IN 32

SCR-623A

Vasdis Usrporation

REPRINT

EAN

TRANSIENT ELECTROMAGRMETIC FIELD
PROPAGATION THROUGH INFINITE
S L&'Tg ”\“O Si |‘5LR!CAL SHLLLS
AND INTO HOLLOW CYLIMNDERS

by
C W Harrison, Jr

PERMANENT RETENTION
PLEASE DO NOT RETURN

MAY 1964




O

Transient Electromagnetic Field Propagation Througﬁ Infinite
Sheets, into Spherical Shells, and into
Hollow Cylinders

CHARLES W. HARRISON, Jr., SENIOR MEMBER, IEEE

Summary—Gaussian electromagnetic field pulses of several
durations are propagated through infinite sheets into the interior of
hollow cylinders and into the interior of spherical shells. The plates,
spheres and cylinders are made of aluminum and contain no slots.
The time history of the propagated pulses is computed. Finally, the
time sequence of the electric field is calculated in the interior of a
cylinder of finite length when connected at its ends by wires to a
generator delivering a current pulse of Gaussian shape. .

The dimensions of the cavities are assumed to be sufficiently
small so that resonances are not excited by the highest significant
frequency contained in the shortest pulse considered. The numerical
study is restricted to thin-walled aluminum shields 1/32 inch, 1/16
inch, 1/8 inch and 1/4 inch thick. The half-amplitude widths of the
pulses employed lie in the range 14 usec to 2400 ps=c.

It is shown that the resultant Gaussian pulse electric fields de-

. fined on the surface of the plates and cylinders are propagated with

little diminution in amplitude. This is understandable due to the re-
quirement that the tangential fields are continuous across the inter-
faces, and to the fact that skin effect is almost nonexistent at low
frequencies. The incident (as contrasted to resulfant) field pulse
undergoes reflection at the boundary surface. Hence, the attenuation
sustained by the incident field is great, since reflection is the chief
mechanism of attenuation of fields at low frequencies. Thin spherical
shells form effective magnetic shields. The electric field is small in
the interior of thin-walled cylinders carrying extremely large tran-
sient currents.

INTRODUCTION

HIS STUDY was undertaken to determine the

ll shielding characteristics of thin-walled infinite
sheets, spherical shells and cylindrical tubes,
illustrated by Fig. 1, under transient conditions. The
shields are made of aluminum and contain no slots.
Gaussian electromagnetic field pulses are propagated

- through the infinite sheets, and from the outside to the

inside of closed containers in the geometrical shape of
spheres and cylinders. Time histories of the attenuated
pulses are computed. For the case of the infinite conduc-
tive shezts, the propagated pulses are compared to the
associated impinging pulses on the basis of available
energy per unit area.

Finally, the field is calculated in the interior of

cylindrical tubes of finite length when the ends are con-

-nected by wires to a generator delivering a current

pulse of Gaussian shape. From the theoretical point of
view, this problem is closely related to that of calculat-
ing the field within a missile stripped of interior com-
ponents when subjected to a direct lightning strike.
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Fig. 1—Configurations considered in the propagation of Gaussian
pulses through aluminum walls. (a) Infinite plate. (b) Sphere
Ae=2.28b. (c) Cylinder A\,=2.61b. (d) Cylinder with direct gzen-
erator drive, A\o=2.61b.

THE IMPINGING GAUSSIAN PULSE

The description of the impinging pulse in the tine
domain employed in this paper is

e(t) = Ae~tit’ . (13

where 4 is the value of ¢(0), ¢ is the time, and £ is a
measure of the pulse width. The spectrum of the puis-
is abtained by taking the Fourier transform of (1). Thus.

E(f)= 4 f ',—(um’lz,-ﬁmd; = Al 27 e~ 1002, )
where

SR
1= .
2l o

3)
In evaluating Fourier transforms by numerical methods,
it is necessary to truncate the frequency spectrum in
passing from the frequency to time domain, and trun-
cate the limits of integration when computing the fre-
quency spectrum of a given time function.

Let ei(¢) be the new time function obtained by takinz
the transform of the truncated frequency function.
Assume that the cutoff frequency is f,=2.6f1. The error
is then '

2(t) = | e@®) — ear(®) |

| [ e+ [

- 2.8/,
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Thus

T ED . ®

2.6M)

n(-l) <2

Substituting (2) into (5) and integrating, #(t) £0.00934.
Thus ex(f) does not depart from e(f) by more than 1 per
cent at any time.

If e(f) is a plane wave, the energy in the pulse is given

by

1 tre
vo=— [ leoa=— [ izoty, ©

where the last relation follows from Parseval’s identity.
The energy lost by truncation of the spectrum is

" E@ |

2.6/,

U1=—2' , (7)
o .

In these expressions, {,=120x ohmsis the characteristic
resistance of space. Substituting (2) into (6) and (7),
and performing the integration, it is found that U;
=0.000236U.. Thus 0.0236 of 1 per cent of the energy
is lost by truncation of the frequency spectrum at
Je=2.6f1.

In this paper the highest significant frequency con-
tained in a Gaussian pulse is taken to be f,=2.6f
=2.6/2rt. The “significant” base width of the time
function is 2X2.64 =5.2¢,. Thus, when £, =12 usec, the
pulse duration is considered to be 62.4 usec. The highest
significant frequency in this pulse is 34.48 kc. The
half-amplitude width of a Gaussian pulse is 2.3554.

