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SUMMARY

In this paper steady-state formulas are developed for the
ratio of the resultant eleciromagnetic field in the screened space
formed by dual, infinite, homogeneous metal plates to the incident
field, and from these transfer functions the time history of the

field in the cavity is computed for Gaussian-shaped input fields.
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THE PROPAGATION OF TRANSIENT ELECTROMAGNETIC FIELDS INTO A
CAVITY FORMED BY TWO IMPERFECTLY CONDUCTING SHEETS

1. Introduction

The purpose of this paper is to investigate the propagation of an electromagnetic pulse through a
shield consisting of two infinite identical parallel imperfectly conducting metal sheets. Specifically, the
time histories of the electric and magnetic fields are calculated within the cavity, and on the far side of
the dual-plate shield, when the incident electric or magnetic field is a plane wave with an amplitude

distribution in the shape of a Gaussian pulse.

A problem of current interest is thé determination of the fields in the interior of imperfectly con-
ducting metallic containers which are exposed to the strong electromagnetic signals emanating from
nuclear explosions.. Such containers always have finite dimensions along which resonant currents may
be excited at certain characteristic frequencies. Before a study is made of shielding by such finite con-
tainers it is advantageous to investigate the physically unrealizable but analytically much simpler
problem of shielding by a cavity formed by two parallel infinite metal plates when a plane electromagnetic
disturbance in the form of a pulse is incident from one side. Although the results obtained with such an
infinite shield cannot be expected to yield quantitative information on the magnitude of the field in a finite
shield when resonances occur, the general significance of partial reflection and transmission on the one

hand, and of skin effect and attenuation on the other should be the same in infinite and finite shields.

The electric-field shielding ratio, under steady-state or transient conditions, is defined to be the
ratio of the peak field at a selected point within the shield to the amplitude of the incident field, that is,
of the field that would exist at the same point with the shield removed. The shielding ratio for the mag-
netic field is defined in the same way. A different shielding ratio is obtained if it is defined in terms of
the field inside and outside the shield since the field outside the shield is the resultant of the incident and

backscattered fields.

In the first part of the paper the steady-state transfer functions for use in a Fourier integral are
developed in general terms with no restrictions on the frequency other than those implied in the as-
sumption that the shielding plates are quite highly conducting so that at all relevant frequencies the
inequality o >> 21rf€° is satisfied where o is the conductivity of the metal shields. The thickness of the
Plates used in the shields and the distance between them is arbitrary with respect to the wavelength of

the incident radiation.




In the latter part of the paper the use of the Fourier integral to obtain the time histories of the
electric and magnetic fields at selected points throughout the shield is explained briefly, and an ap-
propriate form is developed for evaluation by a high-speed digital computer. An estimate is also

obtained of the decay time in the cavity of a delta-function electromagnetic pulse incident on the cavity.

In conclusion, the numerical results are presented graphically and discussed.

2. Fundamentals
Maxwell's equations in free space for a periodically varying source* are

VxH-= j27ie E (1)

VxE = -j2nfu H. (2)

In a homogeneous region of conductivity ¢ >> 27-'fe°, dielectric constant €  and permeability B, the

equation corresponding to (1) is

Vx H = ¢E, (3)

where E and H are the vector electric and magnetic field phasors, respectively. f is the frequency

2

in cycles/sec, €, = 8.85x 107! farads/m, and By = 4T x 1077 henry/m. o is measured in mhos/m.

It should be noted that (2) applies both in free space and in the conducting medium if it is nonmagnetic.

* j2r€
The assumed time dependence of the electric vector is EeJ e where E = E(x,y,2;f). Since

E = xEx + _‘/;'Ev + QEZ, the time dependence of the y-component is

jaree j2ret

E e = Ey(x, A z;fe’

y
From a solution for the harmonic dependence, a solution may be obtained for a more general time

dependence by means of the Fourier representation

je2ree

e’(x, ¥, 2z;t) = Ey(x, y, 2;f)e df.

-

Note that lower-case letters, such as ey(x, ¥, z;t), are used for time functions, and upper-case letters,

such as Ey(x, ¥, 2;f), for frequency functions. The two are, of course, Fourier pairs.

