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ABSTRACT

Electromagnetic pulse scattering is investigated with the use of
numerical techniques. Two particular problems are considered.
Investigated first is scattering from a finite-length cylinder inside
a cylindrical waveguide filled with a time-varying, inhomogeneous
medium. The pulse scattering from a cube in a homogeneous, lsotropic
medium is investigated. 1In both cases extensive numerical results

are presented.

The numerical technique employed 1s the direct solution of
Maxwell's equations with the use of finite difference method. The

stability of the finite difference solution is discussed and
stability criteria are obtained.
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CHAPTER 1
INTRODUCTION

Maxwell's equations are the foundation of electromagnetic field
theory. 1In general, every electromagnetic phencomenon is described by
the solution of Maxwell's equations with appropriate boundary condi-
tions. Since Maxwell's equations form a set of first order partial
differential equations, some difficulty may be encountered in obtain-
ing the solution. If an obstacle 1s present in the medium in which
an electromagnetic wave is propagating or the medium is inhomogeneous
or time~varying, effecting a solution of Maxwell's equations is
extremely difficult.

Much work has been done recently in the development of numerical
solutions to partial differential equations. The so-called finite-
difference technique (l) is particularly advantageous in solving
Maxwell's equations numerically. YEE [2) has used this technique
in the investigation of scattering in isotropic media. In this
thesis that technique 1s extended to inhomogeneous and time-varying
media as well as scattering in three dimensions.

Basic considerations of finite difference solutions are discussed
in Chapter 1I, where the differential equations to be solved are
first introduced. The two curl equations of Maxwell's equations with

some constitutive relations of the medium form the set of partial



differential equations to be solved. Choosing an appropriate
difference scheme, Maxwell's equations are replaced with a set of
difference equations which can be solved iteratively if initial

and boundary conditions are specified. The question as to

whether such a solution would be a good approximation to that of the
partial differential equations is answered in terms of the convergence
and stability of the difference scheme. It has been shown that if
proper restrictions are imposed on the grid size, it will always be
possible to get a satisfactory solution (5).

In order to illustrate the technique, two specific electro-
magnetic scattering problems are considered. Scattering from a
perfectly conducting finite-length cylinder which 1s embedded in a
lossy medium with time-varying, inhomogeneous conductivity is
preseated in Chapter III. A cylindrical wave is considered tou be
incident upon the obatacle. The finite difference equations are
used to examine the variation of the field components at time
interval from T = 0 to T = nAt for an integer n and time increment At.
The induced current on the surface of the cylinder is also obtained.
In Chapter IV, a three dimensional scattering problem is considered.
A perfectly conducting cube is considered to be illuminated by a
plane wave pulse. This formulation is particularly significant in

the study of short pulse radar returns.




CHAPTER II

GENERAL CONSIDERATIONS

Maxwall's aquations are introduced in the early part of this
chapter. [t is shown that only the two curl equations with the
constitutive relaticns of the medium sufficiently determine wave
behavior. Frrceeling to the numerical solution technique the
finite diiferen~e equations are discussed briefly. Finally,
conditions ars described for which the difference equation
approximatinn is <atisfactory, i.e. the solutions of difference
equations are bounded to that of the partial differential equations

within a permissible error limit.

2.1 Maxwell's Equations

Electromagnetic wave phenomena in a particular medium are

governed by Maxwe]l's*equations(3):

VxE=-38 (2.1)
at

C}xﬁ=_g% + 3 (2.2)

VeB=0 (2.3)

-5 -

V- *D=p (2.4)

And for an isotropic nonferromagnetic medium (u = uo) the following

constitutive relations are satisfied:



> > - > >

J(r,t) = o(r,t)E(r,t) (2.5)
D(r,t) = (r,t)E(r,t) (2.6)
B(r,t) = pH(r,t) (2.7)

where o is the conductivity, € is the permittivity and u is the
permeability of the medium, for u = Ho™ 4T x lO_7 henry/m.
Substituting (2.5), (2.6) and (2.7) into (2.1) and (2.2), a set of

first order partial differential equations are obtained:

- >
dH(r,t) + > >
Ug ot = -V X E(r,t) (2.8)
-> B'E(r,t) - - > - -+ >
e(r,t) = V X H(r,t) - 0_(r,t)E(r,t) (2.9)
> > de(r,t)
where 0 (r,t) = o(r,t) + ——
e at

The soluticn of the simultaneous equations (2.8) and (2.9) will
yield both E and E, consequently, B and g can also be determined through
(2.6) and (2.7). Thus all the field quantities are obtained. Hence
the two curl equations (2.1) and (2.2) along with the constitutive

relations sufficiently determine wave behavior.

2.2 Difference Zquations

A difference equation is, in general, obtained by replacing the
derivatives of the corresponding differential equation with their
limiting definition. The unknown function is therefore not considered
to be defined continuously over an infinite space but only defined at

those grid points within some region. This is allowable if we are




concerned with a finite time interval, i.e. with the limit At Q
for fixed t, not with the limit as t + = for fixed At.
Consider a set of first order partial differential equations with

the form (4):

5 n gdu
.52- A_—_ + Bu (2.10)
t  gm] xS

where u 1s a column matrix with m elements and x® denote the n
independent variables other than t. The coefficient matrix A° and B
may depend on both x° and t. Note that if equations (2.8) and (2.9)
are written in component form for a particular coordinate system and use
matrix notation, a system of equations in the form of (2.10) is
obtained.

The general expression for a one-level difference equation for

(2.10) may be written in the form*:

u(x, t+At) = %Cju(x+AJx.t) (2.11)
where the ij are vectors with n components., The notation denotes
that CJ multiplies the function u evaluated at some grid point a

vector distance A,x from x. Equation (2.11l) expresses the value of u

3

at the point x and at the time t + At as a linear combination of values

of u at time t and at points x + A x.

]
The approximation of (2.11) to (2.10) is, in general, not unique.

Various difference schemes are possible,. e.g. forward difference, back-

*The development and notation of this section is based on the work
of Hahn (6), Lax (9) and Richtmyer (5), (8) .



ward difference or central difference formulas might be used [SJ. The
particular choice may depend upon the computing time available and the
accuracy desired. In practice it usuallly works best to experiment with

various schemes in order to fulfill these requirements.

2.3 Stability Consideratién

The basic problem is whether the solutions of the set of difference
equations (2.11) converge to the true solution of the initial-boundary
value problem (2.10) as the grid is refined. For a particular problem,
however, with some restrictions on the size and the type of the differ-
ence scheme, it is always possible to have a satisfactory solution. It
is conventional to discuss this subject in terms of the convergence and
stability of the difference scheme. Definitions are given as
follows (6):

CONVERGENCE: A difference scheme is called convergent if solution of the
difference equation tends to that of the differential equation as

At tends to zero.

STABILITY: A difference scheme is called stable if solutions of the
difference equations are uniformly bounded functions of the initial

data for all sufficiently small At and all nAt less than some finite
value T. Thus, if the above criteria are satisfied, we then conclude
that the solution of (2.11) tends to that of t2.10). Richtmyer's

text (5) treats this subject in great detail. He has pointed out that
Von Neumann's condition is a necessary and sufficient condition for

convergence and stability provided that the cocefficients of the partial




differential equations are constants.
An amplification matrix (M) for the difference equations is defined
as:
- -
(ux, a0)] = [M] [utx, 0]
- >
fu(x,28t)] = [M] [u(x,At)]

Dl(x,nAt)]= IM] [u(x,(n-l)At)]

Thus, at T = nAt, we have;
fux, T)]= M) '[utx, 0] (2.12)
where (u(;, O)) are the initial conditions.
(u(;,At)) are the solutions of the difference equations at time At.
(M) 1s called the amplification matrix and can be calculated

through the set of difference equations.

VON NEUMANN'S CONDITION:

Let (M(E)) be the amplification matrix of the difference scheme,
and \i are the eigenvalues of (M(E)J . Then, Von Neumann's condition
for convergence requires that:

Ikil S 1 for all real £

The expression (2.12) shows that the solutions of the difference

=
equations at time T = nAt are related to its initial values (J(X,O))

th th

through the n power of the amplification matrix (M). Since the n

power of a quantity greater than one grows without bound as n increases,



Von Neumann's condition is clearly necessary for convergence.