THE TRANSFER FUNCTIONS FOR SHEETS,
SPHERES AND CYLINDERS

It is readily shown from elementary principles of
electrodynamics that the transfer functions for an
infinite metal sheet of thickness d for parallel incidence
of the electric field are!-2

E() _ % " ®
EJf) 2.t cos kd + j($? + $2) sin kd
and
E; (f) '
E(f) "~ ¢ocoskd + ]5’ sin kd
. A. Stratton, “Electromagnetic Theory,” McGraw-Hill Book
Co nc New York, N. Y-, ch 9, sec. 9.10, pp. 511-513; 1941.

Frey Fundamentals of Acoustics.”

1L, Kinsler and A.
N. Y., ch. 6, sec. 6.4, pp.

John Wlley and Sons, Inc., Ne\v York,
149-154 1950.
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where E;(f) is the electric field emerging from the far
side of the sheet, E.(f) is the incident electric field and
E(f) is the tangential electric field on the near side of
the sheet.? Thus E,(f) is the vector sum of the inci-
dent and reflected fields. E,(f)>>E;(f), and when f>o,
E(f)> E(f) because of skin effect. (See Fig. 1.)

= 4/ 1’{—“— A+, (10)
k= v/afas (1— 1) “an

where p=4w X10~7 h/m is the permeability of space
and ¢=3.72X10" mho/m is the conductivity of alumi-
num. In deriving (8) and (9), a time dependence of the
form exp (j2xft) is assumed.

The transfer function for a spherical shell is*

80
Bf)

_ 3(ya)'?

(0 [I1y2(v0) K—s2(78) — K-1/2(v0)I-s2(vb)]

Here, H; is the magnetic field inside the spherical shell
at its center, H, is the resultant magnetic field at a
great distance from the sphere, a is the outer radius of
the shell, b is the inner radius of the shell and d=a—b
is the shell thickness.

. (12)

¥ = Vafur 1+7). (13)

Tand K are the modified Bessel functions of the ﬁrst and

second kind.
Using the exact relations,®

. _ 'z :
Iy2(x) = ,‘/ = cosh z W

2 S 3
I_gpa(x) = 1/ —{ coshx — —sinh x + — cosh x)
. x xl

K—uz(x) 1/ —
K gn(z) = 1/—e-=(1+ +— : | -

. 3The subscnpts %, 0, and ¢ on the fields mean inside, outside and
fangential (or fotal), respectively.

4 L. V. King, *Electromagnetic shielding at radio frequencies,”
Phi. Mag. J. Sci., vol. 15, no. 97, pp. 201-223; February, 1933.
*There appear to bea number of inconsistencies in this per. If the
~time dependence is taken to be exp (j2xft), King's formula (16)

L. (14)

. reproduced in this paper as (12) appears to be correct, provided

x=y = +/2fpo(1+j). Note that (12) is the quasi-static solution of the
sphenml shield problem.

§ N. W. McLachlan, Bessel qu:twns for Engineers,
Oxford University Press, New York , (list of formulas), pp.
190-214; 1955. .

2nd ed., Q
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Eq. (12) can be reduced to the following identity which
is more convenient for computation:

")
H,(f)
= 3 379A, 3 - (15)
(vb)? [(1 + a9 2) sinh yd + % cosh 1d]
The cylinder transfer t:unctions are® .
Ei(f)  Jo(kb)N1(kb) — N(kb)J1(kb) s
Edf)  Jo(ka)Ny(kb) — N(ka)J(kb) (o)
and
Ez(f) 1 ka
T.F)‘ = p— ('E-) cot kd. an

In deriving (16) and (17), a time dependence of the form
exp (j2xft) is assumed. Here a and b are the outer and
inner radii of the tube, respectively, and d=a —b5 is the
wall thickness.

Now?

Jo(kb)N1(kb) — No(kb)J1(kb) = — —i—b . (18)

(This is the Wronskian relation.) Combining (16) and
(17) and making use of (18),

E( cot kd 1
Lo [mka)zvl(kb) - Na(ka)fx(kb)]' (19)

This expression permits calculation of the steady-state
field within the cylinder in terms of the total current
delivered by the current generator directly connected
by wires to the ends of the cylinder. It is assumed that
the current is uniform in this circuit. This will be the
case if the circuit dimensions are small in terms of the
wavelength of the highest significant frequency con-
tained in the shortest current pulse employed in this
study.

If a plane-wave electric field is directed parallel to the
axis of an isolated cylinder, the current I(f) at its
midpoint is obtained from antenna theory. It is given
by the relation

x2gab

2h(f) E.(f) )

L(f) = Z.

(20)

. The effective length of the cylinder is 24,, and Z, is its

* C. W. Harrison, Jr. and R. W. P. King, “Response of a loaded
selectric dipole in an imperfectly - nducting cylinder of finite length,”
J. Res. NBS—D. Radio Propagc:ion, vol. 64D, no. 3, see Eqs. (15)
and (26) on pp. 290-291; June, 1960.