In the particular shielding problem involving plane waves discussed in this paper the following
notation is used: Ey(x, v, z;f) = Ey(x;f), ey(x, v, z:t) = ey(x;t), Hz(x, v, z:f) = Hz(x;f), hz(x, ¥, z;t) = hz(x;t)
For a plane wave traveling in the positive x-direction the instantaneous electric and magnetic fields are

related by ey(x;t) = §°hz(x;t) where §° = ‘/poleo = 1207 ohms.
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If E = 9Ev, and the plane-wave field is propagating in the x-direction, H = éHz. Then (1)-(3)
become
] aHz
By * Tmfe” Bx @
o
j 8Ey
B = o o (s)
o
9H
1 2
Ey T T o ax (8

The wave equations satisfied by Ey in free space and in the conducting region are easily obtained

from Maxwell'’s Equations (1)-(3). These are

"’ ,
7+ B°E, = 0 (7
y
ax
and
BzEy ,
7 + k"E = 0. (8)
4
ax
In(7),
N 27
B = 2rfy\fu € =5 ' (9

where A is the wavelength in air, and in (8),

k = y/ria_o(1 - j). (10)

3. Derivation of the Steady-State Shielding Transfer Functions
for the Electric and Magnetic Fields

(a) Preliminary Remarks

Figure 1 illustrates a dual-plate shield. The cavity formed by the identical, infinite, imperfectly
conducting, homogeneous parallel plates is of width 2b. The total width of the shield is 2a. Hence the
width of each plate is d = a — b. The cavity, metal plates, and outside space are designated regions 1,
2, and 3, respectively.. The origin of a Cartesian coordinate system is at the middle of the cavity. The
y and z axes are parallel to the plates. The direction of propagation of the incident electromagnetic
field is in the positive x-direction. It is assumed that the electric field has only a y-component and the
magnetic field a z-component. The radiation impinges on the shield at x = -a, where a standing wave
is developed, and emerges from the shield at x = a as a traveling wave. Eo(f) and ER(f) are the inci-

dent and reflected electric fields, respectively, and ET(a;f) represents the field emerging from the



shield. The notation E;(-b;f), E;(0;f), and E;(b;f) is used to represent the electric fields inside the
cavity at the left side, middle, and right side, respectively. The corresponding terminology for the
H-field is Ho(f), Hq(f), H,r(a;f), Hi(—b;f), Hi(O;f), and Hi(b;f). The incident field is Ey(x;f) =

-ifx ) = -iBx -
E (fle ; H (x;8) = H(fle where H (f) = E(0)/%,.

The various transfer functions needed to solve this shielding problem, of which E‘._(—b;f)/Eo(f) and
Hi(O;f)/Ho(f) are typical, may be found by solving the boundary value problem represented by Figure 1
directly. In carrying out the work, nine constants must be introduced (one of which is assumed to be
known). An equivalent procedure is to employ the method of symmetrical phase components. In Figure
2, the problem to be solved, (c}, is split into symmetrical and antisymmetrical parts, (a) and (b), re-
spectively. In this drawing the directions of propagation and polarizations of.all electric fields are
shown. When the identical shields (a) and (b) are superimposed, (c) is obtained. Superposition cancels
all fields on the plate at x = a except the transmitted field ET(a;f). On the plate at x = -a the resultant
field is E (-a;f) = Eo(—a;f) + ER(—a;f). Note that only five constants (one of which is known) need be

introduced to solve the symmetrical problem (a), and the same number to solve the antisymmetrical

problem (b).

(b) The Shielding Problem for Symmetrical
Electric Field Excitation

The problem of shielding for symmetrical excitation (with the electric field even and the magnetic
field odd in x) is illustrated in Figure 2a. The plane waves —é— Eo(t')ejﬂx and % Eo(f)e.jﬁ’c travel from
both sides toward the shield. The solutions of wave equations (7) and (8), valid in the regions designated

by the subscripts 1, 2, and 3, are

C
S oy - B IBXy. S epy = o ) (3Bx _ iBx
By (D) = Cy (e + 7P H] (0 £ (e e ) (11)
s o jkx -jkx s . 1 jBx -jBx
Eyz(x,f) = C,e +Cye ; sz(x,f) = - -E; <C2e - C,e ) (12)
s B -iBx s 1 iBx -iBx
Eva(x;f) = C,e + Cge : Hza(x,f) = ~ E:(Cue - Cse ), (13)

where (11) satisfies (7) and meets the required symmetry conditions E; {x;f) = E: (~x;f), and

s - ) 1 1
H, (uf) = -H; (-x0.