Many authors have proved that convergence implies stability and
vice versa. If Von Neumann's condition is used to verify that some
proposed difference scheme converges, the eignevalues of the amplif-
fication matrix (M(E)J must be checked to see that they do not exceed
one in absolute value for all real value of £.

The discussion so far is restricted to those partial differential
equations with constant coefficients, or ones for which the amplifica-
tion matrix (M) has only constant elements. When the coefficients of
the partial differential equation are variables, no general theory has
been developed to guarantee the convergence and stability of a pro-
posed difference scheme.

A sufficient condition applicable to the case of variable coe-
fficients has been given by Friedrichs (7), described by Lax and
Richtmyer (8) and lately extended by Lax f9). Friedrichs' condition
states that if the matrices Cj satisfy

5 Cj = I, where I is the identity matrix
are symmetric and are Lipschitz continuous*, then the difference
scheme 1s stable provided the Cj are nonnegative. Lax (10) has also
predicted that if the condition
I§cj &8l s 1
>

is violated for any real x and &, then instability occurs. This would

*A matrix (M(x)) 1s Lipschitz continuous at x, if for a given
§>0 there exists a constant K such that ]I(M(x)) - M(xo)]||< le—xol
for |x-x°| < 8.




require, as pointed out by Richtmyer (5), the amplification matrix
Oﬂ(;;ﬁ)) to be Lipschitz continuocus and all the eigenvalues X(;,E) of
(M(;,E)) to satisfy
A, < 1

for all ; and all real £¥0 mod 2m. When tnstability occurs in practice,
it often first appears as a local disturbance in a region where the
Von Neumann's condition is violated, hence Richtmyer suggen:s tudt 1%
is necessary for stability that Von Neumann's condition be satisfied
at every point and at every time t.

In a subsequent chapter an amplification matrix (M) with variable
elements is obtained. The Von Neumann's condition is then used as a

local condition to verify the stability of the difference scheme.



CHAPTER III

ELECTROMAGNETIC PULSE SCATTERING IN A TIME-
VARYING, INHOMOGENEOUS MEDIA*

The electromagnetic scattering from a finite cylinder has been of
great interest in recent years., Study of this problem requires that
Maxwell's equations be solved with some appropriate boundary conditions.
Unfortunately, the surface boundaries of a finite cylinder configuration
do not coincide with the coordinate surfaces of a coordinate system in
which the wave equation is separable., Hence it is very difficult to
obtain a solution in closed or open form. Moreover, if the properties
of the medium are inhomogeneous and time-varying, the analytic solution
is impractical. Becuase of this and recent advances in high-speed

digital computer capabilities, the finite-difference technique is used

to solve the problem numerically.

3.1 Physical Geometry

Consider that a perfectly conducting, finite cylinder is embedded in
a lossy medium where time-varying and spatially varying conductivity
o(r,z,t) is assumed.Also the permittivity is considered to be a funection
of position and time, i.e. e(r,z,t) = EOK(r,z,t), where K is the

relative permittivity. Here the coordinates r and z are the usual

*Portions of this chapter are to be published in the IEEE Trans-
actions on Antennas and Propagation., Sept. 1969 [11).
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cylindrical coordinates. For simplicity of calculation, a very large
cylindrical waveguide which containing the cylinder is introduced to
approximate an infinite expanse of the medium. The geometry chosen

for analysis is presented in Fig. 1.

3.2 Differential equations, Difference equations

It is convenient to use cylindrical coordinates where azimuthal
symmetry is obtained. Since the field components are independent of the
azimuth angle the magnetic field has only one component,H¢. Expressing
(2.8) and (2.9) in component form, the following set of first order
partial differential equations is obtained:

3H¢(r,z,t) aEz(r,z,t) _ BEr(r,z,t)

Yo ae T g 3z

8Er(r,z,t) 3H¢(r,z,t)
EOK(r,z,t) 5T = - Y

BEz(r,z,t) 8H¢(r,z,t) H¢(r,z,t)
EOK(r,z,t) T = e +

- Ga(r,z,t) (3.1)

- g (r,z,t)
v e

A one-level finite difference scheme as shown in Fig. 2 was
chosen. The half-interval points have been used to reduce the trunca-
tion error, The set of first order partial differential equations (3.1)

may be replaced by the set of finite difference equations:

Hg+1(I+k,J+&)—H2(I+%,J+%) E:+%(I+%,J+l)—E2+%(I+%,J)
u [o] A t = AT -
n+ig ot
E (I+1,JH9)-E (I,J+%)
r T
T Az

11



Figure 1: Cylindrical waveguide containing a solid cylindrical

scatterer on axis of the waveguide
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Figure 2: Finite-Difference scheme for cylindrical configuration.
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n+l

3/2 Y
E’;“' /(1+1,J+¥5)—E:H(I+1,J+ig) Hgﬂ(1+?§,J+¥rg)-ﬂdL (I+,J+s)
€o 1 = Az
——— At
K™ T (I+1,34+%) o+l n+l
- 0o (I+1,JH5E.  (I+1,J+k)
3/, L n+l n+l
E:+/(I+%,J+1)-E2+1(I+%,J+l) Hy (IHg,J+p-H  (I+,d+)
€ =
o 1 Ar
At
& (14, 341 + H$+1(I+%,J+1)
(J+1)Ar

n+ n+l

1
9, (I+%,J+1)E (I+,J+1)
z

where the following notation is used:

H$+1(I,J) = H, (IAz,Jr, (a+1)At)

n+l

H¢ (I+s5,J+%) = H¢((I+%)Az,(J+%)Ar,(n+l)At)

and so forth for other field components.

Let AT = cAt
L
C=
Ni"oso
z=u°
e = 120 ohms

o

then (3.2) can be rearranged:

1

(3.2)




ntl n n+g nt+lg
By (I,049) = B (0,000 + =035 (e, ae)-E, (14s,0)]
T z (3.3a)
n+ds n+ks
AT
- porlE, @HLIHD-E_(1,04)]
nt+3/a n+s ZAT o+l
E. (I+1,J+%) = m,E. (I+1,J+%) -~ mb[ﬂ (I+3/2,3+%)
3.3b
n+l ¢ ‘
- H¢ (I+%,J+&ﬂ
w+§h n+is n+l
Ez (I+4,J+1) = mcEz (I+ks,J+1) + 21, [H (I+%,3+3/2)
Ar d% ¢ (3.3¢0)

n+l
H (I+5 J+ )] + dZH¢ (I+%,J+1)

where
1-m1
a l+m1

1
(I+1 J+t )(1+m )

1 - m

m = ____ 2
1 + m,

1
o
K" 1(I+%5,J+1)(1+m2)

n+]
Atag ~ (I+1,J+k)

2 KB (1+1,3+%)

aea™ (1, 341)
i

2¢ K K" (1 741

At 1

o+l
Ar (¥R (I, d+1) (1+m,)

18



and the following linear interpolation is used:
3
E2+1(I+1,J+15) - !5[5‘;* (I+1,J+4%) + E:"';’(IH.J#;)]

ot (g, 41 = &[E:pfw,nl) + E:+15(I+15,J+1)]

3.3 Amplification matrix and Stability Criteria

As discussed in the previous chapter, it is possible to obtain the
amplification matrix {M] and then use Von Neumann's condition as a
local condition for stability. Let the initial fields be, in general,

the fcrm of an exponential function, i.e.

