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SUMMARY

The radiation incident upon an infinitely long imperfectly
conducting cylindrical shell is a plane wave of longitudinal or
transverse polarization. Formulas for the steady-state electric
and magnetic fields in the cavity are derived for both polariza-
tions of the incident field. The Fourier integral is then
employ=2d to cbtain the time histories of the fields on axis of
the cylinder when the incident electromagnetic field is a pulse
of Gaussian shape. Numerical information relating to the
effectiveness of the shell as a shield is provided in the final
report for several pulse durations and shell radii.
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Introduction

This ;tu?y was undertaken to determine the shielding characteristics of
infinite cylindrical shells of arbitrary radii and wall thicknesses under
stéad}-sia;e_and transient conditions for longitudinal and transverse polariza-
tion of the incident electric field. Shells made of steel and aluminum with
no slpts are considered. Specifically, the time histories of the electric and
magnetic fields on axis of the cylinders are computed, employing the steady-
state_trﬁn;fer functions, when the incident electric field is a plane wave of
longitudinal or transverse polarization with an amplitude distribution in the ,
sh?pg;of g'GaussiaQ pulse. 1In the numerical work, pulses of several time
derivations and a number of shell dimensions (radii and wall thicknesses) are
uééd; —

hh'lhfidite_éylindrical shell is not physically realizable. The results

obtained from the analysis, using the infinite model, cannot be expected to
yield quantitative information on the magnitude of the field in a finite
cylindrical shield when resonances occur since the infinite cylindrical shield
reflection and transmission on the one hand, and of the skin effect and attenua-

tion on the other, should be the same in finite and infinite shields.

The electric-field shielding r&tio, under steady-state or transient condi-
tions, is defined to be the ratio of the peak field at a selected point within
the shield to the amplitude of the incident field. i.e., the field that would
exist at the same point with the shield removed. The shielding ratio for the
magnetic field is defined in the same way. A different shielding ratio is
obtained if it is defined in terms of the field inside and outside the shield,
since the field outside the shield is the resultant of the incident and dif-

fracted fields.



In the first part of this paper the steady-state transfer functions for use
in the Fourier integral are developed in general terms. In the latter part of
the paper the use of the Fourier integral to obtain the time histories of the
electric and magnetic fields on axis of the shield is explained briefly, and an

approximate form is developed for evaluation by a high-speed digital computer.

Preliminary Remarks

»

Figure 1 illustrates a homogeneous imperfectly conducting cylindrical

shell of outer radius a and inner radius b characterized by permeability Hys o

1 1 It is embedded in an infinite’

homogeneous medium with constitutive parameters uz. €2, and 02 = 0. The inner

dielectric constant €_, and conductivity o
and outer regions of the shell are assumed to possess the same electrical
properties. The center of the cylindrical shell is the origin of superimposed
Cartesian and cylindrical coordinate systems. The unit vectors in these systems
are X, ¥, and Z; and P, ?, and 7, respectively. The axis of the cylinder is
coincident with the z-axis of° both coordinate systems. ¢ is the angle between
X and’a measured in a counterc¢lockwise sense, and p is measured from the origin.
The plane-wave incident electric field is assumed to propagate in the positive

x-direction, and in one case is polarized parallel to the z-axis (longitudinal

polarization) and in the other case parallel to the y-axis (transverse

polarizatiom).

Analytical Representation of the
Electromagnetic Fields

1. Longitudinal Polarization of the Electric Field
{ -jkzx -jkzp cos ¢
When the incident electric field is given by E = QEoe = QEoe

the expansions in cylindrical wave functions for the incident, reflected, shell,



and cavity electric
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In wfiting the relations for E and H the time dependence assumed (but

suppressed) is exp(jwt). Eo is the amplitude of the incident electric field,

and the superscripts i, r, s, and ¢ on Ez and H represent incident, reflected,

shell, and cavity. The superscript "I on the electromagnetic fields and on the

constants a , b , ¢ , and dn denotes that the case of longitudinal polarization

of the electric field fs being considered. The propagation constants in media 1
and 2 are

wp 0 '
11 _
k= (1 - DY, : (11)

(provided ¢, >> uﬁl), and

1

respectively.



