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ABSTRACT

A finite-difference solution technique is used to solve Maxwell's
equations directly in the treatment of electromagnetic pulse scattering
in a time-varying inhomogeneous medium. In particular the scattering
from a cylindrical rod inside a cylindrical waveguide is considered.



THTRODUCTT (W

in the théoretical ~tadles of vime-varving and inhomogencnus media,
{t is often found that rhe solutien of Maxwell's eqnations is extiemeily
d:fficult to obtain in anulvtical form. Because of this and recent
advances in high-speed digital computer capabilities, more and more
theoretical étudies employ numerical techniques. Recently Yeé [1]
cerconstrated the finite-difference technique for solving initial-value
prot.ems. In this paper that techrique has been extended to include
time-varving and inhomogeneous media. In particular the technique
is aprlied to the problem of electromagnetic pulse scattering from
a perfectly conducting cylindrical rod in a time-varying inhomogeneous

Tossvy medium.




ANALYSIS

Difference Equations

Maxwell's equations are for a lossy medium with no free current

density nor charge density
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where the notation is consistent with Stratton's text [2]- Subgequently
cylindrical geometry is to be considered where azimuthal symmetry obtailns.
Under these considerations, the electromagnetic field components are deter-

mined by the following system of partial differential equations.
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Here the constitutive properties u, € and 0 may be functions of time and
position. The subscripts r, ¢ and z identify the usual cylindrical compon-
ents.

The system of equations (2) are particularly suited to solution by
the finite difference technique. The method proposed by Lax [3] is used
to set up the difference equations. It automatically 'centers" the

difference formulas thereby reducing the truncation (or round-off) error

[o].



The resulting difference eguations are
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Here the following notation was used
T = ct, ¢ Is the speed of light (6)
[F (z,r,t)] z =142 = g (1,3) (7)
¢ r = (J-1/2)Ar ¢
t =0 AT/c
[? (z,t)i] z =1 Az = o% (1) (8)
t = n At/c

In deriving (3) - (5) the permittivity € and magnetic permeability u are
considered to be constant and c = (ue)-l/z, Z =¢r;727 Fowever the conduc-
tivity is considered to be both a function of z and t.

In order to solve the difference equations the indice notation must

be consistent. To that end the following approximations are used
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The substitution of (9) -~ (11) into (3) - (5) will yield a solvable system
of difference equations where the knowledge of the initial field components

allows a sequential computation of the field components at selected time

intervals.

Stability Considerations

The system of partial differential equations (2) is a hyperbolic system.

The hyperbolic system that occurs for constant constitutive properties of
the medium has been well studied and documented. In order for the difference
equations to be stable and to converge toward the solution, the following
relation must be satisfied for spacial and time increments (it 1is tacitly
assumed that Ar = Az) [5]

AT = AT < L : (12)

Ar Az J??
For practical reasons, it is best to choose the ratio of the time increment
to the spacial increment as large as possible yet satisfying (12). 1In
obtaining the numerical results that are presented

(13)

It is expected that the stability criterium (12) holds for inhomogeneous

and time-varying media provided that these variations are small as compared
to the variations in the field components. However it has been proved that
if the difference equations are stable then the solution of the difference

equations converge to the solution of the differential equations as the time



and spacial increments approach zero [-6]- Because instability 1s readily

apparent the foregoing result can be used when no convergence criteria exists. .

Boundary Conditions

If the scattering from a finite perfectly conducting object is to be
treated, then the appropriate boundary conditions are that the tangential
component of the electric field and the normal component of the-magnetic
field both vanish at the surface of the object. Furthermore, the difference
equations can only be satisfied over a finite expanse of space. This
necessitates defining this expanse and the appropriate boundaéf.conditions.
Suppose (3) is satisfied for I = 1,...Nand J = 1,..-M. From (4) and (5)

it is seen that the following components are to be specified
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The components may be specified initially or they may computed as a linear

extrapolation, i.e.

£/ 2(1,1/2) = 2 E:+3/2(I,3/2) - E:+3/2 (1,5/2) (15)
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It is convenient to set the other two components of (14) equal zero, making
the computation of the fields to fall within the region between two perfectly

conducting plates appearing at z = 1/2Az and z = (N+1/2)Az.




Initial Fields

To obtain the initial components of the fields, it is considered that
the initial fields are those cf a pulse propagating in a cylindrical wave-
guide. Since the field components of the TM_ ; cylindrical wavequide mode
have azimuthal symmetry, it is convenient to consider the initial electro-

magnetic pulse to be formed by this mode. The field components of the TMol

mode are
E_ (z,r,0) = -3 LENORN (Br)e~3hz (17)
E, (z,r,) = E_(0) J_(Br)e~ihz \ (18)
ﬁ¢ (z,r,w) = -j %E Eo(w) J;(Br)e‘jhz (19)

where Eo(w) is the complex amplitude of the mode for radian frequency w,

k2= wzue
(20)
B = 2.405/R
R = radius of the waveguide
It is most convenient to choose R sufficiently large that
h =k (21)

for most of the frequency content of the pulse. This allows the pulse
to propagate in the wavequide with essentially no dispersion. The shape
of the pulse is determined by Eo(w), where the field components of the

pulse are
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By using (17), (19) and (21) in (22) and (24) the following are easily

obtained
E (z,r,t) = Jo (87 3 E_(z,r,¢) (25)
r BJO (Br) 23z
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The foregoing indicate that the choice of Ez(z,r,t) is arbitrary to a
certain extent. From (23) it is seen that