£ (1,0) = ElelKyJAT dkyTAz
r r
2
Err‘""%(I,J%) = En#i(z,.r)ejkl“/
r

where kl & k2 are components of the propagation constant, and j = J-l .
The other notation is consistent with the foregoing.
With the foregoing expressions, the set of difference equations

(3.3) can be written as

jklA r/2 —jkl_A r/2 otk

o+l - H® AT -
Hy (1,J) H¢(I,J) + ZAr(e e ) E, (I,J)
skbz/2 -jkpz/2 otk
- %_—Z——(e 2 -e 2 ) E  (I,J)
2 T (3.4)
n+3/2 o AT jsz z/2 —jki& 2/2 e+l .
E (1,J) = maE (1,J) - "Lbzgz(e - e )H¢ (1,D
n+32 n+s 3kAr/2 -jkIA r/2 n+l
N 1 _

E, (1,J7) = m.E, (1,J3) + mdzg%(e e )P¢ (I,n

n+l
+ dZqu (1,J)

16




Let

AT ;
a = 27G?sin(kIAr/2)

b = 2R sin(k,Az/2)

The set of equations (3.4) can be written in a matrix form:

s n+l b " n -
ZHgy (L,J) ZHg (I,J)
3 n+s
| - [x] |e @
r r
n+3/2 n+s
E (I,J) LE (1,3)
Lz - Z -

where (MJ is the amplification matrix and is given by:

1 -ib ja
2
[M] = -imb ma—mbb mbab (3.5)
jmda+d b(mda—jd) mc—mda2+jad

Note that j = J—l is understood in (3.5).
Let AQ be the 2th eigenvalue of the matrix (MJ given by (3.5),

according to matrix theory, we have

trace [M] = Qé XZ

thus
2 2
: = —m - +jad

Q:l Az 1+(ma nbb )+(mc mya +ja )
Since Von Neumann's condition requires that:

| Az | < 1 for ¢ =1,2,3
But since 3 3

QELXQ < lill AZ |

17



2 2
therefore [1+(ma—mbb )+(mc—mda +jad)| < 3 (3.6)

This 1s the condition which must be satisfied at every time step.
For the time-varying, inhomogeneous medium, the grid size must be
chosen such that (3.6) is always satisfied. However it should be
pointed out that (3.6) is only a necessary condition, not a sufficient

condition for stability and convergence.

3.4 Boundary Conditions and Initial Conditions

BOUNDARY CONDITIONS

The boundary conditions imposed on the perfectly conducting
scattering surface are that tangential components of the electric
field vanish. This boundary condition also implies that the normal
component of the magnetic field is zero on the surface (2). In
subsequent numerical claculations, these are easily enforced in the
programming by putting the corresponding field points on the surface

of the scatterer equal to zero,

INITIAL CONDITIONS

The initial conditions are considered as those of a pulse
propagating in a cylindrical waveguide which initially contains a
lossless medium with constitutive parameters eo:uo' However, the
difference equations (3.2) may treat more general constitutive
properties for t>0. Since the field components of the TMOl mode

have azimuthal symmetry, it is convenient to consider the initial

electromagnetic pulse to be formed by this mode.. The field components

of the TMOl mode are:

18




A~ - _sz
Ez(r,z,m) = Eo(w)Jo(Kcr)e

~ PN -jsz
E.(r,z,w) = jBEo(w)Jl(Kcr)e /Kc (3.7)
-jBz

H¢(r,z,m) = jkEo(w)Jl(Kcr)e /ZK

c

~

where E (w) is the complex amplitude of the mode at radian frequency
o

w.
2
B = |k - KZ
c
2 2
k= w H.Eq
uO
Z = <
o
K = 2'305 , R is the radius of the waveguide.

Taking the Fourier transform of (3.1) with respect to time t for

o(r,z,t)=0 and e(r,z,t)=c_, it may be shown that (3.7) is exactly

0
a set of solutions of (3.1) in transform space.

The time histories of the fleld components forming the pulse
are expressed as Fourier superpositions of the respective components

given by (3.7). It is readily shown that:

JI(K r)a
Er(r,z,t) = - —— Ez(r,z,t)

o ¢ (3.8)

Hd,(r,z,t) =— ——F (r,2z,t)
ZK cJ (K r)
cC o ¢

where

19



(o]

3 (Rr) S R -1 (Bz-wt)
o
E (w)e dw
,JZTT - Do °

It is convenient to choose R sufficiently large that h =k for most of

E (r,z,t) =
z

the frequency content of the pulse. The (3.8) yields
Ez(r,z,t) = Jo(Kcr)F(z:ct) A (3.9
+
where F(z-ct) is determined by the choice of Eo(w) or vice versa.
The initial field components must be continuous functions in order
for the difference formulas to apply, 1i.e. F(ztct) and F'(ztct) must
be continuous for all (z+ct) and the Fourier transform of F(ztct)
must have negligible frequency content for m$ch. Thus, a suitable
+
choice for F(z-ct) is:
2
sin A(ztct) 0<A(ztet)S
F(ztct) = { (3.10)
0 elsewhere

3.5 Method of Computation

The computation of (3.3) is relatively simple in this case. For
completeness, the procedure of calculation is described explicitly.
The calculation process is illustrated in Figure 3. Those field
components on the boundaries must be determined either by boundary
conditions or by extrapolation. Since EZ+%(I+%,JM) is the
tangential component of the electric field on the lateral boundary
of the waveguide, it is since set equal to zero at these grid
points. The other three boundaries include both ends and the axis

of the waveguide. For these boundaries it is more convenient to use

linear extrapolation. In this manner, all the gfid points on the

20




boundaries of the regionms SO; Sl;...Sn can be obtained for every

time step At up to T = nAt.

The initial fields for H:(I+!5,J+15); E%(I+1,J+‘5); and E‘:(I-'-&,Jﬂ)
r

are given at the corresponding grid points on region So for OszSZ
where z = (I-1) Az; I = 1,2,..., IN with (IN-1) Az = Z and for 0<r$R
where r = (J-1) Ar; J= 1,2,...JM with (JM-1)Ar = R,

To compute the next time step At or n = 1:
i(1+15,.]+¥5) for T = 1,2,...IN=1
and J = 1,2,...JM-1. For example, H;(I+k,1+%) at points Ay

(1) (3.33) is used to compute H

(Fig. 3) can be computed from these grid points D, E, F, G and H.

3/2
(2) (3.3b) is used to compute Er (I+1,J4+%) for I = 1,2,...IN-1
3/2
and J = 1,2,...JM-1., For example, Er (I+),J4+%) at point C

can be computed from these grid points Al, A2 and D.
(3) (3.3c) 1s then used to compute Ezlz (I+%,J+1) for I = 1,2,...IN-1

and J = 1,2,...JM-1 in the same manner, however, an extrapolation

must be used:

n+l 3

H¢ (I¥s,J+1) = (H:+l(1+15,.]+;) +H:+1(I+&,J+!:)) /2
Thus, all the grid points at time t = At have been obtained as shown

on S This computation is then repeated successively over the time

1
interval 0£t<T where T = nAt.

To treat the boundary conditions that are imposed upon the
scatterer, all grid points are first evaluated; and then the appropriate

field components at the surfaces of the scatterer are set equal to zero.
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Figure 3: Illustration of calculation process. The initial field
components are on the S (n=0) surface. Note that Hy ,
Er and E_ are on differegt time level. Symbols are :
x'for E_*field; a for E, field ; o for Hyfield.
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3.6 Numerical Results ~

The numerical results presented subsequently are obtained with
the following parameters.
Size of the conducting finite cylinder: radius r = 0.1 m

length 1 = 0,75 m

For the outer waveguide radius R = 2405 m

Ar = Az = 0.025 m

Increments
At = 0.0125 m

The incident wave is as indicated in (3.8), (3.9) and (3.10) where
A = (18Az)-1. Three particular cases are considered.
Case I. Interior of the waveguide considered to be free space

To determine the accuracy of the finite difference equations, a
lossless medium is considered first inside of the waveguide. Figure 4
shows the Ez component of the pulse which has propagated for 20 and
40 time cycles. Note that the pulse has propagated 10 and 20 spatial
increments, respectively, as expected. Essentially no dispersion can
be observed. Figure 5 shows the Er component of the pulse where a
slight disturbance is noted at the tail of the pulse. This evidently
is the result of "round-off'" error since only 8 significant figures
in digital calculations have been used. Figure 6 shows the resulting

buildup of current on the surface of the cylinder.

Case IL. Scattering in a time-varying conducting medium
The waveguide is considered to be filled with a homogeneous, but

time-varying, lossy medium. The conductivity is considered to vary
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in time as
n -3 '
0 = 2n x 10 mhos/m (3.11)
Figure 7 exhibits the attenuation of the pulse and dispersionm.
Again "round-off" error does not seem very pronounced in the
computation of the Ez component. In Figure 8 the radial component
of the electric field is shown for the time-varying conductivity.

Figure 9 shows the buildup current on the cylinder.

