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ABSTRACT
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RESPONSE OF AN IMPEDANCE-LOADED ELECTRIC DIPOLE *
SYMMETRICALLY ORIENTED WITHIN AN IMPERFECTLY
' CONDUCTING CYLINDER - VLF CASE

Introduction

The problem to be solved is that c‘ut‘ determining the power in the load impedance of a short
dipole receiving antenna located within an imperfectly conducting shield of cylindrical shape in
terms of the electric field existing in the vicinity of the shield. It is assumed that the radius
of the shield and length of the probe are small in terms of the wavelength. The solution may be

effected logically by subdividing the problem into the following parts:

a. Determination of the ratio of the electric field on the outside surface

to the field on the inside of the imperfectly conducting cylindrical shield.

b. Establishment of the relationship existing between the electric field

on the outside surface of the hollow cylinder to the incident electric field.
c. Determination of the effective height and driving-point impedance
of a partially shielded electric probe.

d. Calculation of the power in the load impedance of the probe in terms

of the electric field existing inside of the cylindrical shield.

Relation Between the Electric Field on the Qutside Surface of an
Imperfectly Conducting Shield to the Field Inside

The first problem associated with determining the operational behavior of an electric
probe within a tubular conductor is to find the field inside the tube in terms of the field on its

exterior surface.l

I; somewhat different analysis from that presented here for the field inside a conducting
tube is given by King, Ronold, Electromagnetic Fngineering, McGraw-Hill Book Co., Inc.,
1945, pp. 350-359.




and outer radius a,,. The metal annulus is
{ 2

lesignated region 1, the outside and ingide of the tube being denoted regions 2 and 3, respec-

Flpure illustrated o tube of inner cradius a

iively. Let the axis of the cylindrical shield be along the z coordinate of a system of cylin-
drical coordinates r, @, and z. If the length of the tube is at least 10 times its diameter and
a, << A, it is a sufficiently good approximation for the purposes of this paper to consider the
problem as one in the dimension r. The field on the outside surface of the cylinder is assumed

to be directed parallel to its axis, i.e., in the z direction,

The governing wave equation in region 1 is

2 . .
V°E = Jwo . uy E. (1)

Here

E is the electric field.
w = 2nf, where f is the frequency.
o, is the conductivity of the metal used in region 1.
" is the permeability of the metal used in region 1.
v2 is an operator. When applied to the vector E it has the significance
Vv2E =.grad div E - curl curl E.
A time dependence of the form exp(jwt) is assumed.
Since thzre is no 8 and z dependence, Equation 1 may be written
2
3 E_(r) 3E _(r)
2z + 1 z
3 2 r or

r

2 -
+ k. E (r) = 0. (2)

The solution of Equation 1 is

Ez(r) = A1 Jo(km'r) + BINO(kmr) (3)

where
km =(1 - j) 5 _ (4)
In region 3 the free space wave equation
VzE = -wzpoc‘oE . (5)

applies. In this expression Ko is the permeability of space and €, is the dielectric constant

of space. These constants have the numerical values 4r x 10-7 henrys per meter and



Region 1
(Metal)

Figure 1. Cross section of hollow conductor




M - )
45 x 10 12 furadys per meter, respectively.  The golution of Equation 5, paralleling Equation

4, is
Ez(l‘) = A3J0(ksr) + BaNo(ksr)

where

Because of the fact that No(ksr) — wat r = 0, the constant B3 = 0. Accordingly

Ez(r) = {&SJo(ksr)

0<r < a,
and
Ez(al) = ASJo(ksal)'
. 2
Now 1f(ksa1) <« 1, Jo(ksr) = 1.
Then Ez(r) = _A3 = const. (0 <r al)
so that
aEz(r) o
ar )
(0 <rg al)
Now
d .y du
ax J () = Jlu)a—;{-
and

d - du
a; NO(U) = ’Nl(U) a—x- .

