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ON THE ATTENUATION OF A PLANE-WAVE ELECTROMAGNETIC FIELD
BY AN IMPERFECTLY CONDUCTING PROLATE SPHEROIDAL SHELL

by

Clayborne D. Taylor
and
Charles W. Harrison, Jr.
Sandia Corporation
Albuquerque, New Mexico

Synopsis

The shielding ratio; under quasi-static conditions, is determined for an
imperfectly conducting prolate spheroidal shell, when the electric field of the
incident plane wave is directed parallel to the major axis of the spheroid.
General expressions are obtained for the fields within the c¢avity. It is shown
that the shielding ratio of a spheroid having an eccentricity approaching unity

is the same as that of the "corresponding" end-capped cylinder. .

Introduction

A shield, to be effective, must be constructed in such a manner as to provide
a highly conducting path for the flow of surface charge in all directions when the
shield is acted upon by an incident electromagnetic field disturbance. A con-
venient measure of the effectiveness of a shield is the shielding ratio. This
quantity is obtained by dividing the field (electric or magnétic) that would be
present at a specified point in the absence of the shield by the field at the same
point when the shield is present. It is understood that the shield encompasses
this point. _

A number of writers have directed attention to infinite body shields,l-s such
as those comprising infinite cylinders, infinite parallel plates, etc. But the
question naturally arises as to the precise value of such analyses, when all shields
used in practical situations must be of finite dimensions. One point that should be
mentioned is that infinite body'shielding theory necessarily neglects all resonances
that may exist on the exterior of the shield. Nevertheless, such studies are
warranted because the general significance of partial reflection and transmission,
and skin effect are correctly représented. Furthermore, the phenomenology occurring

within a shield with regard to the decay rates of the electric and magnetic fields,
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their time histories and their spacial distribution when the incident electro- (;
magnetic field is a non-repetitive pulse, is of profound theoretical interest.
But to avoid blinding the reader to the facts it must be said again that finite
shielding theory requires further development before the relevance of infinite
body shielding theory to practice becomes known.

The simplest finite shield that can be treated analytically is the imperfectly
conducting spherical shell. The shielding ratio for this structure was determined
exactly and reported in a recent paper.6 All possible exterior resonances and

interior modes were taken into account in the theory.

The next more complicated fi&ite shield configuration is the spheroidal shell.
The prolate spheroid with eccentricity somewhat less than unity is chosen for
investigation in the present paper, since it approximates the .geometry of a sﬁort,
fat cylindrical shield with end caps. The long wave or quasi-static approximation
is made in the theory because spheroidal wave functions for complex arguments have
not been tabulated. Such functions are required for the field representations in (?
the shell region in a completely general rigorous shielding theory. Spheroidal '
wave functions for complex érguments in the present instance reduce to Legendre
polynomials of the first and second kind when the long wave approximation is made.
 But happily the low frequency ;ase is the one of real interest because at the
higher frequencies field penet;ation into the interior of the shield is restricted

by the phenomenon of skin effect. Of course, reflection at the outer boundary of

a highly conducting shield is always a most important shielding mechanicm.

Theoretical Considerations

It is assumed at the outset that the prolate spheroidal shell is irradiated by
a plane-wave electromagnetic field, with the electric field directed parallel to
the major axis of the shell, as shown in the figure. Inasmuch as the long wave

approximation is made in the theory, it follows that the fields that penetrate the

shield are azimuthally symmetric.7 (:
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Under quasi-static conditions, Maxwell's equations become

> >

curl # = gE (1)
>

curl E = 0 (2)

where the notation used is standard., Expressed in prolate spheroidal coordinates

solutions of (1) and (2) in the shell region may be written

By ) mzl [A.20c0) + B.Qlcw)]7 () )

E:(W,E) = op‘/ég_j—;— 22 4 V - l[A P () + B Q (F)IIP (n) (4)

. 1 - | ' ' d 2
E,(1,8) ey S [aBice) + BQO(ﬁ)]a[\/l - Pm(m] (5)

m=1

The prolate spheroidal coordinates (n,f,$) are consistent with the Flammer
notation.8 Here F is the semifocal length of the coordinate system. The P; and
Q; functions are, respectively, associated Legendre functions of the first and
second kinds. The superscript s denotes the field components within the shell
region.

If the cavity region is considered to be a pure dielectric then the fields

w
within the cavity are (for suppressed time depcadence ej t)

o0
1
H5m.0 = > cride,0s, (e,m) (6)

n=0



c [ = ‘/ - (1) ,
E (n,8) = ] c 3 (C,ﬂ) Y [ :§)] (7) (:
n © Viz . 2 Zo: w1

oo P SN
Eg(n,t) = -3 ¢ \/——}:cn (c,8) 18, (e,m) (8)

where ¢ = koF and { is the characteristic wave impedance of the caQity medium.
It should be emphasized that (ﬁ)-(S) represent the general solution to Maxwell's
equations under the assumed symmetry.
The expansion constants in the foregoing fleld expressions may be obtained
by satisfying the boundary conditions on the fields at the "inner and outer.surfaces

of the shell. Prom the definition of the Sln(c,n) functions it is seen that
~ t .
S1a(csm) = P_(n) o (

when ¢ << 1. Matching the tangential electric field across the outer surface of

the shell and the tangentiél electric and magnetic fields across the inner surface

yields

-1/2
(ZI)U

n =37 §
‘/ ( )
[ (C,E )J [P (§1)Q 43 ) P (§ )Q (¢ )]

where §2 and 51 determine, respectively, the outer and inner surfaces of the shell,

