{‘[E;@ sin K, (s-£) d& (28)

Using equations (20) and (22) in the third term of the right

hand side of equation (28) becomes
K[ BE) sinky(s-8) df
= 047_[[7[0 %ZSL,_SL ds’ dn) sink,(s-6) d¢

(29)

13



S
:KOZHT%[[J(S’) G )€ S sink,(s-€) ds"d€ | (30

Substituting equations (23), (29) and (30) into (28), an

integral equation is obtained for the current

fJ(S')T[_(SJS') ds’=C cosk s +D sinK,s .
)
. *q , (31)
[ i) 4

where
N

1T (s, 9) [ +/(OG§ § sin K, (s-¢)

\.—

+K3f§%§/ﬂ.sin/<o(s—§) dn]dé. 2

The integral equation (31) is the Fredholm integral equa-
tion of the first kind. The term D sin K,s,represents the
effect of a slice generator which is redundent when the
integral of EZ is present. Indeed, if E;(g) = —V/S(f),
where V is the driving voltage and 6(5) is the Dirac delta

function, then for s=0

—‘fﬂocf €) sink (s d¢& = 7: sinK, s, (33)

For a dipole antenna, the source is assumed to be a

slice generator. Notice that in this particular case

3G6K€,s) - _ 2GKE,s) ‘ (348)
5§ oS ’

14




and

.5 = . (34b)

Therefore equation (32) reduces to

TT(s.s) = G(s,5) - G(0,s) cos K5 | (35)

Hence, equation (31) becomes

[J(S’)G(S,S’) ds’ = A cosK,S +Jﬂ sin K;s, (36)
b Mo c

Here A = C +[J(S’) G(o,s) ds, (37)
For s<= 0 an equation equivalent to (37) may be derived
where only the sign of the sine term is changed.

The above equations are consistent with the integral
equation of cylindrical dipole antenna.3 It 1is clear that
the integral equation (31) which describes an arbitrary thin
wire antenna may be applied to dipole antennas, circular

loop antennas and equiangular spiral antennas.

2.4 Arbitrary Configuration of Intersecting Wires.

In the previous section, a single wire antenna of
simple structure is treated. In practice, most of the sys-
tems of radio communication are concerned with the inter-

secting wires. The object of this section is to describe

3Ronold W. P. King, The Theory of Linear Antennas
(Cambridge, Mass.: Harvard University Press, 1956), ch. 2.




the vector potential of this type of structure. Because

the currents in the wires are no longer continuous as in the
arbitrary thin wire antenna, and the vector potential on
the surface of one wire is due to the currents in more than
one Wire, the treatment in this section differs from that
in the previous section. More than one coordinate appears,
and the two- and three-dimensional wave equation must be
used. Solving for the total vector potential which has
more than one component one obtains integral equations for
the induced currents. Since the total vector potential on
each wire has to be considered, the number of integral
equations is generally equal to the number of wires. 1In
principle, this approach may be applied to any physically
L

realizable structure by using superposition.

Figure 3 illustrates two perfectly conducting cylin-
drical wires (1) and (2) of lengths 2h, and h, + h, and the

same radius a. The assumptions regarding the radii of the

wires are namely,

K, a ==/

and a<<h| a<<h2’ a<<h4

y

Under these conditions it may be assumed that cross-
sectional and axial distributions of current density in the

conductors may be treated as independent of each other.

L1pid., ch. 6.

16
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Figure 3. Intersecting Wires

17



The boundary conditions for the tangential component

of the electric field on the surfaces of the two conductors

are

[€:)  =-[E] (38a)
n=a y=a
and

A [ ci
( Ezz - EZZ) (38v)
Yz: a YZ: a pe
where the axis of wire (1) is assumed to coincide with an

s-axis, while the axis of wire (2) falls along the z-axis.
The field just outside the conductors may be expressed in
terms of scalar and vector potentials. Substituting equa-
tion (L) in (38a,b) and using appropriate components, one

sees the results

29, . ;
(% +J(*/Acs)y_ = (E,S) (39&)
(= a h=a s
and
dP. | -
(’aﬁ‘*iUAn)‘é:a = [ Ex i=a (390)

Applying the equation of continuity [Eq. (6)] to (39a,b)
leads to the following equations in which the subscript 1
or 2 on the operator ﬁ“refers to the variables n, g, or r,,

z, With respect to which the differentiation is performed:

d = = _ - W i
S5 T-A ) +&C A= —d = EL (40a)
and
- = - W i
Taz_(v'AZJ Ko AT T or Eor s (LOb)

18




where A7 is the vector potential just outside the surface
of wire (1) due to currents in both wires, and Ay is the
vector potential just outside the surface of wire (2) due

to currents in both wires. Thus

A = A, + A (L1la)
and
Zz = Ay + A (L41b)

where the individual vector potentials are given by

o= Mo ) EXPFRRD) 4.