T McLachlan, op. cit., see p. 32.
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impedance. 1f @>7 and Bh=(2nx/Nk<(2nf./c)h <0.5°

h(Q — 1)
ho(f) = ————— 21
2 (f) 2—-2+1In4 (21)
and '
t(—2—-21n2)
Zof = ~7
2xph
7)1
-[1 + 7 () ] ~(22)
3(2—2~2In2)
where Q is the cylinder shape parameter. It is
2k
Q=2In—- (23)
a

The length of the cylinder is 25.
It is of interest to note that as f—wo, the transfer func-
tions (8), (9), (15), (16) and (17) become

Ei(©) = —-——-——-—1 y (24a)
Eo(o) plate 1+ $oor .
2
Et(o) plate
H(0) =1 (240)
H,(a) aphere
240 =1 (24d)
El(o) oylinder ’
UCA (24e)
Io(a) oylinder 2xoad
Also, from (20), as f—o,
I,(0) [lntannn = 0. (241)

It is deemed appropriate to physically justify results
(24a) and (24b). Several of the other results in (24) may
be inferred from this discussion. The fact that E;(0)/ E.(0)
does not reduce to unity as f—o is understandable on
the basis of the wave impedance concept and the trans-
mission line analogy of wave propagation.’ Shielding is
due to two effects; one of these is skin effect and the
other is reflection that takes place at the outer surface
of the shield. The more important mechanism at low
frequencies is the one of reflection. The incident field

E, is in large measure reflected by the plate. The fact

a

8 R. W. P. King, “Theory of Linear Antennas,” Harvard Univer-
sity Press, Ca;nbridg:._,Ma;;.. ch. 2, sec. 31, eq. (6), p. 184, and ch.
4, sec. 9, eq. (21), p. 487; 1956. . ]

sc':cs- R?mf) az'ldp]. R. Whinnery, “Fields and Waves in Modern
Radio,” John Wiley and Sons, Inc., New York, N. Y., 2nd ed., pp.
286-314; 1953.
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that E;(0)/E.(0) reduces to unity as f—o is just an-
other way of saying that the resultant tangential fields
must be continuous across the interfaces, and at low
frequencies skin effect is almost nonexistent. Hence,
the resultant or total field on the near side of the plate

. must equal the resultant field emerging from the far

side. It should be mentioned that E, is also a good ap-

proximation to the resultant field in the vicinity of the

near side of the plate when the wavelength is long.
Let

G() = Ge(f) + jG:(f) . (25)
represent any one of the foregoing transfer functions. It
can be readily verified by expanding the trigonometric,
hyperbolic and Bessel functions in series, and by exam-
ining the resulting expressions that they satisfy the
relation

G*(f) = G(—=N.

That this holds for (20) follows from the fact that
Z.*(f) =Z.(—f), as an inspection of (22) shows. Eq. (26)
sets forth an important property of any transfer func-
tion applying to a physically realizable system.

From (25)

"(26)

G(—N) = Ga(—=1) + jGi(~1), @7
and by definition
G*(f) = Gr(f) — jGi(f). (2.8)
It follows that
Ga(f) = Ga(—=f) - . (29)
is an even function, and - '
Gi(f) = — Gi(—f) (30)

is an odd function.

THE FORM OF THE INTEGRALS TO BE
" EvaLUATED BY A COMPUTER

For illustrative purposes, let it be supposed that the
time function of the electric field within a hollow
cylinder is to be computed in terms of the Gaussian
pulse current which the generator delivers by wire to
the ends of the cylinder. In this instance, G(f) is the
shorthand notation for the right-hand side of (19).
Then

E(f) = GOL(). (31)
"~ L{(f) corresponds to (2), i.e., .
L(f) = Aty 2z e Ui'n (32)

May

for a current pulse in the time domain corresponding to
(1). 4 is in amperes, and I,(f) in a/Hz for this particu-
lar situation. _

The time history of the field on the interior of the
cylinder is available from the integral '

e(t) = Alr\/Z;;f G(f)e—(llh)’lzeihndf'

. Je - . N
~ Atn/2% f {Ga(f) cos 2xft — Gi(f) sin2xft =

—-fe
+ 7[Gr(f) sin 2xft + Gi(f) cos 2xfi]}

-e~uinigy, (33)

provided the time dependence assumed in deriving -

G(f) is exp (j2xft). Since Ggr(f) and cos 2xft are even

" functions, and Gr(f) and sin 2xft are odd functions,

it follows that (33) reduces to

ei(t) = ZAIL‘\/Z_;f!.[Gg(f) cos 2xft — Gi(f) sin 2xft]

.,——wm‘/zdf. (34)
This is the final form of the integral to be evaluated on
the computer. Note that the integral is necessarily real
because ¢;(t) is a real function of time. All of the inte-
grals encountered in this paper concerning the various
shields are similar in form to (34). The constant .{ was
taken as unity throughout the work. Of course, the
units of 4 will depend on the shielding problem being
considered. '

DiscussioN oF GRAPHS

Graph 1 shows theé amplitude-time relation of some
of the input Gaussian pulses used in the numerical
study. Specifically, pulses are drawn for values #; of 6,
12, 24, and 48 usec. Note that the peak amplitude of
unity occurs at zero time. The pulses are symmetrical
on the time ‘scale. : _

_ Graph 2, based on (9), gives the steady-state transfer
characteristic relating E.(f) to E.f) for an infinite
aluminum plate of thickness 1/32 inch, 1/16 inch, and
1/8 inch. For example, for a 1/8-inch plate at 120 ke,
the field emerging from the plate E,(f) is 110 db below
the tangential field E,(f) (or the resultant field) on the
other side of the plate.

Graphs 3, 4, 5, and 6 give the time history of the
field ¢;(f) emerging from the plates of designated thick-
nesses.in terms of e,(f) for values of 4 of 6, 12, 24, and

48 usec, respectively. The value of e:(0) is 1 vpm. Note

that, in all cases, the attenuation of the field is not
great, but progressively increases with plate thickness
and decreasing values of #,. The waves are retarded in
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time in propagating through the plates, as should be
anticipated. The delay increases with plate thickness.

Graph 7, based on (8), is like Graph 2, except that
e.(t) replaces e,(t).