‘/ 2 (1) __d_ ‘/ ( ) '
[ gl = lRln (c’gl)] [ (c,§ )] (11)

(10)
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and

1
- 2n + 1 (n - 1)! 2 2. t
Ua 2 (n+ 1) J:l dnvgz 1 Pn(n)En(n,gz) . (12)

Also for convenience E:(n,gz), the total electric field at the outer surface, is
considered to be symmetric in n about 7 = 0. Then Un = 0 for even n. In principle
the solution for the cavity fields have now been obtained.

It _is of most interest to Qpnsider prolate spheroidal shell such that h 2 10a,
where h is the half-height and a is the midsection radius. Under this imposition
the shell looks very much like a "capped" cylindrical tube. Using an internal

impedance per unit length, the total tangential electric field may be written *

Cl

) O
En(n,E.z) =z ()I(y) (13)

where zi(q) is the internal impedance per unit length which is a function of 7
since the shell varies in cross section and wall thickness. Here I(n) represents

the total axial current induced in the shell by the incident electromagnetic

field.

In the Appendix an expression is derived for the internal impedance per unit

length of a very thin cylindrical tube. It is

773 e
R

where a, and a, are the inner and outer radii, respectively, of the tube. Since

the corresponding radii for the prolate spheroidal shell vary with 7, then (14)
ylelds

-1
i) = toya - 2H (15)



where

SORE By ramry as)
0(52 ) :

provided (16) is not large as is the case for a highly conducting shield, i.e.,

i
zi(O)In(O)l << E nc’ the current induced in the shell is essentially the same as

z
1
would be induced in a perfectly conducting structure. According to Taylor 0 the

current distribution induced in a perfectly conducting prolate spheroid is

1/2

i
. V(L - 1d) 2 A S, Cem)
° £=1.3,5,... [(g‘: . 1) R{:)(c,iz)}
where for odd 2
s ,(c,0) _
(2 + n!! dlﬂ(
' 2t2n + 3% O .
n=0,2,...
Therefore for ¢ << 1 and §2 =1
Einczi(O) AL .
Un = =jm k¢ T . (19)
° 62 - 1% (c,e.)
2 in 722

With the use of (19) in (10) one may readily determine the fields cthroughout the

cavity within the shield.
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It is of particular interest to obtain the "on axis" fields. Since
(1)

R1n

(c,1) = 0 for n > 0, then

E:(n,l) = u;(n,1> =0, (20)

The-other component of the electric field may be obtained using

""" 1 - 2 -1/2
P_(£,)Q (8,) - B (£,)Q (t) = (gl - 1) (21)
and gl 21 in (10). 1t is
c ~ 1
E(q,1) =z (7m)I(y) . (22)
L 11,12
This result confirms those of Harrison and King, who actually assume that

(22) is true.

Conclusion

The shielding ratio Afforded by highly conducting prolate spheroidal shells
may be determined easily when the long wave approximation is imposed. It is
fortunate that the quasi-static case is of most interest, because at higher fre-
quencies skin effect becomes an important shielding mechanism. It is of interest
to observe that the results of Harrison and Kingu’12 who employed antenna theory
in part to solve the problem of the isolated cylindrical shield of finite length

4re consistent with the results obtained in this paper.
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Recently the authors succeeded in obtaining precisely the current in a rather
fat cylindrical receilving and scattering antenna irradiated by a plane-wave field.<:>
using both the Fourier series method, and an open-ended scheme for iterating the
appropriate integral equation for the current. It is hoped that from this knowl-
edge it will be possible to obtain with accuracy the interior fields in the tube.

Discussion of this interesting subject is reserved for a later paper.

12



APPENDIX

Internal Impedance of a Thin Cylinder

The following unrestricted formula for the internal impedance per unit length

»13

of a cylindrical tube was derived by King:

1 _y [T =) - K02, (ay)
2na20 Jl(Vaz)Nl(yal) - Nl(Yaz)Jl(Yal)

where Y = % (1 - j) with 8 as the skin depth, Jn is the usual Bessel function,
an ! Nn is the Neuman function. Consider that the cylindrical tube is thin, i.e.,

Yal, ya, << 1, then ' .

2
3 (Ya)N.(va) - N (ya))J. (va) = - 2 (ya)~t
otY3N; vy o\ ray) = =7 (¥a,

and

' 1(%2 4
JI(YaZ)Nl(Yal) -_Nl(Yaz)Jl(Yal) = -;;(—— - ——> .

i
Using, the above formulas in the expression for z yields
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