Ay, =8 4T |, I,.(s) = ds’, (42a)
—_ A 2 X - RIZ ’
el PSR G
A o= & _Hg g 2 _eXP(=f KyR:) ds’ )
AE‘I S 47T n I—;S(S) Rg] > (LL C)

and ,
X o_h Mo eXP(-§ Ky Ra) 4o
A?E = Z ‘4—7_270‘£ IZZ(Z} RZZ dé . (Ll.2d’

In tkese equations Ri1s Ryo, R5y and Rypare the distances
described in PFigure 3. Since the current is discontinuous

at the junction on both wires, it is convenient to define

L,,@2) I,,(2) for z <= 0, (L 3a)

1302 = 1,.(2) for 2 =0, (13b)

13



Is(s) = 1,41(s) for s <0 , (L3e)

and

Ii(s) = L, (s) for s =0 (43d)

These currents must satisfy the boundary condition

;0 -1;0) = 1,0 - 1,0 , (L)

Using (4la,b) in (L4Oa,b) one obtains

2 .
( QLSE + K| A,S:—_&dé_ Fe -d_%g,; (45a)
and
2 ) u i
( iz* +K§) Az = - —éiz F,, —¢ -2 E;'z , (45b)
o) _ 0
where F,S = —b—z— A,z, F2z = —8—5— AES 5
A = Aust+ A , Az = Ayz + Az B
(46)
Azz = Ayt A 3 A, = Ale + Agzs ,

Substitution of (L42a,b,c,d) in (45a,b) gives two simul-
taneous integral equations in the currents I,; and I, in
the two wires. These coupled lntegral equations for the
unknown current distributions may be reduced to a system of
linear equations allowing the problem to be solved by a

high-speed digital computer. Since the formulas obtained

20



for the structure as shown in Figure 3 are formidable in
general, to illustrate the suggested technique a speclal
case is treated subsequently for which the axis of wire (1)
coincides with the x-axis.

In Figure 4 are shown typical geometries that may be

treated by the procedures set forth in this section.

2.5 Numerical Solution Technigue.

The general form of the coupled Fredholm integral
equations commonly appéaring in the treatment of intersect-

ing thin-wire structures may be expressed

[ dx 10 Ketxiz) +[ 471,00 K, (22) = 5, (2, (w7e)

2

and

’ / , _
de L, () K (x-x) +‘[ dZ 1,02 K, (z)x) =S, (X), (L7b)
L, !
where I,,(x') and I‘z(z’) are unknown current distributions,
and Sq (z),Sz(x), Kl(z-z'), Ka(x-x‘), Kle(x',z), and K21
(z',x, are known functions. The numerical solution of these
integral equations may be effected by apprcximating the
integrations with finite sums at N; and N5 different pointsE
The unknown functions I,,(x') and I,,(z') may be represented

by using plecewise constant representations as

5E. A. Aronson and C. D. Taylor, "Matrix Methods for
Solving Antenna Problems,” IEEE Transactions on Antennas
and Propagation, AP-15, no. 5, 696-6%7 (Sept. 1957].

21
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Lx) =) 3 X (X, X,) (482)

2X b
nei
and
Ny
I,Z(Z') :Z '|E,., X (Z")znﬂ) . (48Dv)
n=|
where / Ss =S = S,
X (SH7 Snfl) = {
0 elsewhere. (49)

Substitution of the above representations into the integral

equations (L7a,b) gives

Nz

M
Z %njﬂ—x"K.z(X’)Z)dX' +”Z’:'Fn AZ”K,(Z_ZI) dz’

n=|

S, (z),(50a)

and

Nz Ny
A Kz(x-x')dx’+z-ﬁ‘f Kn(z',x)dZ' =S (x) (500)
n=t %% n=| ~oZy

In order to obtain a unique soclution, the above equations
are forced to be satisfied at Ny points over the range of z
and N2 points over the range of x. For simplicity, equa-

tions (50a,b) may be combined into a single matrix equation
NitN;

I, “|Tmn = I, sy m = 1,2,,.,,N1#N,,  (51)

n={

noting that

I, = {n §or n=1,2,...,N

I, = % for n =

|
=
=
+
—
=
o



-Wmn :/;x K‘Z(X’I Zm) dx’ for m = 1’2""’N1
n = N1+1,o.o,N2,

i L3 (52)
‘]‘]’mnzf“ K, (zn-2") dz for m = 1,2,...,N;
n-= 1,2,...,Nl,
‘”_mn:[x Ko (Xm=x) d¥ for m = Ny+l,...,Np

n = Nl+l,o.o,N2,

and

' / —_
Hmn:,[z K“(z,xm)dz form—Nl+1,...,N2,
n = l,2,ouu,Nl.