The next step is to impose the boundary conditions characteristic of the problem. For this purpose

consider the region 0 < x < a where the incident field is % Eo(f)ejﬂx.
Continuity of the electric field at x = b and x = a leads to the equations
Cl(ejﬁb + e'jﬁb) = Czej“b + C3 e'jkb . ) (14)

c,e™® + cie ™ = ¢ el 1+ g 1P (15)

'S)



where now Cu = %Eo(f). Continuity of the magnetic field at x = b and x = a leads to the following

additional equations:

§C1<ej'3b - e'53b> =t (Czej“" - c3e°5“") (16)
ik -5k - . -.B'
% (CzeJ " - Cyed a) = §<CueJﬂa - Cge ) 1) (17).
where
7rfy°
g = pe (1+ j) (18)
and
“O
§° = aa 1207 ohms. (19)
Note that
kg = B =wu , K/C = -jo (20)

for nonmagnetic conductors.

Let the ratio of the amplitude of the field in the shielded region 1 to the field incident from region
3 with x > a be denoted by

Cl 2Cl
S(f)= == . (21)
1 C, EJD
This ratio is found from (14)-(17) to be:
t¢ (cos Ba + j sin [a)
Sl(f) = e— e - O = —— 5 . (22)
§§°(cos Bb + j sin Bb)cos kd + j({j cos Bb + j§{° sin Bb) sin kd
From (21) and (11), the electric field in the shielded region when symmetrically excited is
3 ) =
Eyl(x,f) = Eo(f)SI(f)cos Bx. (23)
The associated magnetic field is obtained from the application of (5) to (23). Thus
H? (xf) = —jH_(0S, (Dsin fx . (24)
1
where
. Eo(f)
H (f) = (25)
o %

It follows that in the middle of the cavity x = 0, H: (0;f) = 0 and E:' (0;f) is a maximum. Here the
1 1

superscripts s refer to symmetrical electric and antisymmetrical magnetic field excitation.
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(¢c) The Shielding Problem for Antisymmetrical
Electric Field Excitation

The problem of shielding for antisymmetrical excitation (with an odd electric and an even magnetic

iBx and % Eo(f)e-JBx travel from the two

field) is illustrated in Figure 2b. The plane waves - -;— E,(fe

sides toward the shield. The solutions of wave equations (7) and (8) and the associated magnetic field as

obtained with (5) are:

. - C!, . :
- 1 -
E? (x;0) = C’(eJBx ~e Jﬁx); H = - ___(e]ﬁx +e Jﬂx) (26)
Vi 1 %1 %

a ) = . Jkx roJkx a _ __1< . JBx - 'jﬁX) )
Eyz(x,f) = Cle + Cjle ; Hza = -3 Cse - Cie (27)
o
a o~ JBx , . ~3iBx, a 1 ( , iBx , -iBx

Ey (x;f) = Cge + Cge o Hy = - N Ce - Cge . (28)
3 3 o
Note that (26) satisfies (7) and meets the required symmetry conditions E; (x;f) = —E; (~x;f) and
1 1

H: (x;£) = H: (-x;f). The application of the boundary conditions, as in the symmetrical problem, leads
1 .

1
to the following equations:

Cl’(ejﬁb e R TS | (29)
e+ cpe I = et 4 eI (30
’;Cl'(ejﬁb + e'jﬁb) =g (Cz’ejkb - C:;e—jkb) (31)
¢ (c5ej‘“‘ - cge‘j“"‘) = ;(c,;ejﬁa - cs'e'jﬁa), (32)

where now C; = - -;? Eo(f). The ratio of the amplitude of the electric field in the shielded region 1 to the

incident field from region 3 with x> a is

ci 2

Al(f) = a: E (O (33)

where the negative sign before Eo(f)/z in (33) takes account of the fact that the antisymmetrical incident

electric field from region 3 is reversed in phase from that in the symmetrical case.

The value of Al(f) is

§§°(cos Ba + j sin Ba)

AN = 5 TR - . (34)
§§°(cos Bb + j sin 8b)cos kd + j<§ cos b + i§, sin Bb) sin kd
From (33) and (26) the antisymmetrical electric field in the shielded region 1 is
E2 (x;f) = ~jE_(DA, () sin Bx. (35)
Y2 o 1

10




The associated magnetic field is obtained from (35) with (5). Thus,

H:l(x;f) = Ho(f)Al(f)cos Bx. (36)

Evidently with antisymmetrical electric-field excitation the electric field is zero and the magnetic

field has a maximum at x = 0.

(d) Total Electric and Magnetic
Fields in the Cavity

The complete electric field in the cavity due to a single incident electric field Eo(f)e-mx, Figure
2¢, is the sum of (23) and (35). Thus

A s . a A = : R
B0 = BJ (0 + E] (o) = E_(D[S,(Bcos Bx — jA (Dsin Bx]. (37
Graphs of the ratio Ei(x;f)/Eo(f) in decibels” are shown in Figures 3a, b, c for the three points

x = —-b, 0, and b. Note that Ei(O;f)/Eo(f) = Sl(f). The associated magnetic field in the cavity is the
sum of (24) and (36). It is

H, (x:f) = H:l(x;f) + H:l(x;f) = H (0[A,(fcos Bx - jS, (f)sin Bx] (38)

where as before, Ho(f) = Eo(f)lto. The ratio H;(0;f)/H_(f) = A,(f) in decibels is shown in Figure 4.