Applying Equation 10 to Equation 4, using Equations 11 and 12, one obtains

9 -
r {AlJo(kmr) * BlNo(kmr)} - -km{AlJl(kmr) * BlNl(kmr)} :

r=a, r=a,

Thus
-km{AlJl(kmal) + BlNl(kmal)} =0

(6)

(7

(8)

(9).

(10)

(11)

(12)

(13)



or

J.(k_a))
B. = -A 1"m1 (14)
1 1IN,k a,) °
1" m1
Now at r = 3, Equation 4 becomes
(15)

E (@y) = A J (ea5) + ByN (k a)) .

Forming the ratio of Ez(r)/Ez(az) using Equations 4 and 15 and eliminating the constants Al

and B, by the employment of Equation 14 result in the expression

1
Ez(r> - Jo(kmr) Nl(kmal) i No(kmr) Jl(kmal) . (16)
Ez(ag) Jo(kmaZ) l\l(kmaIT - No(kmaZYJl(kmap

a, g rga,

1

Whenr = a1

o

E27a2) Jo(kma2) Nl“ﬁnal) B No(kma2) JlTkmal) .

Ez(al) ) Jo(kmal) Nl(kmal) -N (kmal) Jl(kmal) an

Equation 17 establishes the relationship between the field inside the imperfectly conducting

hollow cylinder to the field on its outside surface.

If the relation

X :
al."wyld'l 210 (18)

holds, it is possible to use the asymptotic forms of the Bessel functions to effect a simplifica-

tion in Equation 17, These are: o

JI(X) = ‘/;-f cos (x - ig—)

. ) (19)
No(x) = ‘/-;r—,-‘ sin (x‘- %) .
N, (x) = ‘, —x 8in (x - 141:)

* s s .
At 15 kes an aluminum cylinder must be at least 0. 447 cm in radius; an iron shield
could be smaller.



wn fquation 19 is subsgtituted into Equation 17, one obtains

Ez(al) = 3_2_ 1 (20)
Ez1825 a, cos [km(a2 - al)]
Now
cos[(1 - j)¥] = cos v cosh y + j sin vy sinh v (21)
and
/cos [ -] / = Jcos2 v+ sinh2 Y . (22)
Accordingly,
E (a) cosycosh‘y—Js1n-y sinh v
7 (23)
cos ¥ + sinh™ v .
and

1

‘ﬂ:os2 vy + sinh2 ¥

_ woy iy
y=lay,-a)y —— . (25)

Equation 23 must be used when the complex ratio of Ez(al)/Ez(az) is required. When

. (24)

/Ez(al)/ a,
/Ez(az)] =' Vé—l

Here

the ratio of the magnitudes suffices, Equation 24 is valid. In either case it is necessary for

the inequality, Equation 18, to be satisfied.

Relation Betwcen the Field Incident Upon an Imperfectly
Conducting Hollow Cylinder and the
Field on its Outsiae Surface

Equation 16 established the relationship between the electric field Ez(r) and Ez(az).

Because

-

iz(r) = alEz(r)\. (26)

Ez(r) iz(r)
1

E—(a_z)— B "@ : (27)

z



Here iz(r) is the volume density of current at radius r, (a1_<_ r gaz); iz(az) is the volume
density of current extrapolated ‘o the surface r = a,. At the surface of the cylinder the rela-
tion

. iz(az) = alEz(az) (28)

holds because surface cells may be disregarded in describing tangential effects.
The total current flowing in the cylinder is given by the formula

(2

Iy = | i (v) 2nr dr. (29)
J z :

3

Replacing Ez(r)/EZ(az) by iz(r)/iz(az)' in Equation 16 and integrating it as specified by Equation

29 results in the expression

i@y 1O <kmaz) Jolkmg) Nylkpa)) = Nk an) Jy (k3 30)
272 2\ 2 Tkt Nylka) - Nk pag) Jylka) s

The integration is accomplished by usec of the relations

]

fx Jo(ax) -dx ; Jl(ax)

(31)

x
fx No(ax) dx 3 Nl(ax)