It is clear that the matrix equation (51) includes N{+N,
linear equations for N;+N, unknowns which may be solved by
using a high speed digital computer.

If I,x(x') and I,z(z') in the coupled integral equa- ‘

tions (L47a,b) are discontinuous functions such as they must
be for intersecting wires, the representations (L8a,b) are
no longer adequate, and a special technique is required.

The discontinuity must be built into the proper representa-

tions. These are

Nz

L) =) & X (X0, Xew) (53a)
"

o)=Y 45X (%, X)), (530)

L=y X (2.2.), (53¢)

24



and M

1,2 =) f X (2., Z..) (53d)
where T7 (X) = I, (X) for X =< 0 ,

;0 = 1,0 for X = 0 ,
(54)
I,—Z(Z') = qu(z) for 7 < (0

and

I = 1,02 fov 7 =0 .
Note that two additional unknowns have been introduced.
These require two additional equations which must come from
boundary conditions, The appropriate boundary conditions
are: the scalar potential at all points on the surface of
the wires must be continuous, and the sum of the currents
that are directed toward the juncture of two wires is zero.
Then there are Nj+No+2 linear equations for the Ny +No#+2

unknowns, and a solution may be obtained.

25



CHAPTER ITI

TREATMENT OF SCATTERING FROM INTERSECTING
THIN WIRES

The technique for treating intersecting wire struc-
tures is illustrated in this chapter. For convenience the
structure 1s conslidered to be formed by two straight wires
that are perpendicular. Coupled Fredholm integral equations
are derived for the currents induced in the wires by an

incident plane wave field.

‘The intersecting wire configuration is constructed as

shown in Figure 5. For convenlence the structure is divided
into two wires of circular cross-section, labeled (1) and
(2). The axis of wore (1) coincides with the z-axis of a
cartesian coordinate system and extends from z = - 4 ‘tc /4 »
Wire (2) extends in the x-direction from x = - /, to 4, .
Both wires have radius a, Electrical continuity is main-
tained between wires (1) and (2) at x = 0, z = 0. The
assumption is made that a is much smaller than /, , /, or /,
and K, a<=<1,

The procedure of analysis is to determine the distri-
bution of currents in wires in terms of the incident elec-

tric field, to discuss the scalar potenEial and the incidenrt

26
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Figure 5. The intersecting thin wires.



electromagnetic plane wave and finally, to obtain numerical .

solution of the integral equations.

3.1 The Solution of the Differential Equation for the

Vector Potential.

The total scattered vector potential Kl(x,z) on the
surface of conductor (1) and Ké(x,z) on the surface of con-

ductor (2) are given by

l

AL (55a)

A (x,z) = R [A
9

wirve(l)
and

Kz(x,z) = 5\( [A:(X,Z)]

wire(2)

+'2 [A;(X’Z)JWNen), (55D)

A A - . . .
where X and z are the unit vectors in the x and z directions,

respectively, A:‘(x,z) is the vector potential due to the

current sz(x) in the x-direction in wire (2), and A; (x,2)

is the vector potential due to the current I1z(z) in the

z-direction in wire (1). It may be assumed that no current

exists in the structure in the y-direction. Accordingly,
A—

Ay - O-

The components of the scattered vector potential

A; (x,2z) and A;(x,z) are given by

X

g
A‘(x,z)zz%%f dx L,(x) K, (x-x;2) , (56)

where exP[-&K;WQX:;F;—E;J-

K,(x-x,2) = when Z 2 @ ; (57a)
: Vo(x-x)*+ z? 7
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and
fa
A — /LL 4 bt —~ CF

AL (x,2z) = 2_77%[;, dZ I, K (z-2,x) (C&)
where bk V(7 - Vr 2

K (z-2, x) = exp [_\j/QL --(-222)+ X —J—- when x 2 a3(5931

’ (z-2")%+ x?
K, ('Z-Z',X)_—' K, (z Z’,cl) vhon X - a . (59b)

Now consider the field equatisn {(10'. The interpre-
*arion of this expressicn is that A is the veuhor potential
associated with the electric field E, S take E to be the

scattered field, then

. 2 S P A 2| AR
A — _ 1 __C___ e - A ‘ -~ < )
EIZ(Z) =4 N, [ DL DX g f\bzd */‘\O)AZ ]wheu) 2 (60a)
and
. . o2 [ 252 A,.t b (}‘ frElal ]
EEX(X) B J LJ be)\ i "bxa o * wiref2) , P

< . . o .