(e) Fields on the Outside Surfaces
of the Plates

To obtain the resultant field Et(—a;f) = Eo(-a;f) + ER(—a;f) at x = -a and the field ET(a;f) at
X = a in terms of Eo(f), one proceeds as before, to determine and rombine the symmetrical and antisym-
metrical phase components. The sets of equations (14)-(17) and (29)-(32) still apply. In the symmetrical
case the ratios of the electric and magnetic fields at the surface x = a to the amplitude of the incident

field are denoted by

s 3 _
S, (f) = Ty, S e (39a)
. . E_(D c, :
2H® (a;f) jBa -jBa
S (f) =" *a - - S‘,‘e - Cse = -[Oejﬁa -5 (f)] (39b)
2H Ho(f) Cu . - 2B '

* cne . .
The quantities given are 20 log, [Ei(x,f)/Eo(f)] .



In the antisymmetrical case the corresponding ratios are

a . -
2E 3(a,f) C,:eJﬁa + Cge-JBa
A _(f) = ~ = (40a)
2E E (D) Cl
a R .
2H23(a:f) Cl:eJﬁa - C;E-Jﬂa jBa
Am(f) = Ho(f) = & = 2e - Azs(f)' (40b)

By superposition, the electric fields at the outside surfaces x = ta due to a single incident field

Eo(f)e-jﬂx are:
E (a;f) E (f) .
T s a [} —_
= E (a;D)2E_ (a;f) = ——|S, (D)FA. _(D]. (41)
Et(—a;ﬁ Y, Y, 2 [ 2E 2E ]
The associated magnetic fields are:
H _(f)
H,_(a;f) H (f) g < Is, (n-A _(n
T = —0—2—[A2H(f)152“(f)] =0 2 [2': ZE ] (42)
H,(-a;f) Ho(D g,
. 2 Pe' A0 = 5,.()]

where, as before, Ho(f) = E_(f}/¢ . It is readily shown that S,(f) and A,(f)} are

(!o cos fBb cos kd ~ ¢ sin b sin kd)(cos Ba + j sin Ba)
(43)

Spg(f) = 28 2 2
£¢_(cos b + j sin fb)cos kd + j(§° cos Bb + j¢? sin Bb) sin kd

and

(L’O sin b cos kd + ¥ cos f8b sin kd{cos Ba + j sin Ba)
. (44)

Azam = j2t 5 5
?;{o(cos b+ j sin Bb)cos kd + j(l,' cos b + jl:o sin ,Bb) sin kd

Explicit expressions for Szu(f) and AZH(f) can be obtained from {39b) and{40b) with (43) and (44).

Graphs of the ratios Et(—'a;f)/Eo(f) and ET(a;f)/Eo(f) in decibels are shown, respectively, in

Figures 5 and 6.

° () Limiting Forms of the S(f) and
A(f) Functions when £ = 0

As the frequency approaches zero, cos b—1, sin Bb~—fb, cos kd =1, sin kd -kd, also k/{=-~jo.

From (22), (34), (43), and (44) it follows that

1 R
SI(O)-._]._TKO_UC’. (453)
A (0)~1 _ (45b)

12




2

AZE(O)-O (45d)

Zgoad

AL,,(0) = 2 — Ay (0) ~2. (456)

Shielding of the incident field is due to two effects. One of these is skin effect, the other is the
reflection that takes place at the outside surface of the shield. The more important attenuating mecha-

nism at low frequencies is reflection. With (45a-f) it follows from (37), (38), {41), and (42} that

Ei(X;O) L
T - 59 = v (46a)
E_(0) 1 1+¢ od :
Hi(x;O)
H_(0) A (0) = 1 (46b)
E (-a;0)
t 1 ~ 1
E(0) E[st(‘” * AzE(O)] " {7t od (46¢c)
H (-a;0) . 1+ 2¢ od
t _ 1 _ °
H (0 E[Azn(o) - Szg“”] T T¥Eod (46d)
E_(a;0)
& o
EO(O) - E[SZE(O) - AZE(O):I T 1F ¢ od (46e)
H_(a;0)
T _ 1 _ 1 .
H (0 HIMCE S, (0] = T¥¢d (46%)

Note that when o —+w for perfectly conducting walls, all ratios vanish except Ht(—a;O)/Ho(O) = 2 and

Hi(x;O)/Ho(O)_ = 1. Note that in this latter case the amplitude of the incident field on each side of the

R |
cavity is —2-H°(0).