Graphs 8, 9, 10, and 11 correspond to Graphs 3, 4, §,
and 6, respectively, except that e.(!) replaces e.(f).
Note that the wave shapes are very much alike, but the
amplitude scale is vastly different. Graph 8 shows, for
example, that when the peak value of ¢,(t) is 1 vpm,
t1=6 usec and d=1/32 inch, the peak value of e;(¢) is
about 1.61X10~7 vpm, and occurs at about 0.005 msec.
If eo(0)=10° vpm, e:(¢) =0.0161 vpm. Note that ey(f)
undergoes reflection at the boundary surface, and this
accounts for the large attenuation afforded by the sheet.

Graph 12, based on (15), gives the steady-state trans-
fer characteristic relating H;(f) to H,{f) for a 36-inch
spherical shell made of aluminum having wall thick-
nesses of 1/32 inch, 1/16 inch and 1/8 inch. As an
illustration, for a 1/16-inch wall 36-inch sphere at 7
kcs, the magnetic field H;(f) on the interior of the sphere
is 56 db below the magnetic field H,(f) outside.

Graphs 13, 14, 15, and 16 give the time history of the
magnetic field %,/¢) inside the 36-inch spheres of desig-
nated wall thicknesses when the magnetic field £.(0) =1
ampere/m for ¢ values of 24, 48, 96, and 1000 usec,
respectively. As expected, as the pulse length increases,
the field %:(¢) increases. The thicker the shield, the more
effective it becomes. Note the severe distortion of the
resultant pulse in propagating into the interior of the
sphere. :

Graph 17 is like Graph 12, except that it applies to a
72-inch spherical shell. '

Graphs 18, 19, 20, and 21 correspond to Graphs 13,
14, 15, and 16, respectively, except that the computa-
tions were carried out for a 72-inch spherical shell.

Graph 22, based on (16), gives the steady-state trans-
fer characteristic relating E;(f) to E.(f) for a cylinder
22.08 feet in length and 16 inches in diameter when the
wall thicknesses are 1/32 inch, 1/16 inch and 1/8 inch.

Graphs 23, 24, and 25 give the time history of the
field ¢;(¢) in the interior of the above cylinder when
e.(o)=1 vpm for # values of 6, 12, and 24 usec. These
graphs applying to infinite cylinders have much in
common with Graphs 3, 4, and 5 applying to infinite
plates. .

Graph 26, computed from (16), (17), and (20), per-
‘mits cne to obtain the db ratio of E;(f) to E,(f) under
steady-state conditions for a cylinder 22.08 feet in
length und 16 inches in diameter, when the plate thick-
ness and frequency are specified. The transfer charac-
teristic E(f) to E.(f) is obtained by eliminating I(f)
between (19) and (20).

Graphs 27, 28, and 29 furnish the time history of e,(¢)
for e,(0) of 1 vpm for the designated cylinder for %
values of 6, 12, and 24 usec and for wall thicknesses of
1/32 inch, 1/16 inch and 1/8 inch. Note that the inte-
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rior field is extremely minute in terms of the incident
field. Most of this attenuation is dueto the fact that the
incident field is reflected by the cylinder; the field e.(2)
is extremely small compared to ¢,(¢). In the computa-
tion associated with these graphs, the real part of the
transfer function is very small and the imaginary part
rises almost linearly with increasing frequency over the
range of integration of (34). Consequently, the output
signal is approximately the time derivative of the input
signal, as the curves show. The phenomenon is rot to
be attributed to antenna resonance. The cylinder re-
mains short in terms of the wavelength of the highest
significant frequency contained in the shortest pulse
considered in the analysis.

Graph 30, computed from (19), furnishes the ratio
of E(f)/I,(f) as a function of frequency for a cylindeér
22.08 feet in length and 16 inches in diameter having
wall thicknesses of 1/32 inch, 1/16 inch and 1/8 inch.
Thus, for a total current in any cross section of the
cylinder of 1 ampere, the field in the interior of the
cylinder will be 10— vpm, if the frequency is 150 kc
and the cylinder wall thickness is 1/8 inch. .

Graphs 31, 32, and 33 give the time history of e;(¢)
when 7,(0) is 1 ampere, for the cylinders mentioned
above for ¢, values of 12, 24, and 48 usec.

Graph 34 is the same as Graph 30, but is computed for
a cylinder 105 inches in diameter, 60 feet and 4 inches
in height, and having a wall thickness of 1/4 inch. These
dimensions are reported to apply to a Jupiter missile.

Graph 35 presents the time history of the electric
field e;(¢) inside a Jupiter missile stripped of interior
components when 7,(0) is 1 ampere for f, values of 24,
48 and 96 usec. Obscrve that the height dimension of the
missile is sufficiently .mull so that the current is uni-
form in the circuit connecting the ends of the missile
to the current pulse generator.

Table I presents the decibel ratio of the energy avail-
able in the emerging plane-wave pulse from the far side
of the plate to the energy in the impinging plane-wave
pulse on the near side of the plate for the cases of
tangential and incident electric fields. The decibel ratio
of the propagated and impinging pulse peaks in the
various situations described in the paper is easily ob-
tained by inspection, hence tables are not provided.

Table I was computed from the relation -

[ eora l

—e

db = 10logy { —————
[ eoors ]

S s

Sl S (35)
hv/* )

= 10 logu



324

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION May

o
o

o
K3

VOLTS/m,AMPERES/m OR AMPERES
o o
] ()]

T
/.-f|=48p.s|
Al A9 2
J »—’FGF.S
AN AEAN
1 £ 1 AL
AR TIITRYEAN
y f , \\
/ LR\
AN AUERRAYD! g
° -20 -B0 -40 O 40 80 I20

1-MICROSECONDS

Graph 1—Input Gaussian pulses.