Here E |5 (z) is the z-component of the scua’tered field a-
. A .

*he furface of wire (1), and ES, (%) i3 the x . ompunern- .1

the scattered field at the surface of wire (2). Define

>
N
o3
S

I

[ A% (x,2) ] (61a)

wire (1)

[_aéx_ AL (x,2)] (61t.)

wire i) 3

=y
=
N
N
l
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Axlx) = [ A:.(X'Z)}WNem) : (61c)

and
Fzz_(x) = [’5‘62— A% (X,Z)}wiyelz) . (614d)
Then (60a,b) may be written
( {zz + Ko | Az) = dd—zf-‘.,(z) +J~C‘%— £z, (622)

and

Ko ) Aulx) =~ ad;—%z(x) i EX(x) . (62b)

2

(d
dx?
Equation (62a) is a function of the variable z alone, and

equation (62b) is a function of the variable x alone; there-

fore the use of the total derivative signs is in order.

The solution of the inhomogeneous equations (62a,b)

may be written

Z
Az(z) =C sk Z +C,sinK Z + E/.fj d¢ F ) sin/{c,(z-§),(63a)

and
A(x) = Ciecos K X + C sin KX + —fdf FE) sm;g(x-f)(egb)
- &) L A
where F, (§) = - a§ Fu) +§ = £, (6La)
AIE -—dd?gz(g) vi et (645)

Integration by parts yields
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z
A .(2) = C, coskZ +C2’9iﬂ/<oZ—[ d€ Fiu ) cos K (z-)

Vi [dEEL®) s Kkz-f) (65a)
and .
A () = Gpeeskx + Glom K = € Fad) s K (- 6)
x N
+(;—C/—f A& EE) sin K (x-§) . (65b)
]
Note that C. =2, + Fix (O (66a)
2 2 Ko ?
. Faz(0)
C, = C, —ZT ' (66b)

ﬁgwever the primes may be dropped now since Cé and Ci must

be determined by the boundary conditions.

3.2 The Integral Equations for the Currents.

To arrive at the appropriate integral equations for

the currents, it is best to consider

AL = A (x2)]

4 (67a)
_ / , -
_41477 s dZ L,,(2) K (z-2)a) |
AZX (Y) = [ AXA(X"Z)]WWQIZ)
;; 1 -
T g .,zdx T,,(x) Ky(x-x’a) ’ (67e)
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F,X(Z) = [Sb_x— Af (X’Z)Jwiyeu)

—&f dx' L, (x) _E)QFKZ (x,z)

b R
Faa(X) = [—b_Z_ A; (x'z)]w.‘re(z)

f2

)3 d
=[ LnK.(62)] o) dX[FrLm]K (02,

2 -,

Using the boundary condition for the current

L&) = L8=0 ,

one converts equation (68) into

by

Similarly it is found

b . o fe ) ,
[ﬂdz [—;‘Lz—.l,z(z)]K,(u,x)-—[L dz' 1,(2) 57 K (Z)x) .

then

12
Fix(2) = 7 fdx —847_ X(X')]Kz(x’,z) ,

32

d f d
T (&5 L0 |Kilx,z) = | dX' L) 53 K. (x,2) .

