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ABSTRACT

The study of thin wire antenna systems, particularly large
wire arrays or meshes, requires the solution of difficult integral
equations. Since it is not feasible to think of a solution in an
analytical sense, it is necessary to develop another approach to
the problem. Hence, a numerical formulation is developed where,
with the use of any of the many standard algorithms, a solution
may be obtained. This formulation is applied to two classes of
wire structures. The numerical results are presented and compared
with results of other investigators.
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CHAPTER I
INTRODUCTION

In general the study of antennas of even the simplest
form, involves the solution of integral equations. Conse-
qucntly, most treatments aveld rigorous analytical
approaches to the problem. For example, Jordan and Bal-
mainl ussume for expedience that the current distribution

on a dipecle antenna of length 2H is of the form

I = Igsin k(H - 2) , (1.1.1)
when
Z >0
ard
I =1I,sin k(H + Z) , (1.1.2)
when
z -0 .

Admittedly this assumption greatly simplifies further
investigation and is justified in many cases. However, in
rigcrous examination of the problem the current distribu-
tion must be considered as an unknown and determined

either analytically or numerically.



It i1s the purpose of this thesis, therefore, to
develop general integral equations for the currents in an
arbitrary thin wire structure; and having developed these
equations, a numerical method 1s presented by which the
exact form cof the current distribution, although discrete,
may be determined.

The aforementioned integral equations are developed
in Chapter IT for an arbitrary configuration. Chapters
IIT and IV present numerical techniques for soclution of
the integral equations for the infinite parallel wire
array and the infinite wire mesh, respectively.

Chapter V presents a technique for determining the
fields around a wire structure, which takes advantage of

the discrete form in which the currents are calculated.




CHAFTER 1T

DERIVATION OF INTEGRAL EQUATIONS FOR
CURRENTS IN ARBITRARY THIN WIRE CONFIGURATIONS

It is accepted that cnce the current distribution in
a wire structure is known, the subsequent determination of
the fields arcund that wire is relatively simple. Conse-
quently, 1n a problem concerning a wire structure, priority
is inevitably given to the determination of the current
distribution. The prcblem must be attacked in a somewhat
converse manner wherety the fields around the wires are
expressed in terms 5f the unknown current distritutions.
These sxprezsicns for the fields take the form of integrals
of the currents; and from these expressions, integral equa-
tions of the currents are derived. Once obtained, the
irntegral equations are rorced to be satisfied at a finite
set cf points,; thereby gernerating a system of algebraic
equations which are solved numerically using a digital com-
puiter,

This methkod of formulating the problem using integral
equations of the currents was originated by Pocklington,2
who introduced two impcortant concepts which are fundamental
to present day thin wire theory. As given by Jones3 they

are (1) the integral equation of the current can be reduced



to a one dimensicnal ejuation since only the axial cur-
rents are significant, and (2) the incident electric field
intensity parallel to the wire axis makes the only impor-

tant contribution to the current.

2.1 Integral Equations for Currents in Open-ended

Structures.

Integral equations for the currents in a single wire
oriented arbitrarily were developed by Mei.u This treat-
ment was further expanded by Taylor5 to include any number
of wires oriented arbitrarily with the possibility of any
number of them intersecting. The subsequent discussion is
adopted from their presentations, and it extends the

1limits of their theory to include wire structures that are

not open-ended.

g

In a system of N wires, it has been found- that the
tangential vector potential at the surface of the nth

wire is

N
9 AL Ny Ay i
Asn(Sp) = 17 % 48 (Sm-Sn) Im(Sm) Gm(Sn, Sm)  » (2.1.1)
m=1

2/l.Tl

where

Gy ( Sy, s Sp) = exp[‘jK JR2(Sn,Sé) + 5mna§}/

b 1
/Rd(snfsm) + 6mna§ ’




Im(Sé) is the total axial current, at point S& on
the mth wire,
a, is the radius of the mth wire,
@h is the unit vector tangential to the mth
wire at point Sé .
%n is the arc length of the mth wire, and
R(Sn,Sé) is the linear distance shown in Figure 2.1 .