{g) Simplification and Application
of the General Formulas

The numerical computations represented in the graphs in Figures 3 to 6 have been made to de-
termine the shielding properties of a region of thickness 2b = 36 inches =0.9144 m bounded by two
infinite aluminum plates of conductivity 3.72 x 107 mho/m with the three thicknesses d = 1/8 inch,

1/16 inch, and 1/32 inch or d = 3.175 x 10™>, 1.588 x 10™°, and 0.7938 x 10" m. The relevant steady-

b
state frequency range is f < 10 ¢/sec and for the Gaussian pulses that characterize the transient fields

13



the upper frequency limit is in this range. The skin dépth &= (2/u.ua)1/2 of aluminum is approximately
2.609 x 1072 m at f= 10 c/sec, 2.609x 10> m at f= 10° c/sec, and 2.609 x 107 m at £= 10° ¢/sec.
It is to be noted that at f = 10 c/sec the thickness of the thinnest plate is only about 3 hundredths of the
skin depth, whereas at f> 10“ c/sec even the th_innest plate is much thicker than the skin depth.

7
The complex propagation constant k = (1 - j)/6= 12.12(1 - j)+/T for aluminum (with o = 3,72 x 10
mho/m) ranges from k = 38.33(1 - j) at f = 10 c/sec to k = 3.833(1 -~ j) x 10> at £= 10° c/sec. Over
the range 10 <f < 105,

k| >> 8 (47

where f8 = u\/yoeo = 2,094 x 10-ﬂ f. Note also that the electrical distance b = 0.9574 x 10-8 f satisfies
the inequality
Bb << 1 (48)

over the entire frequency range. On the other hand, kb extends from (1 - j)17.52 at f = 10 c/sec to

5
(1 - 1.752 x 10° at f= 10° c/sec.

Since

k{ = B8 = wu (49)

it follows from (47) that -

g, >> le]. : (50)

Over the range of frequencies defined by

[tan k4 [>> Iel. & (51)
o k]

the general formulas for S(f), A(f), S,(f), and A,(f) may be simplified greatly. Note that for the

-2 -
thinnest plate when f = 10 ¢/sec, kd = (1 -~ j)3.043 x 10 and B/k = (51"{6:;.) x 10 9; when f = 10S clsec,
kd = 3.043(1 — j) and B/k = (51-4_6?;_) x 1077, so that (51) is satisfied in the entire range 10 < f< 10°. The
appropriate specific formulas for the several ratios are

= 'JB
sl(f) ~ k sin kd (52)
AD) = 1 (53)
1 cos kd — kb sin kd

= 'sz
SZE(f) ~ ktan kd (54)

. ﬂ[kb cos kd + sin kd
A= -l coska — kb sin Ka J (55)

14



As before SZH(f) = SZE(f) -2, AZH(f) = 2 - AZE(t:). With these values, (37) an.d (38) give the field in the

cavity to be

~iE (f
E (i) = JE )B[ 1, kx ]
it k sin kd cos kd - kb sin kd
2
o 1 B7x ]
H; (x;6) = H (1) [éos Kd kb sin kd _ K sin kd

Ho(f)
cos kd - kb sin kd °

It follows that

v °JE°(f)B
E;(0:1) = k sin kd
and
- -iB cos kd
E (bif) = —~= Eo(f)[Sin kd(cos kd — kb sin kd)]
e o —iB __cos kd - 2kb sin kd __]
Ei.( b;f) - Eo(f)[sin kd(cos kd - kb sin kd) J°
Similarly,

H (f)
Q
cos kd - kb sin kd

H (0;f) =H (b;f) =H (-b;f) =
1 L L

From (41), the total field at x = *a is

ET(a;f)

s + i
- liB Eo(f)l:COt 1,{dikbcos kd smkd]

. Et(—a;f) cos kd ~ kb sin kd

so that with (42) the field on the far outside.is

E_(a;f) . H (a:f) _ B[ 1 ]
E (D  H{D 'k [sin kd(cos kd - kb sin kd) |*

‘On the near outside it is

E-ah s [ cos 2kd ~ kb sin 2kd ]
E (D) k Lsin kd(cos kd - kb sin kd)

(56a)

(56b)

(57)

(58a)

(58b)

(59)

(60a)

(60b)

(60c)
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H (-a;f) E, (-a:f)
—_— 2 2 (60a)
H (D) E, (D
A clear picture of the action of the two plates as shields is obtained with the thicker shields at the
higher frequencies included in the range for which (52)-(55) are valid. Specifically, when the additional

restriction |k IdZ 1.5 is satisfied, the apprbximation

jkd

sin kd é%e = cos kd (61)

is a good one.