(67c)

(674)

(68)

(69)

(70a)

(70b)

(71a)




and

A
Fe() = S22 7 [ 1. @] K (22 0), (71b)
£

Define

£z

fzdé‘ F.x(g) €oS KO(Z-{) :ﬁ— ) dx [d—d- ] K, (x", z) (72a)

and

x A
fd§ o) cos K (x-&) = 4—“7%][ dz [ 1,(2)] K,y (2 1), (720)

So that

K%, 2) :/ df KE(X’,§) ccs /{o(z_g) ’ (73a)
and ?
K, (2. x) = [ d§ K,(Z’,§) cs /{o(x—g). (73b)

Inserting (72a,b) and $67a,b) into (65a,b) one sees that

Ly £:
f dZ' IIZ(Z?KI(Z-Z,’a) "’f dX’ [?2{7' Iu (X')] K,g( X', Z)
_!' _’Z

[dg £46) sin K (z-8) (Tha)

—C cosK 7 +C sin Koz +d'

and

f dx’ I, 00K (x X’ 4) fdv [4-1,, (2] ka2 x)

= C,cos K X + C,sin KX 45 /d§ E sin Ko(x-g)‘(ﬂ;b)

Note that in the above equations the arbitrary constants

have been redefined for simplification.
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The boundary condition for the electric field at the

surface of the perfectly conducting wires may be used:
i 4 —
E.€) +E5€) =0 (75a)

Ei (§) + E; (§) =0 (75Db)

2X

Here Eh2(§7 and Ezz(gd are the tangential components of the
incident electric field at the wires. Then equations

(74a,b) become
Le
[dszu wzza + [ dr[Le 1, 00]Ka002)

4 4,

= Clcos K, 7 +Clsin K,Z ~f FLL fdgs &) sink (z-£) (768)

and

ff,dx,I"(x.)Kz(x-x‘,a)+] 42[(1 I,( z']Kz,(z X)

X2 H

= CJeos K X +C,sin /gx-g--f—g-[@ ELE) sink(x-&) (76b)

where L, ¢ :‘\/% = éo (77)

Here§;(==l207T§D is the wave impedence of free space.
The coupled integral equations (76a,b) are to be
solved simultaneously in order to obtain the induced cur-

rent distribution.
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3.3 Boundary Condition on the Scalar Potential.

The scalar potential is related to the vector poten-

tial through the Lorentz gauge condition, (6). It is

21 d O a4

¢ (x,2) =5 [ Ar(nz)+ A7 (x,2) ] | (78)

The scalar potential at the surface of wire (1), ,(z) is

¢. (z) = [¢( X’Z)]wiveu)

. 2 d
=i S [Fu@+ 7 AL@)] (79a)

Similarly the scalar potential at the surface of wire (2),

(x) is

¢2 (X) = [¢(X’2)]wireﬁ)

C [ Ay (X) + Fip ()] (790)

Continuity of the scalar potential at the juncture of the

wires requires

®,(0) = @, (0 (80)

From (65a) and (75a)

Csz AL(Z) = Ko[- C, sin K7 + C, cos KOZ]

- [48 R s K(2-9)
(81)

-p - d azdg ELE) sin Kk, (z-&)

c

Examination of the differential of an integral reveals
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AZ— 02d§ F.x@ oS Ko(z—é\) =F(2) —Kojozdg F,x(§) sinKo(z-g‘),( 82a)

and
d £ L& sin K (z-8) = degﬁ,zg) cos K (z-¢) (82D)
Therefore
LA (@) 4 Fl2) =K, [-Csinkz +C cos K Z
4
+j0‘d§ F,,(§) sin Ko(z—§)
z i
K T'L d—§ E;(f) €03 /<a(z-§)]. (85)
From (65b) and (75b)
aciZ-Azx(x)zKo[ C, sin i X + Gy 08 KX |
— (4 Rl) s k-6
X .
L A [ d€en®) sn K (x-E). (81
Also
-C‘fl—x d§ For&) cos K, § =F4x)- f ) sink (x-&).(85a
and

£ [T L0 m kD)= /<fdft2,§> cos K,(x-). (85
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.

Therefore

8 Audi) #Fgl0) =K [=Csin K x +CJ 05 KX

+fxd§ Fa(&) sin K, (x- &)

-j ch;dg E;X(g) ccs Ko(x—g)] .

(86)

Define
fd§ Fe&) sin Ko(z-f) AL dX[d L (x)]H(x,z)  (87a)
and

deF sin K, (x-& -gl dz [gd— 2 z)] H,, (2, x)  (87b)
A

So H,(x,z) :f d§ K, (X',g) sin KO(Z’g) ) (88a)
0

X
Hz{(zl'x) :f d.(S K'(Z'lg) sin Ko (x-g) . (88b)
o

Then the scalar potentiesls at the surface of the wires are
- . /
P2 =¢c {-C, sinK z + C, cos K Z