The scalar potential can be written in terms of the cur-

rent as

N
on(Sn) = 3 22y dsrégj%- In(Sm)Gm(Sn,Sm) , (2.1.2)
m=1
2

m

where n is the free space impedance. It is required that
the tangential component of the electric field at the sur-

face of the NFR wire be set equal to zero. As a result
Esn(Spy) + ESn(Sp) =0, (2.1.3)

where Eg,(S,) is the tangential component of the scattered
electric field; and Egh(sn) is the tangential component of
the incident electric field.

Assuming harmonic time dependence, a useful relation-

ship is
Egn(Sn) = -Vspon(S ) - juw Agn(Sp) (2.1.4)

or



Figure 2.1  Two arbitrarily oriented
wires



- Esp(Sp) = - Y9,0n(8.) - jw Agn(Sp) . (2.1.5)

Upon substituting equation (2.1.1) and (2.1.2) into equa-
tion (2.1.5), a system of integro-differential equations
is obtained for the current induced in the wires by the
incident field. Since this system of equations is quite
awkward to deal with, it iIs necessary to consider another
approach. Hence, a function is defined by equation (2.1.6)
whereby this system of equations is reduced to a system of

integral equations. Thus

S
n

-~

2 |
2, (Sy) = - jg. . dSp%®n(Sp) . (2.1.6)

o
By using equation (2.1.6) in (2.1.5) and by adding k2¢n(Sn)

to both sides, a differential equation is subsequently

obtained.
252 + k2| o.(3.)
[dSn n'-n

.
= [ %a(Sn) - Asn(Sal] - J K- Egn(sn) . (2.1.7)

A formal solution of equation (2.1.7) yields

® (S,) = Cpcos kS, + Dpsin kSp

n
g1.'1
f ' 1 , o . !
+ k dSp [®n(Sp) - Asn(Sn) ] sin k(Sp - Sp)
J s
0 n

elw

- 4S, ESn(Sn) sin k (Sp - Sp) . (2.1.8)



Development of an integral equation of the induced
currents from equation (2.1.8) requires expressions for
Qn(sn) and ASn(SA) as functions of the currents. To that
end, equation (2.1.2) is used in (2.1.4) to arrive at an

expression for ®,(S,). Thus

® h(Sp) 5a -
n !
iy L [y e L .0
- m:]_,i
o] m
and
¢ _(Sp)
n n
u °y N
= i d ! 1 ! 1 1
=9 Z fﬂg,;nrd Im(Sm)Gm(Sn,Sm)dSndSy . (2.1.9b)
m=1
0 8

Integrating 2.1.9%> by parts yields
<

N
$,(Sy) = “m Z f[lm(lm)Gm(Sr'l,lm) - I(0)Gy(Sp,0)
= o

m=1
3 1 !
- //Im(sn'l) Mdsn'l]dsr; : (2.1.10)
. Sm
2
m

Since this section is concerned with open-ended wire
structures, the boundary conditions given by equations

(2.1.11a) and (2.1.11b) may be used. Hence

Ty () (2.1.11a)

1l
(@]
-

(2.1.11b)

it
o

In( 0}




In the subsequent section, the case is considered whers
equations (2.1.11a) and (2.1.11b) are no longer valid.
Applying equations (2.1.11a) and (2.1.11b) to equation
(2.1.10) yields

S
n

n(Sn)

_ u 1 aG' (S',Srr'l) ] 1

= szrm(sm) magt;, dSm dSp . (2.1.12)
%

m=1"0

The required expression for the vector magnetic potential
is given explicitly by equation (2.1.1). Consequently, by
using equations (2.1.12) and (2.1.1) in (2.1.8), and inte-
gral equation of the current will be obtained,:*