Case III. Wave scattering in an inhomogeneous, time-varying medium

An inhomogemeous, time-varying medium with conductivity of the

form

o(z,t) = co(t)f(z—ct)

is considered to be inside the waveguide. For t=0, the profile of the

conductivity is shown in Figure 10 along with other initial field
components of the pulse. The factore ob(t) is assumed to vary in
time exactly as (3.11) until it reaches a chosen maximum value

(for the subsequent data this maximum is 0.l mhos/meter). Figure 11
shows propagation of the Ez component of the pulse. It is noted
that the attenuation at the tail is due to the conductivity existing
in that region. In Figure 12 the radial compomnent of the electric

field is shown. The current distribution on the rod is shown in

Figure 13.
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Figure 41 The propagation of the axial component of the
electric field evaluated at J=20, 42=0.025 m,

AT=0,0125 m, R=2405 m,
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Figure 73  Propagation of the axial component of the electric

field in a time-varying homogeneous medium at J=20,
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Figure 8: Propagation of the radial component of the electric

field in a time-varying homogeneous medium at J=20,
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Figure 9: Current distribution induced on the cylindrical scatterer.

The region of the scatterer s 40XI<70 and [<Jx4.
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f(z-ct) is the spatial-time variation of the conductivity.
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CHAPTER IV

ELECTROMAGNETIC PULSE SCATTERING FROM
A CUBE IN THREE DIMENSIONS

The finite-difference technique discussed in Chapter II, in
principle can be applied for any number of dimensions. However,
for any physical problem at most only three dimensions would be
involved. This chapter is thus devoted to the electromagnetic
pulse scattering effect on an obstacle in three dimensions.

Consider a perfectly conducting cube of length L oriented in
free space, i.e. a lossless medium in which u-uo, e-eo. At time
t=0, a plane wave pulse is considered incident on ‘the cube., The
problem is to find the scattered fields and the induced current on

the surfaces of the cube at subsequent time t, (t>0).

4.1 Formulation

Maxwell's equations are once again used as the point of
departure and are solved by the finite-difference technique. Equations
(2.1) and (2.2) are expressed in rectangular component form assuming
there is no charge or current sources in the medium. The set

of first order partial differential equations to be solved is:

oE oR 3H
Eo—2 o Y _ _X

ot ox oy

9E oH 9H

Eo__!- X _ F4
ot 9z ox
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oE oH oH
g —F o % _

o3t oy 9z

ERE -
Hode T3y T ax ‘

BHy oE BEx
H—— = =— -

o5t 9x az

BHX BEy EEE

Oat dz ay

A convenient difference scheme has been suggested by YEE [2].
To set up the difference equations a suitable set of grid points
are shown in Figure l4a.
With the difference-scheme as shown, (4.1) is then replaced
by a set of difference equations as follow:
ml(1,0,Kk4g) = Ep(I,J,K+s) +T[H (I+,J K+1§)—H (1-%,J ,K+s)]
- Ay [H (T, 3+, Ks) ~HD (T, -3, K+p) ]

e, awe5) = E;‘a,ws,x) +€AZ- [Hn(I,J+15,k+15)-Hn(I,J+35,K-li)]
z
'O
[H (T+sg, 435, K) ~H (I35, T+35,K) ]

(4.2)

[ (2, 3455, K) =] (145, 135, K)]

A
O
(1, 0,0) = EL(1H,0,K) +2
A_
Eol?

[H;(I+%,J,K+%)—H;(I+%,J,K-%)]

1 (0, 00,0 = B (14, 39 K) +SE ,.E:: (I+},J+1,K) -ED (I+%,J,K)]

n+l
_ = I+1,J4Hs, K g™ I,J4%,K
aEy ¢ ', K)-E L1, 54,10)
Hn+l(1+l~5 J,K+Y) = H(IT+Hs,J,K+s) +REEPL 1y g ke )-En+l(I J K9]
v oy v e TEN HoAxl z sy 3 z vy J

t +
-ﬁ§A£§+1(I+%,J,K+1)-E2 1(I+%’J’K)]

+1 n At v+l o+l
(1,343, K+5) = HD(T,J4+5,K+9) +1EA_J.':Y (1,344, K+1)-E " (1,34, K)]
At g+l

= (1,3+1,K+4)-E0 Ler,7,x44)]
o
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where the following notation is used :
n+l
Ez (I,3,KHg) = Ez(le,JAy,(K+%)Az,(n+1)At)
n
Hz(1+%.J+5.K) = Hz((1+k)Ax,(J+k)Ay,KAz,nAt)

and so forth for the other field components.

4.2 Amplification Matrix and Stability Criteria

To develop the stability criteria, let the initial field compo-
nents be, in general, the form of an exponential function, i.e.

n Jk,IAx jk,JAy jk.,XKAz
Ez(I,J,K) - E:e 1 e 2 e 3

jk.Az/2

n n 3
Ez(I,J,K+k) = Ez(I,J,K)e

where kl, k2, k, are components of the propagation constant along the

3
X, ¥, and z direction respectively, and j= J-l . Using these notations,

(4.2) can be written:

o+l o Jk)bx/2 -3k Bx/2
E (I,J,K) = E (1,J,K) + (e -e YH (1,3,K)
2 z EoAx y
Jk,Ay/2 -ik,Ay/2
- L (e 2 - e 2 YHR(1,J,K)
EOAY x
n+l n At Jk3AZ/2 _jk3AZ/2 n
Ey (I,J,K) = Ey(I,J,K) +-E;K;(e - e )Hx(I,J,K)
dk Ax/2 -jk,Ax/2
T e T a0
e Ox z

o
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k,Ay/2 -jk.Ay/2
n+l n at | JkA 2 a
Ex (1,J,K) = Ex(I,J,K) + soAy e -e )HZ(I,J,K)
¢ JkjAz/2  -jk.A2/2 n
L ~e 3 A (1,08
eoAz y
o+l a pc | JAY/2 -fkAy/2 ol
H (1,3,K) = H (I,J,K) + (e - e JE (I1,J,K)
z z uOAy X
Ik, A%/2 -k Ax/2 el
S L e e R T ¢
]JOAx y
n+l n At jkle/Z —jkle/Z o+l
H (I,J:K) = H (I’J’K) + (e - e )E (I‘J‘K)
y y Holx z
A Jk,Az/2 -3k _Az/2 n+l
- = P - I e @,up
Hphz
n+l n At JkqA2/2 —jk3Az/2 n+l
H (I,J,K) = H (I,J,K) + (e - e )E (1,J,K)
x x Holz y
At | Jkpby/2 _JkZAy/Z n+l
- e -e JE (I,1,K)
Hody z
where AT = cAt
u
z= |22
o
a= 2-%1 sin(k Ax/2)
X 1
AT
b = 2 —sin(k,Ay/2)
I (k,8y/
AT
d 2-3; 51n(k3Az/2)
jkle/Z —jkle/Z
And noting that (e ~-e ) = jzsin(kle/Z). The set of

equations (4.3) can be written in a matrix notation:

38




o+l 1
E, (I,3,K)

Ey (1,3,K)

E (1,3,K)

ZH (1,J,K)
z

ZH (1,J,K)

ZR (1,J,K)

- ]

R
E, (I,J,K)

n
E (I,J,K)
y

n
E (1,3,K)

9%

ZR (1,J,K)

89N

ZH (1,J,K)

3 <

ZH (1,J,K)
X

is the amplification matrix and is given by:

1 0
0 1
0 0
0 -ja
ja 0
-jb 3d

0 V]
0 -ja
1 ib

b (1-b%-a?)

-jd bd

0 ad

ja -jb

0 yd
-3d 0
bd ad

(1-a2-d2) ab

ab (1-d%-b2)

Von Neumann's condition for the difference scheme to converge

is that the eigenvalues of the amplification matrix M(£) not

exceed one in absolute value for all real values of £.