+_&?_ ’dx ':_d_T (XQ] le(x’)z)

dx' ~ar
.’2

_J.C'_[D d§ Eliz(f) cos Ko(z—g)Jl , (89a)

and

962 (X) :JC lr— C3 sin /QX + C; oS KOX

+47de7l 47 ,Z(Z]HZI (z', x)
S e ] o
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The boundary condition on the scalar potential yields

(90)

3.4 Incident Electromagnetic Plane Wave.

To solve the coupled integral equations, the third
terms or source terms on the right hand sides of (76a,b)
must be discussed in this section. The general form of the

electromagnetic plane wave equation 1s

vtk E =0 . (91)
This wave equation has the well-known plane wave solution

i- i 2.7 |

E'=hnE exp iKY (92)

where n is the unit vector in the direction of Ek, R?is the
direction of propagation and T is the radius vector to the
field point. The incident electromagnetic wave is a plane
wave, and the scattering wires are directed along the x and
z axis of a cartesian coordinate system. On wire (1), the

field is along the z-axis,

- - A

T _ 1 _ /\"‘ 1

c —[E'Z] =(h-z) &, eXP[JKzZ], (93a)
while on wire (2), it is along the x-axis,

e[ 0] =G E ep b o] 550

2x y=2z=0 .
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For convenience,

plane wave for only two special cases:

Case (a)

consider the incident electromagnetic

the mag-

netic field associlated with the plane wave is considered to

be in the y-direction:

n =
and

K =
For plane waves

R-h
Therefore

Kz

Kx

Ke X + K,

ANCA
(h%) X + (nez)z,

N>

= 0 , where |K|=K; .

(ﬁ'%) KO ’

-(ﬁ'/z\) Ko

Equations (93a,b) become

Efz(z) = sin X E, e"P[—(} K Z coso(]

and

EL(x) = cos X E, exp | § K x sing]

Note that (ﬁ-%) and (ﬁ-ﬁ) are the- direction cosines of

incident electric field, i.e.,

39

(94)

(95)

(56)

(97a)

(97b)

(98a)

(98b)

the



n.x = cos o s (99a)
AA
n'z = sin X . (99Db)

Substitution of equations (98a,b) into the third terms of

right hand sides of (76a,b) and integration yields
z
Ldg =L sink,(z-§)

_‘_E__fex [} cosal [ c0s 2K Z +4 05 &K sin 2K, Z
Ksno(l Prokct ] I )

_(crs K,Z +f ccs A sin/(oz)}, (100a)

X
‘/;d.g E:X-S) 50 r< \X §)

?Li;-o—( {GXPLJ,{OX smo(]{COS 2K,X ~f sinot sin 2K,X|

. ‘ ‘ (100b)
- | cos K x - sin& sin /<ox')} .

Case (b) The direction of propagation is considered to be

in the y-direction:

K=Kgy3vy . (101)

Therefore

(102a)
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and
(102b)

The third terms of right hand sides of (76éa,b) become

0

fdgE &) s m/g -§) = E" sino((/—cos/coz) ’ (103a)

and

(103Db)

fxdg E:;(g) sin /{o(x-§)= /% cos X (/ - 05 /K, X )

3.5 DNumerical Solution.

Since the currents are discontinuous at the junction

between wires, they are redefined according to (54).

Therefore

L)=700 L) +[1-100) ] Lx), (104a)
and

[,2=n@Illa+[I-1@]|1,@ . (10Lb)
where / foy S > 0

n(s) ={
The boundary condition on the current gives
(106)

I0 - Loy = T.(0) - I (0)
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From (10La,b)

iX = X) O [sz(o Iz-x(o)]

s nwi-nw & w, ot
and
41,2 = 5@ [T,0-1,0)]
M) Fr Lo Mol 1@, o7
Therefore
5
[Cax [&1,m) Kalx,2)

- Iz

=[I2 i 0)}K'z fpdx dx L, ") Kie( X', Z)

+[odxl['%? Iz;(x')} , (108a)

-4,

Ly
[z [ 10) ka0

Ly . /
S IORIOINCRE NIAE S MORENRY
0

0
+/_; az [_ad? I1.@) ] , (108b)

?, Lz R
AX L, 00 K, (x-x,a) = [ dX' L, (x) K (x-x a)
-4, 0

"I 8
+ dx' I, (¥ K, (x-x.a) , (108e¢)
L2
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and

p# f-& . 4
f dz'1,2)K (z-.,2 =)/ dZ'1,(2) K, (z-2.9)
-4, ‘0
0
+[ dz' 1.(2) K, (2-2,9) (1084)
Ly,