R Ny Sy [ 13z
——
-20 < : =
40 N\ =l rine'
| ]
—
-60 =
a ——
o
-80 U
<
-{00
-120 <
-140
0 20 40 60 80 100 120 140 (B8Q 80 200
' f - KILOCYCLES/SEC
Graph 2—Infinite plate. Steady-state transfer characteristic
relating Ei(f) to E(f).
06
A -
\
Q.5 et
E 04
£
203 4
6 /
02 [N 1/16*
0. [HHA
\ r—llﬁ'
e A
0 0.0 Q.20 030 040
t - MILLISECONDS

Graph 3—Infinite plate. e,(0)=1 vpm; ;=6 usec.

1.0
E
0.8
g A
§ \P—w32"
=06
-y n
0.4 -
7
e
0.2 \ N e
o] ] S S B - " - —
0. 005 010 0I5 020 025 030 035 040 045
t- MILLISECONDS
Graph 4—Infinite plate. e;(0) =1 vpm; fi=12 gsec.
I
1.0
S s N
o8 ez
2 1
Zos '
= |
04 1’ ‘Y 16"
0.2 l ™ -
[/l / e
o /| L1
-0l o at 02 03 04 05 06 07 08 09
. . t - MILLISECONDS
Graph 5—Infinite plate. e;,(0)=1 vpm; f, =24 usec.
T
10 . 1732°
3
g O.B [
-;.:-04
' /1 TATON
02 [iITRY, N vs*
27" Ny
IV TINLN
-QiI0 ‘0 010 020 030 040 030 060 070 Q&0
: : t- MILLISECONDS

Graph 6—Infinite plate. efo)=1 vpm; f; =48 usec.

.
: .

~



1964 Harrison: Transient Field Propagation through Infinite Sheets 825

B = EESE L
" -140 <] = e 2.2 s b
= e — — 7 T T r
460 — SSH S 20 R
480 1IN e T T 8. ]
F L\ ] F—l R ) (\ B
200 (- : q T 16 : / E -
S a0 s munlEy
176" L gl IREIE
& N -
240 5 12 --X|0.7 T . ,,J,
_ r\ g \
280526 a0 60 80 100 120 10 160 180 'O R .
f - KILOCYCLES/SEC - L1732
Graph T—Infinite plate. %tt(e?)dy-sgxz?)transfer characteristic, relating Q.81 - ’ :
i(f) to E(f).
' [HNaN
05
A7AmAY
04 l g
A \ 116"
02 / / 4 /8"
[ c r M I ’
o V 1 ] T
-004 -002 0 002 004 006 008 010 Q12 QM4
- o t-MILLISECONDS
. é R : Graph 9—Infinite plate. ¢,(¢)=1 vpm; £/, =12 usec.
20407 : )
N l
: |
1.8 I
r 20 '
.6 ¥z e
£ 14 \ ' N3z
~
4 1.6 \
-
a2 1R
2 [
= .4 i
oy 1.0 g Y
o 8 |- '(‘l_) |.2 \'
. |
b : ! 9 4 |
2 1.0txl0 T
0.6 <
4 . " : é’- 0.8 -
04 \ 716 _ . [[ 71 )
/ \ . _ 0.6 vis"
0.2 -
4 ——ovE 0.4 / \
o X ' = \
<002 O 002 004 006 008 0I0 OI2 Ol4 16 | 178"*
t-MILLISECONDS 0.2 / \ \ —l
Graph 8—Infinite plate. ¢,(0)=1 vpm; {; =6 usec. // 7 \&._ 1]

-8.08 -004 O 004 008 0l2 016 020 024 028
t -MILLISECONDS

Graph 10—Infinite plate. (o) =1 vpm; ;=24 usec.



326 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION : May

) nz_.[n_.
g o
; os
20 =%
‘_ o4 (%
1.8 oaf=rml I
/A\/lm" s S N
16 Ij _ O 4 e = & D 2 B 32 % 40 4 4 w2 5
. 7 [ Graph 13—Sphere 36 inches in diameter. k.(0)
g 1.4 FXIO =1 ampere/m; t, =24 usec.
S _ .
-
- 1.2 g
: IR
&0 [
| | ’
0.8
TN
0.6 vus'\\
/ \ -2
xI0
0.4 P e -
02 ARVARAN . 20 O
[V 1/
B4 NS 18- —-1/32"
-016 -008 O 008 016 0.24 0.32 o
t -MILLISECONDS 16
Graph 11—Infinite plate. e,(0) =1 vpm; 4 =48 usec. )
£ 14
<
0
&
€ 12
s
20 |
- 'y
0 08—
207\ 06 \\\
=
N N N W-iie”
%40 I e e e N V£ 0.4 S\Y '
’\\.‘ r""—'-—y_ ,I/IG'
«860 Tt ——1_] e o2 X
. == \ e
-80 : o ]
o | 3 a4 3 6 7 8 9 -5 0 {0 20 30 40 50 60 7O
f-KILOCYCLES/ SEC _ o S ffMlLLlSECONDS
Graph 12—Sphere 36 inches in diameter. Steady-state transfer char- Graph 14—Sphere 36 inches in diameter. k(o)