Using the asymptotic forms of the Bessel functions (assuming a, \""”101 > 10) it is easy to

demonstrate that

k a
, R ({)] m 2
1z(a2) = ———7—( 5 )cot [km(a2 - al)] . (32)
xa
2
Observe that
cos ¥ cosh ¥ + j sin v sinh v (33)

cot [(1 B J)Y] ® sin vy cosh ¥ - j cos v sinh ¥

On substituting Equation 28 into Equation 32, one obtains

k a
E (a) = 12 ( m 2) cot [km(az - al)] ) (34)

T crlaz

This expression relates the electric field on the outside surface of the hollow cylinder to the

total current Q) fMlowing in the cvlinder,



‘The current 1(0) magt be found using antenni theory,  PPor this purpose one considers
the cylindrical shickd to be o receiving antenna without load (refer to Figure 2), The current

at its center is 1(0)., This is the short-circuit current, and is available from the formula:

Voc Zh,.,Ez
1(0) = 7~ = —_—— . (35)
: La,
in in

Voc is the induced voltage. It equals the effec-tive neight of the cylinder 2he multiplied by the
incident tangentially directed electric field, E:lz. Zin is the driving-point impedance of a
symmetrical center-driven antenna having dimensions identical to those of the shield. That
Equation 35 is correct is immediately verified by sketching the equivalent circuit of the

receiving antenna, omitting the usual load impedance.

2he, as used in Equation 35, is

2h_ = 0.958 4{1 +0.061 (ks.e)z} (36)

where ¢ is the half-length of the shield, and ks = 27/A. A is the wavelength. It is assumed
that ksz < 0.5, )

The radiation impedance of a short antenna for which kst < 0.5 is given by the formula

r

k ¢ :
= i n 9 _ % S
z, = JW {(Q 2 21n2)(1 I sz 2y )} (37)

In Equation 37

I
n=4 — = 120n (38)
‘O
and
Q = 2zn (if) . (39)
I=y
2
Now
Y.
zin =2, * Ry (40)

where Rf'; is the ohmic loss resistance referred to the input terminals.

Rlo is evaluated as follows:

The current distribution along an electriczilly short transmitting antenna
is triangular in shape. Hence the average current along the structure in terms

of the driving-point current is

- KO)
L, - (41)



[l

Figure 2.

Electric probe symmetrically oriented along the axis of
an imperfectly conducting cylinder



A formula for the resistance of the tube of lenglth 24 has been derived by King. 2 1t is

£k S
t _ m cosh 2y ¥ cos 2y T
R = ma,o, (Q[cosh 2y - cos 2y ) ©°° (W, - ¥, *+3g) (42)
where
tan gy _ = -tanh y tan y ' (43)
and
_ tanh vy

provided a, ‘/w Moy 2 10. The power lost in heating the antenna is

2
.2 _ {1(0) t

P, = (0K - (—2—> R, (45)

Hence :

r:- B
o 4 - (46)

Accordingly
ksl \ Rt

zin=-37”l}? (Q—2—2zn2)(1-33‘0_2_2£n7ﬂ}+—Z-. (47)

Substituting Equation 35 into Equation 34,

Ez(a

_ m 2\ -

o) = > ) cot [km(a2 al)] . | (48)
Thus, if one knows the incident field E; in the vicinity of the cylinder, Equation 48 may be
used to find the field Ez(az) on the outside surface. The field within the cylinder may then be -

calculated, using Equation 23.

Effective Height and Driving-Point Impedance of an Electric
Probe within an Imperfectly Conducting Cylinder

To determine the behavior of a center-loaded electric probe symmetrically located
along the axis of an imperfectly conducting cylinder requires not only a knowledge of the elec-
tric field inside the cylinder in terms of the incident electric field, but additionally one must

know the effective length and driving-point impedance of the probe.
i
——

2.
King, Ronold, op. cit., p. 357, Equation 4.



~ The effective length of a probe encased within an imperfectly conducting cylinder is the
same as its effective length when isolated. The effective length is defined in terms of the
field maintained along the probe by all currents other than in the probe itself. This is pre-
cisely the field Ez(az) maintained in the cylinder by the distant signal source and the current
in the imperfectly conducting shield. (It is to be remembered that the field in the interior of
the tube is uniform.) The only approximation involved is the assumption that the current in
the probe does not react on currents in the shield to change them significantly. The required
effective length Zhe may be calculated using Equation 36 provided h is written for £ through-

out (h is the half-length of the electric probe).