'In order to solve the coupled integral equations piece
wise constant representations are used for the unknown

functions. These are given in (53). Then using that repre-

"sentation
d_ Nz .
- B - e - .
lex'\’()—; 4. l:(J (x =xa) = § (X XM,)} , (109a)
d <ﬁ [ N +
+ — R + 3 -
ax L 0= B[O k)= O xm) | (109b)
d % 1
- - i S{»-77) _, -7 i
?TE_I'Z<Z)_'£T i [L,(h Zoy -5z Zqﬁ)J , (109¢)
and .
NI
At . - o
sz 1, :>_, £ [5 (z-2) =& 2 ,‘] ) (1094)
Therefore
£,
CJ_XI {% sz(xl)J KIZ\X’:/\
e,

NG
+ oo | \
12 gn i",\|2(xn ;H)//f- . - ,-.(anlf—' ; €N; " }
n=t
Nz -
+Z a lr:’\lz(x,.',z)/g._'_‘ - Kl )(J.,z)/e‘N:_._W‘| . (110a)
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= [F.+‘ ]c"] K, (0,X)

Alf
+ F,,*[KQ‘(Z:, X)/gn_' - KZ,(Z,,:,,X)/gN’tn]
n=i
N'- - ’
+ ‘Fn [KZ'(Z;;X )/€n—| - KE‘(Z,‘-H/X)/E"N__"] (110b)
n=l ! ’
and
£2 , Nz+ . [X:.... , ,
N dX'I,, (¥ Kz(x—x,a) :; Q"Jx: dx K,(x-x;a)
Nz Xntt
+z ?.,.fx dx’ K,(x-x’a) , (110¢)
ls w . Zoy
421, K (z-za) =) A [ dz'K, (z-20)
-4 n=1 Z':
N Zn-n
+Z 'an dz’ K.(Z-Z;a)’ (1104)
n=i Zn
where
2 for n=20
€ ={ (111)
1 for otherwise,.

Using (110a,b,c,d) and (90) in equations (76a,b) yields

Lu




and

N {’zntl e _ [Z,.H
?;{n 3 dZ' K, (z-z.a) +\; F"Jz; dz' K,(z-2,a)
Ni
(8- PR 0z) ) gi[K 062k - Kalton, /e ]

N
+i ?’J[K X,‘,Z)/e‘ - V\ ( net ) L )/6- }

N5-n

= Clcos K 7 +C, sin I, -dﬂf d€ ) sin K,(z-§) (1122)

Xt N s
T 2 f AX Ky(x-x.a) +Z 3,,']_ dx K,(x-x,a)

n= n=| Xn

t (F:' {) K?l( O/' X) +Z’ 'an [ KZI(Z:/ X)/En_l - KEI(Z”:' X )/€N,*-n ]

n=t

+Z Fn_ [KZ'(Z;,X)/Qn_, - Kz'(Z“:IIX)/G”'-'" ]

n=i

=C, s KX = C; sink,X ‘}LL]T Cdeu(f) sin K, (X f) (112b)

In order to get the relationship of and in the

above coupled equations, the boundary condltions on the

currents must be used. They are

1.4 =0 (113a)
I;x( [2) = ( N ) (113b)
I .(-¢)=0 |, (113c)
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I, =0, (1134)

I, (0)-1,(0) =10 - I, (9, (106)
Consequently

%N; =0 (11ha)

?,V} =0 (11L4b)

{A;F =0, (11hc)

7[;, =0 , (1144)

gr- 4T = - f (115)

Application of equations (llha,b,c,d) to the coupled inte-

gral equations (112a,b) obtains
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N

A Zo, TC—
Lf: dz' K "-z‘,a)+L ﬂ[ dz’ K {z-z a)
=i Z" =y -2,

Al

(37 39K,.(0.2) ) & [Ko(x,2) - Klai,2) ]

>

=CleesKz +C) sin K,Z - ﬁ;%f dg E,Z(,’:) sin K (z —§ ),(lléa)

and
e r + Nyt o

Xy
Z ?Jx de’Kz(x—x’,a) +Z ?J dx' K,(x-x,a)

Nt An

G2 K,(0,x) ZFH [k (20, %) - Ky (2000 ]

)y

rJ
R |
>
o
|
P
N
N
3
pd
N
>
~—
—

; {Ka

=i

+cosKx + C sin f(x ~ ; £ ch i d& EX(E) sin K(x -§) (1160)

Using equations (100a,b) in (ll6a,b) yields a system
of linear equations for the current distributions when the
magnetic field of the 1lncident electromagnetic plane wave
is directed along the y-azis.