With (61) and lk Ib >> 1 the following illuminating formulas for the fields between the plates and

on their outside surfaces are obtained:

>

Ei(x;f) R Y: |k - ikd 2)
E_(D) K kb-1/°¢
H_(x;f) -jkd
L e e (63)
Ho(f) kb -1
- —_— ‘!(
Et( a'f) = _JZB Ht( a,f) =21+ E (64) C':
E_(D) kK ° TH(D 'y
Q. Q M
: : -32
ET(a,f) ) Hl_(a.,f)= 48 e i2xd 51
Eo(f) Ho(f) k kb-1 "~
In the range for which these formulas are valid the approximation lkb |>> 1 is also valid. These
formulas are useful in an interpretation of the upper frequency ranges in Figures 3 to 6. ‘Note that
from (62)
Ei_(—b;f)= _sz 2kb - 1 e-jkd = -3j4p e-jkd (66a)
' Eo(f) k kb - 1 k
E_ (0;f) . i '
i - -j2B -jkd
——Eo(f) Sl(f) —% © (66b)
T BB} og otikd 28 -jkd
E®M ~ k kb-1 .2 °© (66e)
o kb
where the formulas on the right assume that Ikb ]>> 1. These formulas all give the same exponential C

decay due to the thickness of a single sheet characteristic of the upper frequency ranges of Figures 3a,b,c.
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The small difference in magnitude (only a factor of 2) between Ei(—b;f)/Eo(f) and E,._(O;f)/Eo(f) is clear
in Figures 3a and 3b. The much greater decrease in amplitude due to the large extra factor kb in the
denominator of Ei(b;f)/Eo(f) is evident in Figure 3c. Note that Ei(O;f) is due entirely to the symmetri-
cally excited part of the field which is essentially constant across the interior of the shield. The anti-
symmetrical part vanishes at the center, effectively adds to the symmetrically excited part for —a<x <0
and subtracts from this for 0 < x < a. The part of the magnetic field due to the symmetrical electric field
excitation is negligible in the upper frequency range whereas the field due to antisymmetrical electric
field excitation is essentially constant across the interior of the shield. It is exponentially attenuated by
one plate but has no factors of small magnitude {(B/k or 1/kb) as does the electric field. In the lower
frequency range where (56)-(60) must be used instead of (62)-(65), the attenuation through the plates is not

exponential and may be quite small. It is given by (56b) and shown in Figure 4.

The ratio Et(—a;f)/Eo(f) at the front outer surface of the plates and represented in Figure 5
involves no exponential attenuation, but is very small owing to the high conductivity of the aluminum
which produces a large reflection in nearly opposite phase. The magnetic field, on the other hand, is

reflected nearly in phase and its amplitude is almost doubled as may be seen from (64).

The ratio ET(a;f)/Eo(f) or HT(a;f)/Ho(f) given in (65) is attenuated exponentially by oIk ;i.e.,

by the two plates, and in addition has the large factor kb in the denominator. This agrees with Figure 6.
If the conductivity of the plates is made infinite so that o — «, it follows that E‘i(x;f = Hi(x;f) = ET(a;f) =

HT(a;f) = Et(—a;f) = 0, Ht(—a;f) = 2.

4. The Form of the Integrals to be
Evaluated by a Computer

The description of the incident electric field pulse assumed in this paper is

‘tZ/ 2¢°
1

e (t) = Ae (67)
o

where A is the value of eo(O) in volts/m, t is the time, and t) is a measure of the pulse width. The

spectrum of this pulse is

2 2
-f /2€F
E_(f) = At Vzre . (68)

.

In this expression { is the frequency in cycles/sec, and £, = 1/2mt .

Let G(x;f) = Gg(x;f) + jG;(x;f) represent a desired steady-state shielding ratio, such as
Ei(x;f)/Eo(f). The time history of the electric field in the cavity at point x is then

e, (xit) = f G(x;f)Eo(f)eth af

L 2 2 .
-t /ZE1
~24t,Var | [Gylxificos 2mtt ~ Gy(x:f)sin 2nft] e df (69)
o
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where, to a gbod approximation, fc = 2.6 fl' In tl\le last expression use has been made of the relation
*

G (f) = G(-f). This is the form of the integral that has been evaluated on the computer.- For compu-

tations of the electric field the constant A in (69) was taken to be 1 volt per meter; for computations of

the magnetic field, h and H are substituted in (67) to (69) in place of e and E and A is set equal to 1

ampere per meter.