acteristic relating H:(f) to H.(f). . ' - t_unpem/m_; f=48 usec,




1964 Harrison: Transient Field Propagation through Infinite Sheets 827

-)th-z : fo)
36 "h
ol N T 1L _ N
HilgN , a0l \L | [ -
28 | o N fve
17 © I~ <] I i e —
Bl | ) O -60 ~t_ ] T e T
] Tt 178" —
24 7] ‘ - *‘W -1 ] ]
\ — -80 E——
EZO1 I\ © I 2 3 4 5 6 1 8 9
m vy T - f- KILOCYCLES/SEC
g:f 16 V32 o Graph 17—Sphere 72 inches in diameter. Steady-state transfer char-
< acteristic relating Hi(f) to Ho(f).
<2t — -
& 16"
= NV
0.8 Q
\Nu PR T
04 [~ \ N \\ T _l,_ ' L _1 P A N +
N - —_— :FF* TIT !
o N T el T ]
50 10 20 30 40 5 6 70 80 - - —
t - MILLISECONDS e PN -
Graph 15—Sphere 36 inches in diameter. 4,(0) g o . &E:iw o T ,
= | ampere/m; 4 =96 usec. § TN 171777 !
’ 2 B N T }
| s LEN T EH
T 7 Tor T T o1 S T !
N O S O T ) (] L1 ] T = e ML
o ] O O I A vl A AT 7
20 4 8 12 W 20 24 28 32 36 40 44 48 52 %
_ 1-MILLISECONDS
Graph 18—Sphere 72 inches in diameter. k,(0)
=1 ampere/m; 4 =24 usec.
. 324 xio-! .
g \ze 1T
nes -1
& | ] T
& | 1 NN .
3 24711 - T i
= D | b :
=20 T w0z | [ 1 N 1
. |
I 6_ I 5 ° vay' *—T L
' :q( )Q\ | - g”’ INEN ;
rins Sos T T
| _ S oe { RENE .
08 AN 1716 I ) '"‘*\‘R EEgn i
. A\ 02 el | I i
—IANTT T el - v —— T
0.4 \\‘\ j U T 20 16 20 30 40 % 6 M 8 %0 100
g \\ ‘\\__.:_l,a- 1 MRLLISECONDS
0 '~ | ﬂ:'ﬁ*—-——- Graph 19—Sphere 72 inches in diameter. k,(0)
.50 10 20 30 40 50 60 70 80 =1 ampere/m; =43 usec.

t- MILLISECONDS

Graph 16—Sphere 36 inches in diameter. k,(0)
=1 ampere/m; L =1000 usec.



a
E“l

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION May

328
- x |°-2
/32"
20 {r
8 \t
1.6 l\
4 I
3
o \
‘&:-' 1.2
]
S \
Z 0 \\
N\
06 ‘ [N\
_J M .
04 ’ \\ \V ,_.ms
[JIB
0.2 N —
N T
o J \4\‘ il ] —d
-5 0 10 20 30 40 5 60 70 80
t- MILLISECONDS
Graph 20—Sphere 72 inches in diameter. A.(0)
=1 ampere/m; h =96 usec.
20
1.8 LAr32"
" \
14
12 {xiot |\
e \
@ L0 \
w
]
a 08
2 N\
= 06
= »
i\
N V
0.4 Nd
/8" ANAN
0.2 N
) ‘\’:\\M
) s B
-0 o 10 20 30 40 % 60 70 80

t- MILLISECONDS
Graph 21—Sphere 72 inches in diameter. 4,(0)=1 ampere/m;

#H1=1000 usec,

(o]
N ==
W\ NN\\
a0l N M ———
80 T~ vis”
178" ™~
-120 ~
s N ™~ N
—
-160 |
N
-200
O 100 200 300 400 500 600 700 800 900
f-KILOCYCLES/SEC.
Graph 22—Cylinder. Steady-state transfer characteristic relating
E.'(f)_to E(f).
T >
!
c: (Y2te
fms 4 -
os T
E os
g as
2 o i
o3 I\ L
[ 3 I
.l O QI 02 03 d4 05 06 OF7 08 0% 10
1 MLLISECONDS
Graph 23—Cylinder. efo) =1 vpm; #i =6 usec.
: 10
s
gos =
Sae
o«
4 ] e
0.2--1 l-ve*
N

%7 0 o) 0Z G5 04 05 o8 of o8 a3 ©
. 1-MLLISECONOS
Graph 24—Cylinder. efo)=1 vpm; {y =12 psec.

.M,

NImE O TENE N = SN NN 1 0 T | LI Ommn e o immmns m




T -y,
N

1964 Harrison: Transient Field Propagation through Infinite Sheets 829
x107'0
- ‘L 20 N
o : 8 w32\
£ oo T
g o L
= - ]
S T 1.0
TN ] 0.8
oz it 1716 -
VI G [
Q 4 0.4 -
0l 0 of 02 o.s'_'c‘).:u szio N:ss 07 08 09 10 / \ l@
; E Y bae ] 1|
Graph 25—Cylinder. ¢,0)=1 vpm; =24 usec. > 0 W
=
) i
T = =
=180 7 [ =~ ] /3 Q.D— -0.8 ’
) ] \N; -1.0
200 \‘! _ ]
-t4
=210 \\ ‘
© | " “1.
- 16
220 -20
=230 1—y1/8"
1
-240 ‘ -0lo o 0.0 0.20
O 100 200 200 400 SO0 €00 700 800 900 . { ~MILLISECONDS
Grap.h 25—Cylinder. Steady-state transfer characteris.tic Graph 2 ylin_der. e0)=1 vpm; h=12 usec.
relating Ei(f) to E.(f). -
, . 1732t
46 +-- 132" 10
fail / |
30 o8 I[ %
20 [T oo 1]
Lxig™® A Cre" 04 A
1.0 Ld / T\
3 dA\Y /8" 02 178"
» | VI \ 10
[ o - X0
§ N | ) — 0 X AANVN
= o W Z==
T -l E 02 /4
7 5 #——ms‘
-20 Y‘ [ Z 04 ‘
\[ s |
-06
-301 -\
-36 -08 ‘ ]’
-1.0 ;
002 -001 O 0.0 0.02 003 004 005 006 007 -0.10 o Q.10 0.20 0.30

t - MILLISECONDS
Graph 27—Cylinder. e,(0)=1 vpm; ;=6 usec.

t-MILLISECONDS

Graph 29—Cylinder. ¢,(0) =1 vpm; #1=24 usec.