AR

S £ oz + V’f Oy (2 +(Z8-28) Kol ©,20)

Ny -
)G B2 ) B 3

(117a)
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and A
2_. gn_ CPH-(X"‘) +(2Lf:+—T3{v-) K?I( o, Xm)
n=

Z? B (Xe) +

A %}4 )
"'Z 'F: )\%fn"'(xm) +L| 'Fn L/{/‘,‘-(’Yi‘n)

n=|

_ I " . ‘-/ 7TE \

=C, 05 KXmtC, SiN K Xn +§ LK © cos & (Xn ., (117b)
Similarly, using equations (103a,b) in (116a,b) yields a
system of linear equations for the current distributions

when the propagation of the incident electromagnetic plane

wave i3 in the y-direction.
Nr 'I

N
Y oha(za) LH (2} + (3 37- 3 97) Kl 0, Z4)

n=i

N

S 97 Bz Z 4 /32 (20)

= Cl s K2+ C sinK Z - 4Tk, sinX g (Zw) ,  (118a)

Lo K, ¢
and
S P
\L.. ?h ¢n(Xm) +L ?n (P"(Xm) ? 'F) K (0,Xm)
ne n=l
N N NW
)y £y (xm)*rL fro Yo (Km)

3
¥

— C;/ COSKDX,"* C: SiﬂKoXm _d‘, 4 7TEo cos K 5 (Xm> . (ll8b)
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In the foregoing the following definitions were used:

(Z ) :Jf dz' Ki{zm-Z,a) ,
Zy

Q.
- |
£3
3
|

—f“ dZ' K (Zm~Z', A ) ,

2,

[al)

Bn( m> = K(Z(X;,Zm) ‘Klz(XH:I,Z»J,

In \bm) = }/\nz \Xn ’ —'m) - }/‘,z( XV'“) Zm ) ’

}

2
~
3

) = expli Kz, cosd)| 05 2K 2, ¥4 05 A 511 2 K, Zm |

—{ CCS K 2y +f 05K 201 K, Zp }

’

G (X, = exp[(} Ko X 3.‘m>(} {cos 2R X = SiInX Sin 2K, Xom

-'{ 05 Ky Km — ¢ St X sin Koxm)
*
(119)

) (X = [de (Xmx', 4)

n

&, (x fowdx’ K, (Xm= X', Q)

n

.t - +
)\%" (\X'V|> = KZI(“;' XW‘) - KEI (Zh+| lxm/\ )

b RN - / - 4
K?I(L'n/ /‘/w:> K2| \ZV“N/XM),

Vo \
%/"\Xm)

—~~
N
3
N~
i
..

- (s KyZm

4g



There are N1+N2—l unknown for each of the coupled
equations (117a,b) and (118a,b). Since there is only one
additional boundary equation (115), Ny+N5-2 more equations
will be needed to obtain a unique solution. Therefore, let

m take N,-1 values for z, and Np-1 values for x, i.e.,

Zl,z2,oono-.oaul,ZNl_1’

and

Xl,XZ,..._.......,xNZ_l’

and require the equations to be satisfied for these values

of z and x.
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CHAPTER IV
SUMMARY AND CONCLUSIONS

It is the aim of this thesis to present a theoretical-
numerical solution technique for treating electromagnetic
scattering from thin wire structures of arbitrary config.-
ration. It i1s shown that the arising coupled integral
equations for the induced current distributions may be
reduced to a system of linear equations allowing the prob-
lem to be solved by a high-speed digital computer.

In Chapter II the basic solution technigque for ftrear-
ing practically any configuration of wires is presented.
The procedures are described briefly and applied to the
problems cf determining the current distributions induced
on an arbifrary single thin wire configuration and on inter:
secting straight wires. It 1s shown that the treatment of
intersecting wires requires special techniques not needed
for the formulation of an arbitrary orientation of a single
wire as presented by K. K. Mei.l In both cases integral
equations are obtained which must be solved to obtain the

induced current distribution.

k. K. Mei, "On the Integral Equations of Thin Wire
Antennas," IEEE Transactions on Antennes and Propagation,
AP-13, 374-378 (May 1965]).
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The problem chosen for solution in Chapter III is the
determination of current distributions induced along two
intersecting straight thin wires which are perpendicular.
The exciting fields are chosen to be plane wave fields.

And the problem is completely formulated into suitable form

for programming digital computer.

CQE
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