To obatin the eigenvalues of (4.4), it is necessary to solve

for the roots of the following secular equation:
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0 1-» 0 -ja 0 3d

0 0 1-A jb -jd 0 =0 (4.5)
2

0 -ja jb (1-A-a2-b") bd ad

ja. 0  -jd bd (1-r-a’-da?) ab

b 34 O ad ab  (1-A-b2-d%)

where A is the eigenvalue of (4.5). The calculation of (4.5) is
quite straightforward; however it is tedious. Fortunately, a very
simple result is obtained. It is

-2 2= 2-a2b%-a?e1]? = 0
The eigenvalues A which satisfy the above equation will not
exceed one in absolute value if and only if

(a2+b2+d2) £ 4

Substituting in the values for a, b, and d yields the condition

on the grid size for convergence.
at1? At 2 At 2
Ax Ay Az

4.3 Some Aspects of Calculations

The system of difference equations of (4.2) is assured of having
a solution provided the initial conditions and boundary conditions are
specified. Since a cube is present in the medium, the boundary
conditions on the cube must be also included.
BOUNDARY CONDITIONS

In order to require that the tangential electric field vanish
on the perfectly conducting cube surfaces, they are conveniently

represented by a collection of surfaces of smaller cubes, the sides
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of which are parallel to the coordinate axes. Plane surfaces perpen-
dicular to the x—axi?hwill be chosen so as to contain grid points where
Ey and Ez are defined. Similarly, plane surfaces perpendicular to the
other axes are chosen. This procedure is required since the sides
of the cube do not necessarily fall on grid points where the field
components appropriate for the boundary conditions are defined.
(Figure lé4a).

In order to limit the extent of our calculations region,
artificial boundaries are placed a few grid spaces from the cube,

the values of the field components on these boundaries are computed

by linear extrapolation.

INITIAL CONDITIONS

The initial field is considered to be a uniform plane wave.
Since the field components are required to be continuous functions
it is acceptable to assume they have a half-sine wave profile.
Moreover, they are also assumed to be propagating in the negative
x-direction. Hence only two components of the pulse exist, they

are:

Ez(x,y,z,t) sin[A(x—l&Ax+ct5] O<A (x-l4Ax+ect)gm
=0 elsewhere 4.7)
Hy(x,y,z,t) = Ez(x,y,z,t)/z
where A is a real constant,

The computation procedure is nearly the same as that discussed

in previous chapter, however, we now have a three dimensional grid
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space, The whole space i3 divided into grid points where the
field components are evaluated, and the system of equatioms (4.2)
is then used to compute another grid space at each successive
time-increment At, Appropriate boundary conditions for the
scatterer are then applied to the corresponding grid points on

each surface of the scatterer.

4.4 Numerical Results

Numerical results are presented for the incident pulse as
given by (4.7) where
A= m(80x) "
i.e. the pulse width is considered to be 8Ax units. For

computational stability, a convenient choice which satisfieg

(4.6) is as follows:
Ax = Ay = Az

AT = cAt
%-%

The physical length of one side of the cube is considered to
be L = 10Ax units. The region which is used in computation has
dimensions of 24Ax X 184y X 18Ax; (Figure 14b.). Ideally, we should
consider a computational region that is much larger than the
dimensions of the obstacle, so that its boundaries would not affect
significantly the computation of field components near the obstacle.

Since an IBM 360 Model 40 was used to obtain the numerical data,

sufficient memory storage to fulfill the aforementioned requirements
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was not available. However, linear extrapolation may be used to
simulate those conditions. For a limited duration of time, the
results which we obtained should approximate those of the original
problem,

The program which was developed (See Appendix II,) was used to
compute the induced current on various surfaces of the cube, Figure
15 and Figure 16 show the distribution of the induced surface charge
density and induced surface current on the front surface of the cube.
Since it is inconvenient to present a two-dimensional pattern of the
distributions, a line through the center of the cube face, K = 9, is
chosen to show the distribution of charges and currents as a function
of JAy. Figure 17 and Figure 18 show these distributions on the
upper surface of the cube and Figure 19 and Figure 20 show those
distributions on the side surface. Note that the terminology of
"front surface", "upper surface'" and "side surface" are defined

explicitly in Figure 14b.
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Figure 1l4: Positions of various field components.
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Surface charge distribution induced
on the front surface (I2=14) of the
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Figure 17: Surface chearge distribution induced
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Figure 18: Current distribution induced on the
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Figure 20: Current distribution induced on
the side surface (J2=14) of the
cube at K=9, Note that this is
the component in x-direction,
Z=376,7 ohms.
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CHAPTER V

SUMMARY AND CONCLUSICNS

The object of this thesis was to present the finite-difference
method for treating electromagnetic scattering problems. Since
such scattering effects are governed by Maxwell's equations, the
problem thus reduced to the numerical solution of a set of first
order partial differential equations.

A general approach to the numerical solution by using the
finite-difference technique has been discussed in Chapter II.
Whether such a solution is equivalent to the true solution can be,
in general, considered in terms of the stability of the difference
scheme chosen. A suitable choice of the difference scheme requires
that Von Neumann's condition be satisfied. This will guarantee a
meaningful solution.

The problem chosen for illustrating the technique in Chapter
IIT is two dimensional scattering in a time-varying, inhomogeneous
medium. A perfectly conducting cylinder was the scatterer. The
induced current distribution on the surface of the cylinder was
obtained as well as the field components. The attenuation
of the pulse in the lossy medium is clearly demonstrated. In
Chapter 1V, a three dimensional scattering problem has been

considered. Although the technique used is limited to three
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dimensional scattering problems by the memory capacity of present
computers, it does provide a new method for the solution of
electromagnetic scattering problems. Numerical results are
presented for the induced charges and the induced current on the
surfaces of the cube that is illuminated by a uniform plane wave
pulse.

No attempt was made in this thesis to discuss the existence
and uniqueness theorems for the numerical solutions of partial
differential equations with variable coefficients such as are
obtained in the study of wave propagation in time-varying,
inhomogeneous media. The existing mathematical theory in this

area is generally inadequate, and we have only a recourse to a

combination of intuition and experimental evidence (5).

It was the experience of the author that the proper arrangement
of the initial field was very imrortant to the convergence of the
solution, This, of course, would also affect the choice of the
difference scheme. Another thing noted was that the numerical
solution was generally cocerned with a finite time duration, we
may therefore construct some artificial boundarier so as to limit
the region of calculation. Of course, ideally we require that
these boundaries not affect the results in the region of interest.

If we have sufficient computer memory capacity, this can always

be done.

The subject discussed in this thesis has provided a new
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approach to the solution of the electromagnetic scattering problems.
The idea of approximating all space with grids leads to the
treatment of more general problems, for example, scattering from
obstacles of arbitrary configuration. In fact, this solution
technique is very powerful, limited only by the capability of the

digital computer that is used.
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APPENDIX I

The fortran program which is used to obtain the data in Chapter III
is presented here to facilitate further numerical investigations. The
program is written in the universal FORTRAN IV programmer's language
(12}. Comment statements included in the program should give enough
information in order to make use of the program without having to be

intimately familiar with the theory behind the program.
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FINITE CIFFERENCF METHODS FCR ELECTRCMAGNETIC PLLSE
SCATTERING FRCM A FINITE LENGTH CYLINCER IN TINE-
VARYING, INHCMCGENECUS MECIUM

* L ] * * *® * x %® * » »
DESCRIPTION OF VARIABLES
I COCRDINATE CF THE GRIC PCINT IN Z-CIRECTION

J = COORDINATE CF THE CRID PCINT IN R-CIRECTICA
IN = CUTER BCUNCARY OF THE Z-CIRECTICN

J¥ = CUTFR BCUNCARY CF TKFE R-CIRECTION

Z = INTRINSIC IMPECANCE

Pl = 3.141592

ISLyISE = SPECIFY THE LCCATICN CF THE CYLINCER IN
Z-DIRECTION
JSCoJSE = SPECIFY THE LCCATICN OF THE CYLINCER IN
R-DIRECTION