N

330

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION

¥ o
w 10
[
-
TS e

o)
N D
a0 B =
g \\ e 1216*
€ o |\ ~{
:?'O . \.L\
= -.1/8 1
T iGH
w {0

\JLP

o,
(7]
—

Graph 30—Cylinder. Steady-state transfer characteristic

¥ - KILOCYCLES/SEC

relating E(f) to I(f).

(0] 100 200 300 400 500 600 700 800

26

24
~XI0

22

20

1r32°

e;{1)VoLTS/m

o
@
—

(———t—

o
[

o
H

Lot [

0.2 [

/
|
/

NS S1/8"

—1

/Y

0
~Q.04

0 0.04 0IiC 0l4
t-MILLISECONDS

0.20 024

Graph 31—Cylinder. 7,(0)=1 ampere; {, = 12 psec,

26

24

\d-1/32"

2.2

290

e; (1) voLTS/m.
e o '~ =
® o O M

"o
»

02

—t ]

Tt

1\

A\

Il / / 178"

/1 AN

AN \ ~—

c -3
-008-004- 0 004 0.0 ol4 020 024

_ t- MILLISECONDS
Graph 32—Cylinder. #,(0)=1 ampere; f; =24 usec.



1964

Harrison: Transient Field Propagation through Infinite Sheets

28

132"

26

L+

24

22

Tt

20

L x10

ejlt) VOLTS/m

08

,llls"\

06

04

[

\\

02

/
/

LN

A

ol

N

N

0
0.6 -008

O 008 0l6 024 032 040
t-MILLISECONDS

Graph 33—Cylinder. 7,(0)=1 ampere; {, =48 psec.

2

3,

331

28
26 [ | :
2o [
22 '
20 \ _ i
1.8 erO‘—— |<::4ap.s
o FEHHS
y RS 174", o6us
e | \
g 1.2 :
g \
®oa LN
oe | \ X !
oa A -
[I V4, 248 ' *’—
0.2 I k \\
0 R ]
-0.2 (] 02 04 06 08 10 12 14

IN THE IMPINGING PLANE-WAVE PULSE ON THE

t- MILLISECCNDS

H=24, 48. and 96 pusec.

-~

TABLE 1

DEecI1BEL RATIO OF ENERGY AVAILABLE IN THE EMERGING PLANE-
WAVE PuULsE FrOM THE FAR SIDE OF A PLATE TO THE ENERGY

NEAR SIDE OF THE PLATE
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d 4 db d &4 db
1/32 inch 6 pusec - 3 1/32 inch 6 usec| —135
1/16 inch 6 usec -7 1/16 inch 6 psec —144
1/8 inch 6 pusec| —13 1/8 inch 6 usec| —155
1/32inch | 12 ysec| ~ 1 1/32 inch | 12 ysec| —135
1/16 inch | 12 usec —~ 5 1/16 inch 12 usec —142
1/8 inch 12 ysec| —10 1/8 inch 12 usec | —152
1/32 inch | 24 usec 0.0 1/32 inch | 24 psec| —135
t/16inch | 24 psec{ — 3 1/16 inch [ 24 psec | —141
1/8 inch 24 psec -1 1/8 inch 24 usec -150
1/32 inch | 48 usec 0.0 1/32 inch [ 48 psec | —135
1/16 inch | 48 usec | — 1 1/16 inch | 48 usec | —141
1/8 inch 48 usec -5 1/8 inch 48 usec —~148
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CONCLUDING REMARKS

The shielding action of aluminum plates, spherical
shells and hollow cylinders to transient impinging fields
and currents has been investigated rigorously. It has
been assumed that the forcing pulses contain no fre-
quencies sufficiently high to excite resonances in the

spherical shells or hollow cylinders. The lowest mode of

a perfectly conducting spherical shell is A,=2.285,
where b is the inner radius. The lowest radial mode for a
perfectly conducting cylinder when the exciting electric

field is parallel to the axis of the cylinder is A\,=2.61b,

where, again, b is the inner radius. The lowest longi-
tudinal mode for the cylinder occurs when 2k=\/2.
A moment’s investigation will reveal that all of the
cavity shields studied in this paper have dimensions
sufficiently small that no resonances can be excited
by a frequency f.=68.96 kc, which corresponds to
t1=6usec. This is the smallest value of ¢ of any Gaussmn
pulse considered in the present analysis.

It should be evident to the reader that the use of
Gaussian pulses is not dictated by any theoretical
considerations. Suppose ¢,(f) corresponding to a light-
ning flash is measured. Then E.(f), the forcing function,
can be found by numerical integration by using a trun-
cated form of the Fourier integral

E(f) = f e (e~ 2r4dy,

for passing from the time to the frequency domain.

~ Having found the frequency spectrum E,(f) cor-
responding to the time function e,(f), one can find e;(¢)
numerically by using a truncated form of the Fourier

integral

() = f C G ENe .