Ez(z,r,t) = J, (Br) F(zZfct) (27)
where F(zXct) may be chosen arbitrarily. However the difference equations
place a restriction on the initial pulse. It is that the initial field
components must all be continuous functions of position. Therefore the
choice of F(zfet) must satisfy the restrictions: F(ztct) and F'(ztct)
must be continuous for all zict and the Fourier transform of F(zfct) must
have negligible frequency content for w<Bc. A suitable choice for F(ztct)

is

sinZK_A(z‘_*_'ct)] 0 £ A(ztct)< (28)
elsewhere

F(zXct)

=0




NUMERICAL RESULTS

The problem treated in obtaining numerical results is the scattering
from a perfectly conducting rod inside a cylindrical waveguide. The rod
is oriented parallel to the axis of the waveguide and positioned on the
axis. The radius of the waveguide 1s considered to be 2405 meters and
the spacial increment is 0.025 meters. For the conducting rod a radius
of .1 meters and a length .075 meters are used. And for the incident
electromagnetic pulse field components (25) - (28) are used where

A= (1802)71 (29)
The pulse width at half-maximum is 2/3 nanosecond.

First the interior of the waveguilde is considered to be free space.
In figure 1 the E, component of the pulse is shown after the pulse has
propagated 30 spacial increments and 60 spacial increments. It is
observed that essentially no dispersion occurs. But after 60 spacial
increments and 120 time increments ''round-off" error causes a slight
disturbance at the tail of the pulse. This disturbance is slightly
more noticeable in the other field components of the pulse as shown
in figure 2. These data were obtained using an IBM 360 Model 40
computer which carries only 8 significant figures in calculations.
Figure 3 shows the buildup of current on the surface of the cylindrical
rod. Note that 180 time increments is 7.5 nanoseconds and that the
center of the pulse has propagated 50 spacial increments past the end
of the rod.

As a second example the waveguide is considered to be filled with
a homogeneous, but time-varying, lossy medium. The conductivity is
considered to vary in time as

3

o0 = 2n X 10 ° mhos/meter (30)
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Figure 1: The propagation of the axial component of the electric
field evaluated at J = 40, Az = 0.025m, AT = 0.0125m,
R = 2405 m.
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Figure 2:

The propagation of the radial component of the electric
field evaluated at J = 40.
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Figure 3: The current distribution induced on the cylindrical scatterer.

The peak of the incident pulse at N = 0 is at T = 20. Region
of the scatterer is 30 < T < 60 and 1 £ J < 4,




Figure 4 shows the attenuation of the pulse and the dispersion. Again
"round-off" error does not seem very pronounced in the computation of
the Ez component. In figure 5 the radial component of the electric field
is shown for the time-varying conductivity. Figure 6 shows the buildup
of current on the conducting rod.

Finally an inhomogeneous, time-varying medium is cdﬁsidered inside
the waveguide.

o(z,t) = o_(t) f(z-ct) (31)
and for t = o, it is shown in Figure 7 along with the other initial field
components of the pulse. The factor 0,(t) 1is assumed to vary in time
exactly as (30) until it reaches a chosen maximum value (for the subsequent
data this maximum is 0.1 mhos/meter). Figure 8 shows how the pulse pro-
pagates after og(t) has reached a maximum by showing the z component of
the electric field. 1In Figure 9 the radial component of the electric field

is shown. Also in Figure 10 the current distribution on the rod is shown
as a function of time. Here the cylindrical rod is considered to have a

radius of .075 meters and length .375 meters.
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Figure 4: Propagation of the axial component of the electric field
in a time-varying homogeneous medium at J =.40.
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Figure 5: Propagation of the radial component of the electric field
in a time-varying homogeneous medium at J = 40,
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Figure 6: Current distribution induced on the cylindrical scatterer.

The reglon of the scatter {8 30 £ I < 60 and 1 < J < 4.

The peak of the incident pulse at N = o ig at I = 22.
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Figure 7: The electric field components at J = 40, after ¢ (t) has
reached maximum value (0.1 v/m). The unitless aBantity
f(z-ct) is the spacial-time variation of the conductivity.
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Figure 8: Propagation of the axial component of the electric field
at J = 40 in a time-varying, inhomogeneous medium.
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Flgure 9: Propagation of the radial component of the electric field
at J = 40 in a time-varying inhomogeneous medium. The peak

of the incident pulse at N = o 1s at T = 22,
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Figure 10: Current distribution induced on the cylindrical scatterer.
The region of the scatterer is 28 £ T & 43 and 1 £ J £ 4.
The peak of the incident pulse at N = o is at I =:22,




CONCLUSION

A very general technique is presented that treats initial value

problems in inhomogeneous, time-varying media. Extensive numerical

data which are obtained demonstrate the usefulness and the applicability
of the presented solution technique. The results obtained should apply
to the problem of electromagnetic scattering from objects immersed in a

plasma such as a space capsule during re-entry.
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