IPULSE = LEADING END CF THF INPLT PLLESE

PWIDTH = PULSE WIDTH

DELCCN = INCREMENT CF CCANCLCTIVIYY CF THE MECIUM AT

EVERY TIME STEP

PERMTY = FERMITTIVITY CF T+E MECIUM

AMPLTU = AMPLITUDE OF THE INPUT PULSE

RETA = 2.4C5/R, ®FERE R IS THE RAQIUS CF THE

WAVECUICE

K29K3 = DUMMY VARTABLES FOR CCNTROLLING THE CULTPLT
STATEMENTS

A (DEL T)I/(DEL Z) 0.5¢ GEILC RATIC AS DEFINEC

B (CEL T)/(DEL R) 0.5 GRIC RATIC AS DEFINED
b2 32 222 R 2 2 TR 2R SRS R R RS RS SE SRR RS RS R R RERR S RS 2
DIMENSICN EZC(1CCe41)4ERC(10G+41),HPHIO(LCO 441),
1FACTRZ2(10GC),VSINI(1CC)oVSINZ2(100),VvSINIYL1CC),
2FACTR1{100)4VSIN22(100)
INTEGER CASE
READ(143) INGJUMLISL,ISESJSCoJdSOyIPULSE+PWIDTH,DELCON,
1PERMTY,A,B,BETA
3 FCRMAT(T7124€F€.2)
WRITE(3,71) INoUM,ISLyISELJSCyJS0O, IPULSE,PWICTH,DELCCN,
1PERMTY,A,B,BETA
Tl FORMAT(TIE,6F8.3//)
WRITE(3,1)
1 FCRMAT({ 40X, "NLMERICAL SCLLTICN CF MAXWELL S ECUATICAS?!)
WRITE(3,2)
2 FCEMAT(21X,"hWAVE SCATTERINGC FRCM A FINITE CYLINCER IN *
ly"TIME-VARYING AND INHGMOGENECUS MEDIULM'//)
AMPLTU=1.0
PI=3.141592
2=376.7
DELZ=C.C25
K2=16
K3=31
ISE1=1SE-1



Jse1=Jsc-1
INI=IN-1
JMl=Jb~]
F=PI/(DELZ*PWILTH)
AM{=Z*B*0ELZ/PERMTY*C.5
TFUEND=TPULSE+PWICTH-1
134 REAG{1,135) CASE
135 FORMAT({I1)}
GC TG (446984599),CASF

4 WRITE(3,5)

5 FCRMAT(15X,*CASF CNE WAVE SCATTERING IN
1o *"NCN-CCNDUCTING MEDIUNM*/)
GO 70 10

6 WRITE(3,T)

7 FORPATI15X,'CASE ThC RAVE SCATTERINC 1IN °*

1y *TIME~VARYING CONCUCTIVITY MEDILM'/)
GC TC 1cC
8 WRITF(3,9%)
9 FORMAT{1S5X,'CASE THRFE wWAVE SCATTERING IN ®
1* INHCMOGENECLS AANC TIMF-VARYING NMELTUN'/)
10 CONTINUE
CC 11 J=1,JM
0C 11 [=1,IN
HPRIO(1,40)=C.C
ERC(T4J)=0.0
11 EZC(1,44)=0.0
CC TC (13,13,12),CASE
12 TFULSL=TPULSE+S
GO T0O 14l
13 TPULSI=TIPULSE

INCIDENT WAVE CALCLLATICN AS THE 1IAPLT CATA
141 CC 14 I=IPULS1+IPUENC

CC 14 Jd=1.J¥¢

T=J40.5-1

X=RETA*T*CEL?
RESSI=X/2.-(X*¥%3)/16.0+({X**5)/384.,0-(X*%7)/18432.0
1+({X%%G)/1474%¢.C
VEIN=SIN{(T+0.5-IPULSE)*PI/FWICTF)
VCOS=COS{{I+C.5-1PULSE)*FI/FWICTF)

14 HPRID(T,.0)=-2.0%F*3FSST*VSIN*VCCS/(PERMTYSPRETAXZ)*¥ANMPLTU

TPULS2=TFULS1+1]

[IPUEN2=TFUENC+]

CC 1% J=1sJM

0DC 15 [=TPULS2,IPUEN2

T=Jd+0.5-1

X=RETA®T*TELZ
BESSI=X/2.-(X**¥3)/16,0+(X**5)/384,0-(X**7)/18432.C
1+(X**G)/14745¢€.0C
VSIAN=SIN{{[=-.25-TPULSE)*PI/FWIDTH)
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15

16
17

18

28

29

30

19

20

21

311

33
34

35

36

VCOS=CAS((I-.25-1IPULSE)*PI/PWIDTH)
ERO(I4J)=—2.0*F*BESSI*VSIN*VCOS/BETA®AMPLTUY

DO 16 J=1,JM

BC 16 I=IPULS1,IPUENC

T=J-1
X=BETA*T#CELZ

BESSO=1.0—-(X*%2)/4 . 0+4(X*%*4)/64,C~(X*%§) /2304.0

1L+ { X*%8) /147456,0

VSIN=SIN((I+.25~TPULSE)*PI/PWIDTH) *%*2
EZO(1,J)=BESSO*VSIN*AMPLTU
GO TO(19+19+17),CASE

DO 18 J=1,JM
CC 18 I=1,1PULSI

EZO(I,J)=EZO(IPULS1,J)
CO 28 I=IPULSE,IPULS2
VSINI(ID)=SIN((I+.25-1PULS2
VSIN2(I)=SIN{{I-TPULS2)*PI/PWIDTH)®*2

bC 29 I=1,IPULSE

VSIN2(IY=VSIN2(IPULSE}
VSINI(I)=VSINI{IPULSE)

OC 30 I=1PULSZ2,IN
VSIN2(11=C.0
VSINI(I)=C.0

DO 20 I=1,4IN
FACTR1(I)=C.0
FACTR2(I)=C.0
NSTEP=0

COND=C. 0

JX=0

CCNTINUE

VP I/PWICTH) %22

WRITE(3,22) NSTEP,FACTR1(10C),FACTR1{25)

22 FCRMAT(15Xy *N=",13,10X, *FACTR1I{10)=*,FB.5,4X,
1°FACTRI(25)="4F8.5/)
WRITE(34311) (VSIN2(I),I=1,1MN)
FORMAT(LXs*VSINZ2(I)?*y10F11.47)

WRITE(3,38)
CUTPUT STATEMANTS

Kl=4 .
WRITE({3,34) K1

GENERATINC THE INDUCED CURRENT CN
THE SURFACE CF THE CYLINCER

FORMAT(2Xy *HPHI® 45X ,%*J

*y13)

OUTPUT STATEMENTS CENERATING THE ELECTRIC FIELES
WRITE(3435) ({(HPHIC(I¢J)I=ISLsISE)sJ=K1lyKlyl)

FORMAT(1X,10E13.4)
RRITE(3,36)
FORMATI2X, *ERCY)

WRITE(3435) ((ERO(1,J)9I=14IN)eJ=K1lyKlyl)

RKRITE(3,37)
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37 FORMAT(2X,°*EZ0")
WRITE(3435) ({EZCUI+d)sI=19IN)yJ=K1,K1ly1l)
WRITE(3,38)

38 FCRMAT(//)

K1=K1+K2
IFIK1-K3}) 33,39,39

39 CCNTINUE
GC 10 (22,22,25),CASE

23 CONC=CCND+DELCON
OC 26 I=Ll,IN
FACTRI([)=COND*AML

26 FACTR2(1)=FACTR1(])

GG 10 32

25 CONTINUE

IF(NSTEP-50) 251,251,252
251 CUOND=COND+OELCCN
252 CONTINUE

CC 31 I=1,IN

FACTRI(I)=CCND*VSIN1I(I)>ANL
31 FACTR2(I)=COND#*VSIN2(I)#AML
32 CCNTINUE

FIELD COMPONENTS ARE EVALUATEC THROUGH THE DIFFERENCFE

EQUATIONS. BCUNCARY CCACITIONS ARE THEN APPLIED.

EXTRAPOLATICN CF THE ENC PCINTS MLST BE CCNE AT TrIS

TIME.

CC 40 J=1,JM]

L0 40 I=1,1IN1

HPHIO(I»J)=HPFIG(1,J)+A*(EZC(I,J+1)-EZ0(1,J1)/2

1-B*(ERO(I+1+J)-ERQ(T,J))/2
40 CONTINUE

EXTRAFPCLATICAN OF THE CUTER BCUNCARY

DO 41 J=1l,JM
41 HPHIOUIN,J)=2.C0*HPHIO(IN1,J)-BPHID(IN-2,J)

DO 42 1=1,1AM1
42 HPHIO(I 9JM)=2,0%HPHIC(I +JML)-FPHIC(I yJM=-2)

00 50 J=lyJdM]

D8 50 I=1,1IN1

ERO(I+14J)=(ERO(I+1,J)*(1.0-FACTRI{I+1))=-2*B*(HPHIC(I+

Ll JI-HPHIC(I+J))I/(1.0¢FACTRI(I+1)])
S0 CONTINUE

EXTRAPOCLATICON OF THE CUTER RO! NDARY

DC 51 J=1,JM

ERO{1,J)=2.0%ERC{2,J)-ERC(3,J)
51 FRO(INgJI=2.0%ERC!{IN1,J)-ERQ(INL1-1".])