Thus, £;(f) can be found for any arbitrary wave shape
e,(t), just as easily as was done for Gaussnan impinging
pulses used in this paper. :

In several instances in this paper, the magnitude of
the steady-state transfer function continues to rise
2.6f1=2.6/2xt,.
The results obtained for these cases were checked by
extending the limit f, of integration on (34) to higher
frequencies. There were no significant changes m the
mimbers obtained. ;

Center-loaded electric dipoles may be placed axlally
in the cylinders, and impedance-loaded loops in the

_spherical shells and the energy in the loads evaluated

under transient conditions. Consideration of these
interesting problems is reserved for another paper.

Lty

APPENDIX ]

TaE NECEssiTY FOR KNOWING THE TiIME DEPENDENCE
EMPLOYED IN DERIVING THE TRANSFER FUNCTIONS

‘It has been stressed that the time dependence em-
ployed in deriving the transfer functions given in this
paper for sheets, spheres and cylinders is exp (j2xft).
If the time dependence exp (—j2nft) (favored by many
Electrodynamists) has been assumed in the develop-
ment of (15), for example, the effect would have heen
to substitute % for 7. The transfer function then be-
comes G*(f) instead of G{f)=H;(f)}/H.(f). To obtain
meaningful results in the solution of tranmsient prob-
lems, this change must be reflected by appropriate sign
changes in the exponents of the Fourier transforms for

passing from the frequency to the time domain, and -

vice versa.

Consider a series RL circuit (assumed to be linear).
The driving voltage is e(f) and the current in the circuit
is i(¢). The differential equation is

c()—L—()-+Rz(t) | .

Let e(t)=e7t. Then, #(t)=G(f)e™* where G(f)
=1/(R+jwl). (See Table II.) Since

e(t) = f E(f)e*rdf,
for consistency,

E(f) = f .e(t)e"'”’ tde.

Alternatively, if e(t) =72,
=1/(R—jwl),

it follows that G(f)
i) = f E(NG(f)e7df;  e@t) = f E(f)e-711df,

and

E(f) = f -e(t)e”" ‘dt.

TABLE 11
Input Qutput
e(®) ()
L G(f)eiwre
E(f)eivredf E()G(f)eivridf
f E(f)eivredf : f E(f)G(f)eiTridf

(k
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ArpENnDIX 11

NoTEes ON THE MACHINE EVALUATION OF THE
CYLINDER TRANSFER FuNcTION!?

Let

G‘( ) = J.(Z2)N1(z1) — No(21)T1(21) _ }{
T T Ne) — M@ z) D

where z;=3zr—Jj2a, 2Zir=32ia, t=1, 2. Also, define
z=2z-+6 (6 small).

- - A) As mentioned in the body of the paper, as f—o,

G(o, 0) =1+jo.

B) When 0<R,(2)) <5, G(z1, z) may be evaluated
directly using single-precision arithmetic (36 bits);
however when 5<R,(z1), G(z, %) cannot be ac-
curately evaluated directly using single-precision

--- arithmetic Lecause of loss of significant digits in the
subtractions. In lieu of the extreme difficulties

: encountered in evaluating G(z1, 2) with multiple-
precision arithmetic, the following approximation

was used.
Let
_ M M
Cevsd = - wro—n’
where _ -

DI M = Ni(a) {To(ze) = To(z)}
— J1(2){ No(22) — Na(z1)}.

It is now possible to expand J,(2) and N,(z) in a
Taylor series about z;. Recalling that z =z,4-4,

Jo(z1 + 8) — Jo(z1) = 8J,'(21) + ;Jn’,(zl)

5
+ a-’.’"(zx) + - -

A similar expansion holds for N,(z,+38) — N,(z1).
Combining powers of 3, and realizing that all Bessel
functions now have z; for their argument, yields

" D—M =3{NJ., ~ TN}
52
+ { NJS = TN} + -
Cat®

-3

[T} nl

whére Ca=NJ. ™ —J N, It remains to evaluate
Ca.
By virtue of the relationships J,=—J; and

N,= —N,, it follows that C,=0. Since J, and N,

% Contributed by E. A. Aronson.

satisfy Bessel's equation,

JJS(z) = — LIS J.(Z)..
z
and
NS = — N .;(Z) W),

‘ J. N.I .
C:=N, {———J.} ~ 7 {~ ~N:}
F4 2z

= - N:J."'JxN. = - M.
Differentiating J,’'(2) and N,''(z) yields
J'(2) o (2)

JJ"(2) = - + - JJ(2),
z 22
NS N'(z
N,'"(Z) - — (z) + () _ N.,(z)-
z 22
As before, the terms involving J,” and N,’ cancel
and _ .
M M
- Ca = — =——":

H Fm=zy 21
Differentiating again yields
III J ” J.I

z =3

J .IIII —_
° =

e

A similar expression holds for N,’’’'. Now

It was decided that four terms of the expansion
would be satisfactory for better than 1 per ccnt
accuracy in the range

5 < R.(z1) < 20.

One may now write

. N M
Cent) =y ro_u
=M
PRI
2! 3lzy . 22
R S
- T 37
‘“*sl—ﬁz[“:ﬂ

This approximation was used for 5 <R.(z1) <20.
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C) For R.(z1) > 20, two terms of the asymptotic expan-
sion may be used. We have

: ]
642123
sin 6 1 3
+ [— + —L:I} ,
8 % . 3

2 { é [1
=== <4 COS e
T\/Z;Zz

yielding
G(z, 22)
22 1

% 3 171 37 .
[1— ]cos&+-—[—+—] sin §
64212, 8 Lz, %1
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