2. Transverse Polarization of the Electric Field

1 -jkzx -jkzp cos ¢
When the incident magnetic field is given by H = QHOe = ?Hoe

the expansions in cylindrical wave functions for the incident, reflected, shell,

and cavity magnetic fields are

oC
il .=n jno
Hz = Ho E j Jn(kzp)e (13)
n=-=<
Zw 1.(2) ¢
rl _ .~n jn
Hz Ho j anﬂn (kzp)e (14)
n==«<
= 1
Wt -xn E ;765 (ko) + N (k.p)|ed™? (15)
z o na 1 nn 1
n=-x
= 1
1 -n :
H ™ = H E i (kpyed™® (16)
z o L nn 2

where H 1is the amplitude of the incident magnetic field. Since,
o

jweE (17)

I
*
Iz

N}

and H = QHZ, it follows that

J

. |
(D(-.l

)

.S
do 2P dp 2z

O |~

3 H P H 3}. (18)



"Accordingly,

H ©
il__o 1 -n jn ¢,\ inga
E= 5 Z :nj 3_(k,p)e J—-k 2:3 3! (kppre™ 0 @ (19)
ns-o QS =00

H E 0
ri__o 1 J.J n (2)(k 0e _1nq5A + 3 K alj n (2) (k )ejn¢$ (20)
E : n 2 E ; n n

E wez P a)ez
n=-9o n=s=o0
H o '
4
ES‘L=-—3--]= E nJ {bJ(k p)+cN(k p)] jn¢
- a)el (&
n==w I
E o0
o -n|. 1. Lo jné A
j — 21
+ j o, kl E :j [ann(klp) + ann(klp)]e ? (21)
n=-o .
H 0
E°l= o 1 Z d J (k p)ej“d”‘
- € P
2
n=ec
H Zw 1 jne
-0 ] ”
— . 22
+ cuez k j dan(kzp)e ¢ (22)
n:-w

where the superscript "1" on the electromagnetic fields and on the expansion
constants denotes transverse polarization of the incident electric field.
The Boundary Equations

The boundary conditions on the fields to be satisfied at p = a and p = b are
Ax[£i+§r]=6x§s

i p=a (238)
"x[_r_l +_r_1r]=6x
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All the constants appearing in the field expansilons are fixed by (23) only.

Let the following notation be introduced
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11 k
where n” = ;— and k = EZ . It can then be shown, using (23), that the boundary

1 1 *
equations take the following form for the case of longitudinal polarization.

I
-A a“ + B b: +Cec =F

ln 1 ln 1
1 ] 1
-Azan + Ban <+ Czcn = FZ
H b” + G I D d” = Q -
l1n lcn ln
I i i
Han + G2cn - D2dn =0
It *
The solution of (26) for dn is
4. (G}, - GH)(FA) - AF)) 27
n (H)D, - DH)(AC,) - CAa) + (6D, - DG)H(BA) - A B)
Equation (27) can be simplified by use of the Wronskian relation for Bessel
functions:
3N () - 3 (N () =L (28)
n 2 pt? n 2\ mz
The result is
<_z_>2 n'
d” - nkl ab 29)
n (HlD2 - DIHZ)(AICZ - C1A2) + (GIDZ - DIGZ)(BIAZ - AlBZ)

*

It should be pointed out that although the boundary conditions only give
the equality of infinite sums, one also must have term-by-term equality because
of the orthogonality property of the exp(jn¢) functions.
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In the interest of brevity the boundary equations for the case of transverse

poiarization of the electric field are omitted. However, di may be obtained from

V8 €
(29) by replacing n“ = 2 by nl'= -2 .
Ky 1

The Electromagnetic Fields on
. Axis of the Cylinder

The cavity fields are given by (4), (10), (16), and (22). To obtain
relations for the fields ét p =0, i.e., on the axis of the cylinder, the fol-

lowing relations are empioyed:

n .
1 .
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-=n. . . n . - . - :
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_Evidently, an infinite sum is not required to express the fields on the axis

of the infinite cylindrical shell.



Since,
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The Form of the Integrals to
be Evaluated by a Computer

The functional form of the time dependence of the incident field pulse

assumed is

£

2
2
1

2t
eo(t) = Ae , (43)

where A is the value eo(O) in volts per meter, t is the time, and tl is a

measure of the pulse width. The frequency spectrum of the pulse is

) £2 . !
262
E_(f) = Atlx/z_Fe . (64)
1
Here £, = .
1 277t1
Let G(f) = GR(f) + jGI(f) represent one of the desired steady-state shield-
‘ing ratios, such as (Ec(f)>p_q/£°(f). The time development of the electric

field on the axis of the cylindrical shell is then

4-cC 2
e (t) =f G(f)Eo(f)ej (LAY

[> )
. fz
£, -5
2f ‘
~ . 1
- 2Atl\/2n [GR(f)cos 2nft - GI(f)s1n 2nft]e df , (45)
o

where in obtaining the second part of (45) use has been made of the relation

G*(f) = G(-£). For computations of the electric field the constant A in (43)
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was taken to be 1 volt/m; for computations of the magnetic field h and H are

substituted. in (43) and (45) in place of e and E, and A is set equal to 1 amp/m.

In this paper the highest significant frequency contained in a Gaussian pulse

is considered to be fc = 2.6f1. The "significant'" base width of the time

function is 2 x 2.6t = 5.2t.. The half amplitude of a Gaussian pulse is

1 1
2.355t1.
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