Consider the first term in the first Integral of
equation (2.1.8). Designating this integral as F(S,),

yields

Sn

F(Sy) = 1,\:~/‘<:1sr'1 $,(S8) sin k (Sp - Sp) . (2.1.13)
[0}

Using equation (2.1.12) in (2.1.13) produces

S
S n
"o 1 t. 3G , i
P(S,) = - 7‘%‘. 2 fdsnfdg dSy Tp(Sp) -m—;gsfm—)-
o] o L

- sin k(Sp - Sp) . (2.1.14)

Changing the order of integration of equation (2.1.1l4) and

s##The procedure for effecting ‘the development ofuan
integral equation of the current was outlined by Mei™ in
his single wire treatment.



adjusting the limits so that the range of integration

remains the same, gives

3Gy, ( &Sy
F(Sp) fdsmf [dsn In(Sm) G“‘a(s’? ull
m

. sin k(Sn - S . (2.1.15)

Equation (2.1.15) is integrated by parts. The result is

F(S,) = ®n(Sp) + Ef'zz;gzﬂds H/ﬂ 3 Tm(Sm)

« (1 - cos k(s - e ) . (2.1.16)

(5 sm)

Use of equation (2.1.12) in the foregoing equation gives

n
' . 3G R
F(Sp) = Onsw) + e > [ase [ ag Talsy Zmeedn
Hm=l g
o

m

+ [cos ®(Sn - &) ]m, (2.1.17)

Next, the second term in the first integral of equa-
tion (2.1.8) is considered and is designated as H(Sp}.

Hence,

S
n

H(S,) = -k J[\dSA Agn(Sp) sin k (Sp - Sp) . (2.1.18)
o

Substitution of equation {2.1.1) into equation (2.1.18),

yields

+ sin k sn SB) dS . (2.1.19)

Integrating the foregoing equation by parts gives

10




A
H(Sp) = - LE ;{[ Irm(Sm) Gm(Sp, m)s * 8y ASp
m
/ Tu(Sm) Gm(0,Sm) (D - 84) cos(k Sp)dSq
2 S, o s g
A .

ffxm(sm) [____(_P___m_). Sh-Sm + Gp(Sh,Sm) (S ' n) |
7 VYo 33y 3Sh 1
. cos k (S, - S, dsp, dSn'l} . (2.1.20)

Finally using equations (2.1.17) and(2.1.20) in equation
(2.1.9) produces an integral equation of the induced cur-

rent. Thus

oo

H S .
2; u/\Im(Sm)"(Sns°m) dg: = Gy 0Gos kSn + D, sin kg,
m=1 % Sa
- 1 AT fdsr'l Eg!{Sy) sin k(Sy - Sp) ,  (2.1.21)
0
where
S
. 3Gy (S, Sm)
(50,50 = Gm(Sn,5) Sar 84 - [asy [Ponim —sr
0
3G (Sp»Sm) 3¢5, - &)
Aa -
o Zminsiml 8 - 8g + Gp(Sp,Sp)—— 0
3sy 9Sm
cos k(Sp - Sp) . (2.1.22)

2.2 1Integral Egquations for Currents in Wire Structures

that are Not Open-ended.

The foregoing discussion and derivation is sufficient
in solving problems where open-ended structures are
involved. Such structures may include a crossed wire con-
figuraticn or an infinite array of~finite length wires

like the structure that will be studied subsequently.

11



However, for problems where no open-ended conditions exist
the aforementioned derivation may not be sufficiently
inclusive. Hence, in studying a problem such as the
infinite wire mesh presented in Chapter IV, account must
be taken of the fact that the conditlions given in equa-
tions (2.1.11a) and (2.1.11b) are no longer valid. Conse-
quently, in developing the integral equations for the
current, the more general expression for ¢ ,(S,), equation
(2.1.10}), must be used. Again, the first integral of
equation (2.1.8) is considered; and this term is again

designated F(Sp). Hence,
Sn
4 !
F(S,) = k u@ aS, %,(Sp) sin k (Sp -Sp) . (2.2.1)

