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ABSTRACT

A general formulation is presented for obtaining the current
induced on a perfectly conducting cylinder in a lossy medium by
an incident plane wave. Numerical results are presented showing
the frequency dependence of the induced current for various
conductivities.



INTRODUCTION

The general problem of the pulse excitation of a perfectly conducting
cylinder in Jossy media is formulated and solved using a high speed digital
computer. In the formulation the cylinder is considered to be sufficiently
thin that the exciting fields are essentially uniform about the axis of
the cylinder. However outside this restriction the formulation is com~
pletely general.

By deriving and solving an integral equation, an expression is obtained
for the current distribution induced on the cylinder. The solution presented
requires that the curreunt be represented by a finite Fourier series; the
expansion coefficients are obtained by forcing the series representation
to satisfy the original integral equation. First the steady state currents
are obtained which are then superimposed to obtain the appropriate time
history for the specific pulse excitation.

Numerical results are presented which demonstrate the solution techni-
que. Also the general effects of lossy media upon pulse excitation are

delineated.
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ANALYSIS

Consider a cylinder of length 2h extending from z = ~h to 2z = h.
Provided that the cylinder 1s sufficiently thin, the
illumination may be considered to be rotationally symmetric about its
surface. It is ¢asily shown that the vector potential associated with
the scattered fields, Ai (a,z), at the surface of the cylinder (radius a)

satisfies the differential equation

[:%22 + ki] AZ(a,z) = jgz [E;(a,z) - Ei (a,z)] (1)

where the assumed (but suppressed) time dependence is exp(jwt); E;(a,z)
is the total electric field at point z; and Ei(a,z) is the incident field
at point z. The propagation constant for a lossy medium is
k2 = wlue - jwuo (2)
where the constitutive properties of the surrounding medium are ¢
(permittivity), u (permeability) and 0 (conductivity).
If the cylinder is highly conducting then
Eg(a,z) = o 3
and for an electrically thin cylinder
h
AS(a,z) = E_n dz' T,(z") K_(z-2") (4)
~h

where I (z) is the total induced axial current and
z

Ka(z—z‘) = exp [—jkv (z—z)2 + 32.] /vrz;—z')z + ai1 (5)




using (3) and (4) in (1) yields
h
dz' Iz(z') ﬁ(z-z') = ~j 41k Ei(a,z) (6)
C
-h
where
¢ =TT (e-30/0) %)
The foregoing integral equation is to be solved for the induced current

distribution, Iz(z).

Solution for the current Distribution

It is observed that the Kernel is an even function of (z-z') and

therefore may be represented

o=
M
K(zrz') = k2 ZLd K cos[nn (z-z'5} (8)
n ————
n=o 2h
where
5 2h
1 -(nn )
Ky = k"2 K'(2n) (-1)"4 _ \2kh dg K(E) cos nm &
khen khen o 2h
(1 + ikR) .
k"2 K'(2n) = — (kR) _ (2kh)e JKR
R = f4n2 + a2
En = 2 n=o0

= 1 n>o0
A general representation for the current distribution that satisfies the
boundary conditions I,(h) = Iz(—h) = 0, is

o
- . ) a
Iz(z) = -j 41U z F; cos (2m+lw) 2t Im sin EE.;) (9)

2h h




The constant U (in volts) will be chosen later to simplify the mathematics.

Substituting (8)-and (9) into (6), multiplying the result by cos P72z,

h
and Integrating over z yields

[— .

s S -]
E EP Kop + K2m+1]'Y pm Im = Sp (10)
m=o0

where
. 4Qu) (-1)™"P (11)
Y pn T T[22 -ip2]
h
¢S - 1 dz Ei(a,z) cos pT z ) (12)
P U(kh)?2 z h
-h

Also, using sin (2p+l) , instead of cos pT z in the foregoing procedure

»2h h
yields
(==
E t , a a _ a
K%m I\.'Zm + K2p+l Pm Im Sp (13)
m=0
where
vy 2 = 8m (-1)™P (14)
pm T (2p+1)2 - 4mZ
s&8 =_1 h :
P 2 1 +
(kh)<4u ) dz Ez (a,z) sin (Zghl)nz (15)