SCATTERER EBCUNCARY CCNDITIONS

DO 52 J=JSC,JSC

DC 52 I=ISL,ISEl
52 ERO(1,41=C.0

DO 60 J=1,JM1
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£EC 60 I=1.TN1
EZCUT1+.J41)=(F7C(1yJ+1)*(1.0-FACTR2(T)}+2*A%(HPHIO(] ,J+
11)-HPHIO(1+4) )+ 2% 2% (HPHIC(T ,J+1 ) +HPHIC(T1,4))1/(2.0%(J)))
2/ O+FACTRZ(! )
60 CCANTINUE
C EXTRAPOEATICAN €F THE CUTER BCUNCARY
DC 61 TI=1,1IMN
EIC(TIL1)=2,0%1 70 {T1,2)-EZ2C(1,3)
61 EZIN(1,JM)=C.C
C SCATTERER FGUNTARY CCNDITIGNS
CC €2 J=J4sc..sC1
G 62 1=1SL,<E
62 EIC(1..42=0.D
C INCREASE TIME STEP AND CCMPUTE EACH FIFLLC CCMFCNENT
C AGAIN
ANSTEP=NSTEF+1
GO TN (17241724 171)4CASE
171 IF(JUX-1) £7,€4,62
64 Jx=0
D0 €S [=2,1H
VSINI1(I)=VSIANLLI-1)
65 VSIN22(1)=VvSIN2(1-1)
CO €91 1=2, 1IN
VSINIL(T)=VSINLL(T)
6591 VSIN2(TI)=VSINZ2(1)
GC 10 172
63 Jx=1
172 CONTTANUE
TF(NSTEP-1C) 36,221,200
200 IF(NSTEP-20) 39,221,201
201 IF(NSTEP-3C) 35,21,202
202 IF(NSTEP-40) 35,211,124
999 STCF
END
10C 41 40 70 1 4 22 1€.0 C.002 1.C 0. C.5 C.CCl1
1

2
3
4
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APPENDIX II

The fortran program which is used to obtain the data in Chapter IV
is presented here to facilitate further numerical investigations. The
program is written in the universal FORTRAN IV programmers' language
(12). Comment statements included in the program should give
enough information in order to make use of the program without having

to be intimately familiar with the theory behind the program.
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OO NON

ELECTRCMAGNET IC PULSF SCATTERINC FROM A CUBE BY LSING
FINITZ DIFFERENCE METHCE
* * *
CESCRIPTICN CF VARIABLES
I COORDINATE CF YHE GRID PCINT IN X-DIRECTICN
J COORDINATE OF THE GRID PCINT IN Y-DIRECTICM
K CCORDINATE CF THE GRIC PCINT IN Z-CIRECTICN
T1yJ19K1,12.42,K2 = SPECIFY THE CLTER REGION CF TFE
ARTIFICTAL BCUNCARIES
1PULSE = LEALCINC ENC CF THE INPUT PULSE
PWIDTH = PULSE wICTH
NSTEP = TIME STEP

waun

AR EELER SRR RS RR RSS2 2 RS2 222 22 R 2SR 222322 %

DIMENSICN FX(24,1€,18),EY(24,18,18)yE2(244,18,18),
HX(24,18,18),HY(24,18418)sH7(24,18,18)

REAC(1+88) TEUFE,KEy Tl 9sJ1eK1lyol29J24K2,IFULSEyPWICTH

FORMAT{ 10I3,F6.2)

WRITE(3I ,8RIIEGJEGKEy[1l9JlyKlel129d24K2, IPULSEWPWIDTH

TE1=1E-1

[E2=1E-2

JEl=JF-1

JE2=JF-2

KEl=KE-1

KE2=KE-2

I2l1=12-11

J21=42-J1

K21=K2-K}

[1221=12-1

J221=42-1

K221=K2-1

PI=3.141562

IWICTEH=TPULSE+PWICTH

DO 1 I=1,1€

DC 1 J=1,JE

DC 1 K=1,KE

EZ(!'J'K,=COC

EX{IoJeK)=C.C

EY(1,J,K)}=0.0

HZ (] ,4sK)=C.0

HX(l4JeK}=C.C

HY{1,J,K)=0.C

INPUT FT1ELD CALCULATICN

DO 2 T=1PULSE.,IWIDTH
EZ(T4lel)=SIN({I-TPULSEI*PI/PRICT}H)
HY(I415 1)=SINI(T+C.S—IPLLSF)*FI/PWILTHE)
CC 3 I=1PULSE,IWICTH

DO 2 J=1,JE
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DO 3 K=1,KE
EZ(IpJ'K)=EZ(l'1'1)
3 HY(!'J'K)=HY(11 191)

KNSTEP=0

80 WRITE(3,S51) NSTEP

91 FORMAT({20X,'N=%,13)
WRITE(3,112)

112 FORMAT(/)

OUTPUT STATEMENTS WHICH GENERATE THE INCUCEC CHARGES
AND INDUCED CURRENT ON VARIOULS SURFACE CF THE CUBRE
WRITE(3,92)
G2 FORMAT(4X,"EZ")
WRITE(3,93) (EZ(1416:16)s1=1,1IFE)
93 FORMAT(2X,10FE13.4)
WRITE(3,112)
WRITE(3,95)
95 FORMAT{4X,'EX PATTERAN CN THE FRCANT SURFACE CF THE ¢
1*CUBE"*
DC 97 K=K1,K2
WRITE(3463) (EX(I23d9K) yd=d14J2)
97 CONTINUE
WRITE(3,112)
WRITE(3,558)
G558 FORMATU(4X, 'EX PATTERN ON THE BACK SURFACE OF TFE *
1*'CuBFk"*
DC 978 K=K1,kK2
WRITE(3,63) (EX{I14JeK)d=d1,J2)
978 CONTINUE
WRITE(3,112)
WRITE{3,951)
951 FORMAT{4X,'EZ PATTERN ON THE LPPER SURFACE CF THE
1*CUBE"®
DO 971 I=11,12
WRITE(3,93) (EZ(1:J+K2)4d=J1,42)
G671 CCNTINUE
WRITE(3,112)
WRITE(3,94)
94 FORMAT(4X,'EY PATTERN CN THE SILCE SURFACE CF TFE
1°CURE"
DC S6 K=K1l,K2
WRITE(3,92) (EY(I,J2,K) ,I=1I1,12]}
96 CGCNTINUE
WRITE(3,112)
WRITE(3,555)
955 FORMAT({4X,'HY PATTERN CN THE FRONT SURFACE CF THE
1*CuBE?
N0 S75 K=K1,K221
WRITE(3493) (HY(I2,J¢K)yd=d1,J2}) -
975 CCNTINUE
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WRITE(3,112)
WRITE(3,956)
959 FORMAT(4X, "HY PATTERN ON THE BACK
1*CuBE"
DO 679 K=K1,K221
WRITE(3y923) (HY(I1l:JsK)eJd=J1ed2)
979 CCNTINUE
WRITE(3,112)
WRITE(3,952)
952 FORMAT(4X,*HZ PATTERN CN THE FRCAT
1*CURE"
LT 972 K=K1l,KZ
WRITE(3,S3) (H7(12,J.K)eJ=d1sJ221)
972 CCNTINUE
WRITE(3,112)
WRITE(3,541)
941 FCRMAT({4X,'HZ PATTERN ON THE BACK
1*CLBE"
DO Gé&1 k=Kl.X2
WRITF(3,53) (F70115JdsK)ed=Jd1,J221)
G61 CONTINUE
WRITE(3,112)
WRITE(3,9523)
953 FLRMAT(4X,*HX PATTERN CN THE UPPER
1*CuBeg?
CO 973 J=Jl1l,d221
WRITE(3,93) (HX(1,J9K2)4s1=11,12)
973 CCNTINUE
WRITE(3,112)
WRITF(3,65€)
956 FORMAT(4X, *HY PATTERN CN THE LPPER
1°CuBE"
D0 S7€ J=J1,42
WRITE(3+93) (HY(T43+K2},1=11,1221)
976 CCNTINUE
WRITE(3,112)
WRITE(3,954)
954 FORMAT(G4X,*HX PATTERN CN THE SICE
1*CUBE"
DC 974 K=K1,K221
WRITE(3,53) (HX({I,J2,K),[=11,1221)
974 CONTINUE
WRITE(3,112)
WRITE(3,957)
957 FORMAT(4X,*HZ PATTERN ON THE SIDE
1*CUBE"
DO G777 K=K1,K2
WRITE(3,93) (KZ(1+J2+K)sI=11+1221)
S77 CCNTINUE
WRITE(3,111)
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C