Using equation (2.1.11) in equation (2.2.1) yields

1

N n Sn
o) = 2 [ ok [ 5 fnt i) G

- In(0) Gm(E,O)] - sin k(Sp - Sp)

v Sn n 3G (€ ,Sp)
- k dS'/idEde’ I..(s)) 32'6-°m)
mghtfo\ n 0 2m " me asn’[

- sin k(S, - SA) . (2.2.2)

Upon examining equation (2.2.2), it can be seen that the
second term on the right hand side is the same as equation
(2.1.14). Consequently, only the first term of this
expression needs to be considered: and to that end the

first term is denoted as F1(Sp). Therefore

12




t

N 1" n ' n
F(8y) = > UK ASp AL p(2g) OumE L oy)
msT L o

- In(0) Gm(E,0) :lsin k(Sn - Sp) . (2.2.3)
Changing the order of integration of equation (2.2.3) yields
N Sn Sn :
FSn) =4E S [ [asd ful ) Golcim
- I5(0) Gpi&,0) j\sin k(S, - Sp) . (2.2.14)

After integrating the foregoing equation by parts, the

result is

N n
F1(Sp) = LTU_ f d€ Emn’i.m) GmE ,2m) - Ip(0) Gm(E,OEl

= o
- E‘.‘rzg:l [ Fn(2m) Cal€ ., tm) - In(0) Gp(g,0)]
cos k(Sp - &) . (2.2.5)

By using equation (2.1.10) in equation (2.2.5) a useful

expression is obtained. Hence

N n 1 1
= u 1 aGm(Sn,Sm) 1 1
F1(Sy) o (Sn) +m§ Il ‘/Z‘im(sm) T dSmdSn
N . Sp
- E%mzl /; A [Im( ) Gm(E, &) = Im(0) Gyle ,0]
+ cos k(Sp -~ &) . (2.2.6)

At this point it is appropriate to recombine equations

2.2.6) and (2.1.16) which give

13



N Sn
1
%n(sy) - fr Z [ aSp[Tnlte) Gn(Sp,%n)

F(Sp)

Im(O) c-m(sn,o)] cos k(Sp - Sn)
(-n,Sm)

e ZL/!;GS‘“/ dSn Tm(Sy) —mo—fam] o

cos k(Sp - Sp) . : (2.2.7)

+

To obtain the final form of the integral equation of the
current, equations (2.2.7) and (2.1.20) are used in equa-

tion (2.1.8) to produce

b/ﬁdS In(Spn) F(Sm,Spn) = Cpm cos k Sp + Dy sin k Sy
- JLL_f“c’ism E' (Sm) sin k(Sp - Sp) (2.2.8)

where
Sm i !
' 3Gm(Sy,Sp)
F(Smgsl—‘l) = Gn(Sm, m) S . §n _f dsﬂll[ ma SI'?! n
o) m
BG‘ S S ~1 a g’ . é]
+ n(32; n) Sm * Sp + Gn(Sé,Sﬁ) —S_EFET_El
n
cos k(Sy - Sm) . (2.2.9)

Here 1t should be noted that as a consequence of all the
boundary condition terms being absorbed by the constants
Cpm and Dp, the final integral equation is identical to that
of the foregoing section. Hence, equation (2.1.21) may

be used in both cases considered in Chapters IITI and IV.

14




CHAPTER TII

CURRENT DISTRIBUTION IN WIRES OF
AN INFINITE PARALLEL ARRAY

In the analysis of the interaction of wire structures
and electromagnetic fields, it is necessary to know the
currents induced in the wires of the structures.

One particular structure that is often encountered in
theory is an infinite array of parallel finite length
wires. The investigation of the electrical characteristics
of this structure is considered in this chapter. Since
this structure can be included in the general category
described in Chapter II, the equations that were developed

there can be used in acquiring a solution.