The time histories of the electric and magnetic fields in and outside the cavity are exhibited in a
series of graphs for a particular cavity (of length 36 inches with the three wall thicknesses 1/32 inch,
1/16 inch, and 1/8 inch) when an electromagnetic field with an amplitude distribution in the form of a

Gaussian pulse is incident from one side. A number of pulse lengths from t, = 6 usec to 48 usec are

used.

In order to understand the variation in time of the electric and magnetic fields in the cavity it is
important to note that even for the shortest pulses used in the calculations, (t1 = 6 usec) the pulse width
t, is very great compared to the time of tr:ansit of the pulse across the cavity, viz.,
t= 0.9144/(3 x 108) sec = 0.00348 usec. It follows that the field is reflected back and forth in the cavity
many times even during the time t,. The instantaneous field is then a superposition of these multiply
reflected components. It is also significant to note that for the lower frequencies and the thinnest plates

the attenuation through the plates is relatively small and shielding is due primarily to reflection.

In Figures 7a-d, 8a-d, and 9a-d are shown the instantaneous electric fields in the cavity respec-
tively at the points x = —-b, 0, and b. As is to be expected from the similarity of their steady-state
transfer functions, the time histories of the electric fields at x = -b and at x = 0 are quite similar.
The electric field at the center, x = 0, is determined entirely by the steady-state transfer function of
the symmetrically excited part of the electric field, that at x = —b is determined from the sum of the
steady-state ratio functions of both the symmetrical and antisymmetrical parts of the excitation. On the
other hand, at x = b, the field is determined from the difference between the steady-state functions of
the symmetrical and antisymmetrical excitations. Since this is very small, the instantaneous electric

- -3 .
field at x = -b is smaller byafactor near 10 ~ than the fields at x = 0 or x = b; it also has a mu:h less

significant peak.

Since the steady-state transfer function for the magnevtic field in the cavity is predominantly due to
the antisymmetrical part of the excitation, and since for this the magnetic field is essentially constant
across the cavity, it follows that the time histories of the magnetic fields at all points in the cavity are
essentially the same. They are shown in Figures 10a-d on an expanded time scale for short time inter-
vals during which the field increases rapidly and in Figures 1la-d on a more contracted time scale for a.
much longer time in which the initial increase of the field appears very abrupt but the long slow decay is
apparent. It is to be noted that although the ratio Hi(x;f)lHo(f) is very muich greater than Ei(x;f)/Eo(f)
since the magnetic field is nearly doubled at each reflection whereas the electric field is almost canceled,

the decay rates of electric and magnetic fields must nevertheless be the same. This is considered in

greater detail in Section 5.

The electric and magnetic fields beyond the second metal wall, x> a, constitute an outward travel-

ing disturbance that is not a superposition of incident and reflected components as in front of and inside
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the cavity. At every point and instant the ratio of_.electric to magnetic field is the constant L‘o, so that
the time history of both electric and magnetic fields is the same for x > a. The instantaneous electric

" field at x = a is represented in Figures 12a-d. It is seen to be extremely small, nevertheless it neces-
sarily decays as slowly as the field in the cavity. Note that for the broader pulses with larger t, the
spectrum contains predominantly frequencies that are sufficiently low to make the attenuation through
the plates small. Shielding is primarily due to reflection and not significantly due to skin effect. This
is shown, for example, by the fact that in Figures 9d and 12d the curves for ei(b;t) and e.l.(a;t) for the

fields on the two sides of the second plate differ negligibly for the thinnest plates.

5. Decay Rates in the Cavity

The ratio of decay of the electromagnetic fields in the cavity may be estimated by evaluating the
integral (69) for the simplified shielding ratios (52) and (53) and with Eo(f) = 1, that is, for a delta-
function pulse. For the symmetrical excitation the steady-state shielding ratio is Sl(f) as given in (52);

for the antisymmetrical excitation the ratio is A {f) as given in (53).