Because the current distribution is expected to be a well behaved function,
the infinite series expansion given by (9) may be truncated at some high
order N, where N2 >> (koh/'n)2 and k, = wype, and yet maintain reasonable
accuracy. The direct effect of this truncation is the reduction of the
infinite system of equations (10) and (13) to finite systems suited for

solution by a high speed digital computer.
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Consider that the cylinder is irradiated by a plane wave where
The z component of the incident electric field may be repre-

koa << 1.

sented in the general form

Ei(a,z) = E sin Y sin O exp [-jkz cos GC} (16)

where the direction of propagation is at angle © with the positive z

axis, and the electric field is directed at an angle Y with the normal to
Then

the plane determined by the z axis and the direction of propagation.

from using (16) in (12)
sin (khcos0Q) (-1)P a17)

5 = 2
1 - (pm/khcos0)Z

s% =
P (kh)4cos0

but if O = 7
2
§sS =2 (18)
P % P°
Here the constant U is defined
U=1sin ¥ sin O E, (19)
k
Cimilarly using (16) in (15) yield
sa = 2 cos (khcosO) (-1)P (20)
(2p+1m/2khcosO)

P J(kh)zcosO 1 -

but if © =w, S& = 0.
5 P

Electromagnetic Pulse Excitation
In the foregoing development harmonic time dependence is assumed.

However the results may be extended to arbitrary time dependence for

It is well known that the Fourier time transforms

the exciting field.
of the field components satisfy the same equations as the field components

Since the current distribution induced on

with harmonic time dependence.




the cylinder is simply the tangential component of the magnetic field,
the current distribution obtained in the foregoing development is the
Fourier transform of the current distribution with arbitrary time
dependence. The specific time dependence is determined by the time
variation of the incident electric field, i.e. the electric field
component appearing in (6) and (16) is the Fourier time transform
of the incident field component.

If the expression for the current distribution is rewritten with

explicit frequency dependence (9) becomes

[
T(z,w) = -3 4TU(W) : [I;(w) cos (2m+1) 2t I:l(cu) sin mm z] (21)
T (w) m=0 2h h

The time history of the current is

[~
~ »
I(z,t) = 1 dw I(z,w) elwt (22)
27 - oo
~ ~h
But if I(z,t) is real, I(z,w) = I(z,-w) and
o>
_2. A~ t
I(z,t) =J T dw Re[’.[(z,w)ew (23)
(o]

The foregoing Fourier transform may be carried out numerically by
using a high speed digital computer. Considering 20 terms for the sum
in (21) and using a CDC 6600 computer it takes approximately 15 seconds
to obtain a solution for the current as shown in (21). And to obtain a
time history of the current in (23) requires only about 25 minutes overall
but additional time histories may be obtained in a few seconds for different

pulse excitations.



Numerical Results

The difficult part in obtaining the time history of the induced
current is the solution for the frequency spectrum i(z,w). This
frequency spectrum will depend upon the conductivity of the surround-
ing medium. To demonstrate this frequency dependence figures (1)
through (5) show the magnitude of the center current, |I(o,m)|,ver5us
frequency for increasing conductivities, Here E, = 1 volt/meter and
© =1m/2, 1.e., the direction of propagation is normal to the antenna
axis. It is noted that as the conductivity increases the frequency
spectrum becomes more flat and the magnitude of the current increases.
The latter effect is a result of the energy density of the incident
field increasing with increasing conductivity. The effect on the

frequency spectrum may be explained by the damping of the current

waves produced on the cylinder tending to eliminate resonant conditions.
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Figure 1: Center current versus frequency for broadside incidence.

¢ = 2 1n(2h/a) = 6.0, h = 0,761 m, ¢ = 0.
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Figure 2: Center current versus frequency for broadside incidence.
=2 1n (2h/a) = 6.0, h = 0.76}-m, g = 0.0001 mho/meter.
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Figure 3: Center current versus frequency for broadside incidence.
=2 1n (2h/a) = 6.0, h = 0.761 m, ¢ = 0.01 mho/meter.
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Figure 5: Center current versus frequency for broadside incidence.
2=21n (2h/a) = 6.0, h = 0.761 m, 0 = 1 mho/meter.
:
b

) lllalu? L4L|l_,L|u! L_x411|14 i JLJ_LJ.J[’
10° 107 108 (07 iz
Frequency
Figure 4: Center current versus frequency for broadside incidence.

Q=2 1n (2h/a) = 6.0, h = 0,761 m, 0 = 0.1 mho/meter.
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