3.1 Integral Equation for a Parallel Wire Array.

In determining the induced current distribution
Equation (2.1.21) is used. By requiring equation (2.1.21)
to conform to the particular geometry and boundary con-
ditions of the structure in Figure 3.1, the Integral equa-
tion for a parallel wire array is obtained.

Before introducing equation (2.1.21), several
relationships between the arbitrery configuration in Figure

1.1 and the particular configuration (in Figure 3.1)

15
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Figure 3.1 Infinite parallel wire array
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should be established. First, in concidering the respec-

tive coordinate systems, 1t can be seen that
9

Sn = 2y (3.1.1a)
Sm = 2y (3.1.1b)

and
Zn ¢ Zm =1 . (3.1.1c)

It is evident that from egquation (3.1.1c) the unit vectors
tangential o the mth and n'? wires at any point z'  or
z'y are equivalent. This fact is also obvious from Figure
3.1.

By using the foregoing relations in equation (2.1.21),
integral equations of the current in an infinite parallel

array are obtained. Ttrus,

o '3
zE;w dz '"nIn(z'y) Imn(2zm.2'n) = Cm cos kezy + Dy sin k,zn
Zm o
-y Lo b/ﬁdz'mEgh(z'm) sinkg (zyy - 2'p) (3.1.2)
n )
where
-~ Zm 5
Tmn(Zms2'n) = Gmnlzm,z'nl) - / dz 'y E;T-Gmn(z'm,z'n)
Jo m
+ EST'Gmn(ZEm’Z'n)] cos kolzy - 2'y)  .(3.1.3)
n

In straight wire orthogoral systems it 1s true that

17



E%T Gu(z'p-2'n) = ~ g%T'Gmn(Zm,Z'n) . (3.1.4)
'n “n

Consequently,

Hmn(zm,zln) = Gmn(zm’z'n) . (3-1-5)

Further, from equation (3.1.1c) and Figure 3.1, it is evi-

dent that
Zy = Zp = z . (3.1.6)

Thus the integral equations (3.1.2) may be written in the

following manner;

L
> dz' In(z')Gppl(z,2') = Cph cosk, 2z + Dy sin k,z
=00 [e]
- L dz' E'gn(z') sinkg 'z - z') , (3.1.7)
n Jo
where
Gppn(z,2') = exp [~ § % Bypn | / Rum (3.1.8)
and
Bpp = SQRT [(n-m)2a® + (z-2)°% +4 na°] . (3.1.9)
mn = - Smn® ! - e

Considering the infinite extent and symmetry of the array

it is obvious that

I(z') = In(z") (3.1.10]

18




Therefore,

b/—Q‘dz' Io(z") 22 Gnolz,2') = C, cos k2

o e OO
+ Dy sin %F_— jﬁ%ﬂ‘/ﬁhz' Bl (2') sin kgz-z') . (3.1.11)
[a]

Symme try conditions further require that

Gpo = - G_po a5 -®=X ns® (3.1.12)
Thus,
2' [o2]
J[dz' I(z') 2 &, Gn(z,2') = C cos kz + D sin kz
-] &j’u/daz' Eén (z') sin k(z - z') , (3.1.13)
n o
where

In this analysis E%o(z') will be considered to be a plane

wave, hence

E,(z') = E (3.1.14)

o td
and

2z
- jﬂfdz' E, sin k(z - z') = - jé&r.E_O. (3.1.15)
n Jo © N kg

With equation (3.1.15), the final form of the integral

19



equation is

d/idz' I(z') 2; €n Gpl(z,2') = C cos kz
o n o

+ D sin kz 4zfo (3.1.16)
o] n kO

It should be noted that as a consequence of the symmetry
and assumed Infinite extent of the array, the system of
integral equations in (3.1.7) has been reduced to a single

integral equation, (3.1.16).