The instantaneous electric field for the symmetric case is

[e’._(x;t)] = —jz—(;, ﬁ—zg’:—%ejﬁ“ dB (70a)

-
¢

since w = fBc. The simple poles of this integi'al occur at sin kd = 0 or at

2.2
T
k2d? = n?x? or g = I

3 .
d o§°

(70b)

These are all in the upper half of the complex plane so that the contour may be closed in a great semi-

circle above the real axis. By Cauchy's theorem,

[ei'(x;t)]sym = ('Tj:-)znj(xl PRy +oe o+ K)

where the K's are the residues at the poles. The residue Kn may be obtained from the general formula

jBet
K = E%*wﬂi . (71a)
n ﬁ(k sin kd) s jnrt :
dcho

Since k = v=jwpo = /-jB¢ o, this gives

2
nwTcet
2.2 &at 2 2
K =2(-0"" 52 ® cosh2-X). (71b)
do l;o d of
f -4
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It follows that
2E <:7r2 = 2 2 2.2 ' '
[ L(x; t)] 3 2 7 E (-1~ 1n? exp ;nz_wg cosh E?”—x (72)
sym d“at d“of
o 1 ] o .

The slowest decay is for the term with n = 1 for which the decay time is

2.984 x 10™° sec for d = 1/32 inch

goad2 2 -6
= 4.736 d“sec = ¢ 11,94 x 10 ~ sec for d = 1/16 inch (73)

T C
-6
47.74 x 10 sec for d = 1/8 inch

The numerical values are for aluminum. This is a measure of the exponential decay of the electric and

magnetic fields that are excited in the cavity, in the symmetrical mode of the electric field.

For the antisymmetrical mode,

. _ —ie sin fBx jBet
[ei(x,t)]antisym 27 cos kd - kb sin kd *© dg. (74)
The poles of this integral occur at the roots of -
1 T -1
tan kd = b °F kd = 3 - tan kb. (75a)

Since the slowest decay time for the symmetrical excitation has been used as an approximation, the

same may be done in this case and only the first root determined. This must occur approximately when

k?bd = 1 (75b)
or, with k2 = 'jB°§°, when
= —J
8 Ioabd - (78)

The residue at the associated pole is

.

jBet :
K = e sin Bx (772)

1 %(cos kd — kb sin kd)
B=
foabd
N piBet o Bx ) (275)
%(1 - k%ba)
' B= T.obd

20




so that
e -ct
xp t_obd N
¥y 7 Tt oba  sh (;oabd> . (77e)

It follows that

. - c —ct : X
[ei(x't)]antisym ( obd P (Cocbd) sinh (Coo'bd> (78)

o

+ contributions from higher-order poles.

The slowest decay time of the antisymmetrical mode is

1.697 x 10”2 sec for d = 1/32 inch
o

t, = 2= 46.75 bd sec =  3.394 x 1072 sec for d = 1/16 inch (79)

£ obd

6.786 x 1072 sec for d = 1/8 inch

The ratio of the two decay times is

L=°__L=__ (80)

For the three thicknesses d = 1/32 inch, 1/16 inch, and 1/8 inch and the distance b = 18 inches

between plates, the ratios are:

d b/d 72b/d
1/32 inch 32 x 18 5685
1/16 inch 16 x 18 2842 (81)
1/8 inch 8 x 18 1421

It is clear that the antisymmetrical mode is damped out very much more slowly than the symmetrical
mode, so that when the two are superimposed to give the response for a disturbance incident from the one
side only, the contribution from the symmetrical part of the excitation dies out very quickly and only the
response from the antisymmetrical part of the excitation persists. It is important to note that as a conse-
quence of ‘symmetry the antisymmetric odd electric field and the symmetric odd magnetic field are
identically zero at the center of the cavity where x = 0. It follows that at this point, the total magnetic
field decays slowly, the total electric field rapidly. This difference in rates of decay is seen in Figures
8a and 1la. At all other points the decay rates of the total electric and magnetic fields involve the inde-
pendent decay of the electric and magnetic components of both symmetries. Ultimately, the rate of decay
is that of the antisymmetric components with odd electric and even magnetic fields. This may be seen
from a comparison of Figures 10a and 11la which show the slow decay of the antisymmetrical parts of the
electric and associated magnetic fields after the rapid decay of the symmetrical parts. The decay rate

is easily estimated from Figure 1la where for the thinnest plate the amplitude clearly decreases to about

1/e or 1/2.7 of its maximum value in about 16 milliseconds in agreement with {(79).
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6. Conclusion

A complete picture has been obtained of the shielding provided by a parallel-plate region to incident
pulses of Gaussian shape both in theoretical and numerical form. These results are useful in estimating
the efficacy as shields of metal containers of finite size only insofar as no resonances are excited that
involve standing waves of current along the metal walls. At resonant frequencies the large currents in-

duced in the walls of the shield are associated with correspondingly large resonant fields.?
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Figure 10c. Dual Plate Shield. ho(O) = 1 amp/m, t, = 24 ps
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Figure 10d. Dual Plate Shield. ho(O) = 1 amp/m, t, = 48us
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