111 FCRMATU(///)

EVALUATE EACH FIELLC COMPONENT THROUGH THE CIFFERENCE
EQUATIONS. BCUNCARY CCNCITICNS ARE THEN APPLIEC
IMMECIATELY AFTER THE FIELD wWHICH HAS BEEN CCMFLTEC.
EXTRAPOLATION OF THE RCUNCARIES MUST BE DONE AT THIS
TIME.
81 0O 10 [=2,1IE
DC 10 J=2,JE
CO 10 K=1,KE
10 E2{TeJeK)I=EZ Lo JdoK)IH+(BY(IoJeK)—FY(I-14J4K))}/2.C
1= (HX(T gy JeK)=HEX{1oJ-1,K))/2.C
EXTRAPOLATE ENC CCNDITIQONS
DC 11 J=2,JE
DO 11 K=1,KE
11 EZ{13JeK)=(2.0%E2(2+sJsK)I=EZ(D9daK))/2.0
OC 12 I=2,1E
DC 12 K=1,KE
12 FZ{Ils1leK)={2.0% EZ(]14+2,K)=EZ(1,2,K))/2.C
NC 13 K=]1,KE
13 FZCLeloK)={(2.C¥EZ( 2919 K)-EZ( (391l oK))/2.C4(2.0%ELI{1424K
11-EZ2(143,K))/2.C)/2.C
SCATTER BCUNCARY CCNCITICNS
00 16 J=J1lsd24J421
CC 16 K=K1yK221
DC 16 [=11,12
16 FZ{1,J,K)=0.0
CC 15 I=11,12,121
DC 15 K=K1l,K221
DC 15 J=J1,J2
15 EZ(14J9K}=0.0
DC 20 I=2,I1E
DC 20 J=1,JE
DC 20 K=2,KF
20 EY{I 3 JoKI=EY( T 9Jd g K)+(HX(I ¢JyK)=HX{TedyK-1}))/2.0
1=(HZ (TeJdeK)-FZ{1-14J9K})/2.C
EXTRAFOLATE CUTER BCUNDARY
NG 21 J=1,JF
CC 21 K=2,KE
21 EY(19JdsK)I=(2.0%EY(29J,K)-EY{(3,0,K)}))/2.0
CO 22 J=1,JE
OC 22 1=2,1¢E
22 EY(I19Jel)=(2.C*EY(I4ds2)-EY(I4Js3))}/2.0
DC 23 J=1,JE
23 EY(lodold={(2.0%EY{(24Js1)-EY(3,U+1))/2.0+4{2.0%EY(1eJ,2
1)-FY{1yJe2))V/2.C)/2.C
SCATTER BCUNCARY CONCITIONS
DC 24 K=K1'K21K21
DO 24 J=J1,4221
D0 24 I=11,12
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26 EY{(19J+K)=0.0
DC 25 T=11,12,121
DO 25 J=J1.J221
00 25 K=K1l,K2Z
25 EY(I'J,K’=C00
DO 30 I=1,IF
DC 30 J=24,JE
DO 30 K=2,KE
30 EX{IoJoKI=EXC(T g JoKIH+IHZI(I 9JyK)=HZ(I4J-1,4K))/2.0
1-(HY (I 4JeK)—-FY(IsJeK~-1))/2.0
EXTRAPOLATE CLTER BOUNDARY
DC 31 [I=1,1E
DC 31 K=2,4KE
31 EX{I414K)=(2.0%EX{I42,K)=-EX(1,43,K)}/2.0
DO 32 I=1,1E
DC 32 J=2.JdE
32 EX I Jy1)=(2.0%EX(T9Je2)-EX(1,J,3))/2.0
DC 33 I=1,1¢E
33 EX(T ol )=({2cC*EX(Tp2¢sl)=-FX{T4341))72.0¢(2.0%EX(1,41,42
1)-EX(191¢3))/2.0V/2.0
SCATTER BOUNCARY CCNDITICNS
DO 34 K=K1 ,K24K21
CO0 34 J=J1l,42
DC 34 [=11.,1221
34 EX(I,J,K)=C.C
0C 35 JU=Jl.,J2,121
OC 25 1I=11,1221
DC 35 K=Kl,K2
35 EX{IsJeK)=0.0
DC 40 1I=1,I1¢ti
D0 40 J=1l,.JE1
D0 40 K=1,KE
40 HZUT o JoK)=HZIT g Jd oK) (EX (I 3 J+14,KI-EX([9JeK)}/2.0
1-(FY({I1+41:JsK)-EY(I,JeK)})} /2.0
EXTRAPOQLATE CUTER BCUACARY
DO 41 K=1,KE
DO 41 J=1,JE1
41 H2(TEJoK)=(2.0%FZ(IELlsJeK)—KZ (1E2,U4K)}))/2.0
DO 42 K=14KE
DC 42 I=1,1E1
42 HI(T4JE4K)={2.0%HZ(I,JEL,K)-F2(1,JE2,K})/2.C
DO 43 K=1,KE
43 HZ(IE s JF9K)=({2.0%HZCIELyJEJK)~HZIIE2,JE+sK}}/2.C+[2.C*
IHZ(IESJEL yK)~HZ(IE4JE24K))¥/2.0)/72.0
CO 5C I=1,1E1
DC S0 J=1,JE
DC &0 k=1,4,KE1l
5C HY (19 JeK)zHY (19 e KI+(EZ(T+1,3J4K)-EZ(I4+d94K)}))/2.0
I-(EX{T,JeK+1 ) -EX{1,J,K)}/2.0
EXTRAPOLATICN CF CUTER BCUNDARY

65



[aNely]

T4

75

16

DO 74 J=1,JE

D0 74 K=1,KE1l
HY({IE+JsK)=(2.0%HY(IELl s JoKI-FY{IE2+J+K})}/2.0

DO 75 J=1+JF

EC 75 I=1l,1E1

HY (T JsKE)=(2.0%EY( Iy S+ KEL)=-HY(I9JsKE2))/2.0

DQ 76 J=1l.JE

HY(IEs JoJEI=({2.0*HY(IE1,JyJE)-HY(IE2+JyJE))/2.0¢(2.C*

IHY(IE»J+KEL)-HY(IE,JoKE2))/2.0)/72.0

60

£O 60 I=1,1E
DC 60 J=1,JEl
DO 6C K=1,.KE1l
HXC Lo d oy K)=HX{T oo KIH{EY (I 4JoK+1)-EY(19JsK})/2,0

1-(EZ(15J+14K)}-EZ(I4J+4K)})}/2.0

77

78

79

EXTRAPOLATICN CF THE QUTER BCUNDARY

0C 77 1=1,1E

DC 77 K=1,KEl

HX(T9JF sK)=(2, C*HX({I 4JELl,K)=HX(I4JE2,K)) /2.0

DG 78 I=1,I1E

CC 78 J=1,JE1

HX{ T oJoyKE)=(2.C*¥HX( T 4y JyKEL)-HX(1,JsKE2))}/2.C

CC 79 1I=1, lE

HX(T g JEJKEI={(2.CH¥HX( [ 4 JEL1 yKE)-HX{I,JE2,KE))/2.0+{2.0%

IHX{ Ty JESKEL)-HX{[,JE,KEZ2))/2.0)/2.0

200
201
202
203
204

82

INCREASE TIME STEP AND EVALUATE EACH FIELC CCMPCNENT
AGAIN

NSTEP=NSTEP+1
IF(NSTEP- 5) 81,80,200
IF(NSTEP-10) 81,80,2C1
IF(NSTEP-15) 81,80,202
IF(NSTEP-2C) 81,80,2C3
IF(NSTEP-25) 81,8Cy2C4
IF{NSTEP-30) 81,80,82
sTOP

END

24 18 18 4 4 4 14 14 14 14 8.0
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