3.2 Numerical Solution of the Integral Equation.

Since the integral equation for the wire array has
now been developed, it is important to consider a technique
whereby a solution can be obtained. The particular
numerical method to be utilized here is the flat-zoning
technique outlined by Aronson and Taylor.6 The attractive-
ness of this procedure is a result of its ability to trans-
form an otherwise difficult integral equation into a
system of linear algebraic equations whose attendant solu-
tion may be obtained using any of the many standard
algorithms.

Following through with this technique, it is appro-
priate to define I(2z) 28 a piecewise constant function.

Hence,

gpx(zpszp+l) ’ (3-2-1)

MZ

I(z) =

e
]
p—

20




where

r ., Zp 22 2

0 , otherwise

+1

Equation (3.2.1) is introduced into the integral equation

(3.1.16) with the result that

plz
E; 8p M/ﬂ dz' en Gnlz ,2') = cos kzm
(p-DAz n=o

j dnBo (3.2.2)

n ko

+ D sin kz, -

where
Az = /M = lm/M

Equation (3.2.2) is used to generate a system of linsar
algebraic equations by forcing the equation to be satis-
fied at a finite set of M points. These points are chosen

with regard for the function Gp(zpy,z') to be

Zyy = (m - %) Az (3.2.3)

where

Thus, the system of linear algebraic equations to be solwved

is, from equations (3.2.2) and (3.2.3),

;gp Tmp = Ty » whenm =1, 2, ... , M (3.2.4)

21



and where

Bmt1 = C
gmt2 = D

X E,
r = - — 2
P T

and

Az -
I = dz' 5 ep Gplzy,z') .
mp (Jij)Az n=o m?

From equation (3.2.4), it is evident that there are M + 2
unknowns and only M equations. Hence, two more equations
are needed to determine a unique solution. From the

boundary conditions,
g1 =8y =0 ;
or
I(0) = I(¢) =0 |, (3.2.5)

which states that the current is zero at both ends of the
wires. Therefore, M + 2 equations are available; and a

unique solution can be obtained.

3.3 Numerical Results.

Using techniques developed in the foregoing sections,
a computer program was developed to solve for the current

distribution in the wires of the array. (See Appendix)

22




In order t~ verify the accuracy of the solution tezh-
nique. a sp=cial case involving only one wire was used.
From a paper by Harrisoen, Taylor, O0'Donnel and Aronson,7
tabulated result~ of several numerical methods treating a
single wire are available. In Table 3.1 the results
obtained from the approach presented in this thesis are
compared with highly accurate results of their paper.

The current distribution given by the iterative method
was obtained after eighty-two iterations, and the current
distribution cbtained by the series solution required one
hundred terms. 21 "1 o‘her hand, the current distribu-
tion obtained by nsing the integral equation piecewilse
zoning technique required forty-one zones. Although the
results presented for this method appear less accurate,
two points should be made regarding this approach to the
solution. PFirst, the flat zone technique calculates cur-
rent values for entire zones, not discrete points. Conse-
quently, a shift takes place when these zones are
represented as points. 1In fact, in the computation of
these zone values, a point may be lost as is evident in
Table 3.1 for point z/h = 0.1. By increasing the number
of zones, this technique will yield an asccuracy comparable
to the other methods. This is a result of zone values
approaching point values with a subsequent reduction in

the previously mentioned shift,.

23



CURRENT DISTRIBUTION COMPARISON

Kh = 6.2831

Table 3.1

I(z) (milliamperes per volt)

ITERATIVE
SOLUTION’

FOURIER
SERIES?

INTEGRAL
ZONE METHOD

1.0
0.9
0.8
0.7
0.6
0.5
0.4

0.3

0.1

3.3459- §8.4079
3.2914- j8.1888
3.1315- §7.5530
2.8762- j6.5625
2.5414- §5.3150
2.1478 j3.9342
1.7188- §2.5591
1.2787- §1.3322
0.8504- j0.3895

0.4515+ j0.1442

3.3455- j8.4089
3.2910- §8.1898
3.1311- §7.5539
2.8758- §6.5634
2.5412~ §5.3157
2.1477- §3.9348
1.7187- §2.5595
1.2786- j1.3326
0.8503- j0.3899

0.4509+ 50.1430

3.37518- j8.3799
3.33393- j8.1531
3.19743-47.6908

2.95758- j6.7899
2.63320- 35.62045
2.23762- j4.2652
1.80178- j2.9183
1.34222- j1.6606
0.89199- §0.6647

0.46035- j0.0388

24




o~

In Fizare 3.2 ~urves of ‘e scurrent dcsribution on 2

gsingle wir. and .n the middi- wire in an s2ighty-one wire
array are given for Wl = 27, Tt is observed that the
curves in w-tli cuss~ asre bacizally of the same form. How-

ever, the imaginary curves denrease in amplitude substan-
tially from rthe one wire case to that of the mid-wire in
an eighty-one wire srray. 1% was found and is demonstrated
here that the points where +the curve crosses the axis move
toward the center as the number of wires increases. The
solid =urves representing the lerge array approximates the
1imiting form ui the current distribution as the number of
wires approach infinity. The current distributions for
the array are in effect a compromise between a more exact
solution and existing computer facilities. Although the
distributions are approximate, i% 1s sufficient to say
that they prove to be quite adequate in a subsequent study
of the fields aroundi the array. Figures 3.3 and 3.4 give
comparisons between the single wire current distribution
and that for a wire in a large array for frequencies where
k%2 =7 and 37 respectively. This gives an indication of
the effect of increasing the number of wires in an array
has on the curren® distributions. Further, these three
graphs also show the effect of increasing the frequency of

the inciden*t wave on the current distribution.
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CHAPTER IV

FIELDS ARQUND WIRE ARRAYS

In Chapter IIT the rurrent distribution in wires of a
large array wers de*srmined numerically. Of greater inter-
est, however, is a .uowledge of the fields surrounding this
array. Therefore, it is the prupose of this chapter to
present a metiiod by which these fields may be computed and
to examine the behavior of these fields around the struc-

ture.

4.1 Fittine Current Distributions

Since the information concerning the current distribu-
tion is discrete, a method outlined by Otto and Richmond8
proves appropriate in computing the fields from the cur-
rents. Using the expressions as developed by Schelkunoff

and Fri159 for the fields of a time harmonic electric line

source where the current is of the form

I(z) = A cos kz + B sin kz , (4.1.1)
the expressaicr Zor *hic Bz fleid is
|
: -jkr 3 e-Jkr 2°=22
Ez(p,z)=EJ—['(z')9 + 1z 20 ] 4.1.2)
WE r 3Z T
z'=zl

29



where
r = SQRT [02 + (z - z")@ ]
and

I'(z') = &, Iz .

This gives the z component of the electric field associated
with the line source in Figure Uu.l. In the present problem
where N discrete values of current are available, it is
considered that there is a series of line sources (see

Figure 4.2). Thus by superposition the Ez field is given

by
. N-1 ik
JEKT'§
\ 1 1 9_
Ez( pyz) ps ; (:I (z") :
- ik Z'=Zi+l
3 e
+ Uz L2 7] (4.1.3)
1 z'=z3

Here it 1s assumed that the current has the form given in
(4.1.1))! between each consecutive pair of points. Further-
more, if I(z') is continuous across the junctions Zy and
is zero at the endpoints z7 @and zyj , then Equation
(4.1.3) becomes

- jkR;

. N
Eplps2) = i Z Iy 2 (4.1.4)

i=] 1
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By a similar procedure it is found that

N
E (p,z) = - j'E%EE 2{: LI e~kRi cos 8; (4.1.5)

i=]
where
Ry = SRT [o2 + (z -21)2 ], (4.1.6a)
with
zi = (i - 0.5) Ag (4.1.6b)
and
cos 65 = (z - zi)/Ri . (4.1.6c)

From Equations (4.1.3) and (4.1.4), it can be seen

that

AL 0 = Iy 4 (z3) - I'y(zy) . 4.1.7)

Since I'y = d/dz; Ijl(zy) , it follows from Equation (4.1.1)

that

I'i = kE Ai sin kZi + Bi cos kZi] . ('4.1.8)

All that is now required to completely define the fields
are expressions for the coefficients &; and Bj . There-

fore, consider Equation (4.1.1).

I;(z) = Ay cos kz + Bj cos kz (4.1.9)
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where,
23 225 2441 -
Then
I;(z;) = A5 cos kzjy + Bj sin kz; , (4.1.10)
and
Ii(zi41) = Aj cos kzje) + B sin kzje; . (H.1.11)

Multiplying Fsua-ion (4.1.10) by sin kz;,q and Equation
(4.1.11) by sin kz; and subtracting the two yields an

expression for Aj

_ I(zy) sin Kzy4q - I(z347) sin kzy

A (4.1.12)
- sin kAz
In a similar manner the expression for B is
I(z3,7) cos kz; - I(zs) cos kz;
By = itl 1 1 irl (4.1.13)

sin kAz

It should be noted that as a consequence of the manner in
which Aj , Bi , end A'; are expressed, AI'y and AI'y
require special definitions. PFrom Equation (4.1.7) it is

geen that
AlYy = - 1%(2z9) , (4.1.14)
and
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AI'N = IN_l(ZN) . (u-l-lS)

Finally with AI'; completely defined with Equations
(4.1.7), (4.1.1%) , and (4.1.15); and A; and B; defined
with Equations (4.1.12) and (4.1.13) respectively, the
expressions given by (4.1.4) and (4.1.5) become fully
meaningful in describing the fields.

The foregoing technique provides a rigorous determi-
nation of field quantities around a wire structure. In
the subsequent section, the facility of this method will
be demonstrated by application to the large wire array,

utilizing the results of Chapter III.

4,2 Numerical Results

Using the formulation of the foregoing section, a
computer program was developed which calculated the fields
at a number of points around the structure for three
different frequencies, k=7, X = 27, and k&= 3,
Figures 4.3, u.u,'lLS, and 4.6 show graphical representa-
tions of the radial and z fields at various distances from
the plane of the array. It is evident that thé fields
assume a plane wave mode at some distance from the struc-
ture. This distance varies with frequency from 0.2682
meters for kg=nm1 to 1.72L meters for k¢ = 37,

By using the magnitude of the Ez field after it
becomes a plane wave, transmission coefficients for the

three cases may be calculated. It is not necessary to
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P oz (.2682 meters

p= 0.1149 meters

. . . : y/d
’//}yf .2 .3 A .5 .6 .7 .8‘\§3\\\i:0
Figure 4.3 Er field between wires atp distance from
array plane. kl=m, = 2ln(h/a).
———___ 0=0.1149 meters
p= 0.2682 meters
s R . . . , y/d

Figure 4.4 E_ field between wires at p distance from
z array plane. kl=w , § = 2In(h/a) = 10.0
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p= 0.2299 meters

o= 0,5364 meters

! [ | ’ ' — L N

1 .2 .3 .4 .5 .6 .7 .8 .3 1.0

Figure 4.5 Ez field between wires a p distance from
array plane. kl= 2w, g =21an(h/a) =10.0

o= 1.7242 meters

p= 0.3448 meters

Figure 4.6 E, field between wires at p distance from
arrav plame. kl= 2m, - = 21n(h/a) =10.0
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include the radial field since it is more than two orders
of magnitude below the z-component. Thus the trans-

mission coefficient can be written as

E
T=_% | (4.2.1)
Es
where
Thus,
T = B, + F3
- Fi . (4.2.2)

Using Equation (4.2.2) the transmission coefficients can
be quickly calculated. However, because of time limita-
tions imposed by existing computer facilities, only the
coefficients for the cases already described could be

determined. They are

=
u

0.332

For k2

I
3

T = 0-596 )

For k¢ = 27, and
T = 0.523
For k2 = 3
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