The driving-point impedance of the electric probe encased in the imperfectly conducting
cylinder lies between the impedance of an identical isolated probe and the impedance of two
perfectly conducting coaxial transmission-line sections in series. The line sections are open-~
circuited, and of length equal to the half-length of the probe. Capacitive end effects are
probably small enough to neglect. In terms of the electromagnetic field set up by the probe

antenna, when used for transmission, three situations must be considered:

a. When the probe is isolated, i.e., is outside the metal cylinder, the
distant field is due entirely to the currents in the antenna.

"b. When the probe is in a perfectly conducting cylinder, the field main-
tained by the currents in the antenna is exactly cancelled by the currents set
up in the shield.

c. When the probe is in an imperfectly conducting cylinder, currents
are induced in the shield which maintain a field that partially cancels the field
of the probe, but this is not complete. : -

Thus the current in the probe can be separafed into two parts. One part is equal and opposite

to the current in the shield, designated IL’ because it is a transmission-line current. The
other part is the true antenna current, designated IA. The total short-circuit current It in

the probe is then

It=IA+IL' . (49)
The open-circuit voltage of the probe is
voczltzoerzA+ILzL=It ZL-ft- (ZL'ZA) . (50)

- s bme e - ——  ————



- Here
Z0 ia the impedance of the probe when encased in the imperfectly conducting

cylinder.

ZL is the impedance of two perfectly conducting open-circuited coaxial line

sections of equal length connected in series. ZL may be computed from the formula
21
ZL = -j 276 log10 (T) cot ksh (51)

where h is the half-length of the probe and a is its radius.

ZA is the self-impedance of the probe, when isolated. It is given by Equation 40,

or by Equation 37, if losses are negligible.

From Equation 50,

v I

Z =2C:-7z - 24z -2z

o)
o It L 1 (52)

The current I, is the current in the probe required to maintain the field Ez(aZ) just outside

A

the shield, if the shicld were absent. It is the current required to maintain the field Ez(al)

just inside the shield. Since the thickness of the snield is small compared with any radial

.istance over which Ez could vary signiticantly in amplitude, it follows that to a good approx-

imation
IA _ Ez(az) 53)
LT EE)

This complex ratio is given by Equation 23, when inverted. On substituting Equation 53 into
Equation 52, one obtains
Ez(az)

ZO=ZL“W {ZL-ZA}' (54)

This is the final formula for the driving-point impedance of an electric probe symmetrically

situated within an imperfectly conducting cylinder.

It is important to vbscrve that the ratio Ez(u_.,)/Ez(al) occurring in Equation 54 is small.
When the probe is driven Ez(a.,), the ficeld on the outside of the shield is small, but the field
on the inside of the shield, Ez(al)‘ is large. On the other hand in the receiving case Ez(az)

is large and Ez(al) is small. Thus

E, (ap) i Eplap) (55)
E (a)) E_(a,) ‘
21 z 2
Driven probe Receiving probe




Since the ratio Ez(az)/ Ez(al) is small when the dipole is driven (assuming that the cylinder
is a moderately good conductor),

'Zo = ZL . (56)
This result is dictated by common sense. On the other hand when the ratio Ez(az)/Ez(al)—-» 1,
as is the case when the cylindrical shield is nonexistent,

Zoz ZA . (57)

Equations 56 and 57 serve as limiting checks on the validity of Equation 54.

The equivalent receiving circuit of the probe consists of a voltage equal to 2heEz(a1)

driving a circuit consisting of Zo in series with the load impedance. The power in the load
is thus readily calculated in terms of the field Ez(al).

The impedance of an electric probe is essentially a capacitive reactance, the resistive
component being only a fraction of an ohm. To maximize the power in a given load, one would
tune the probe to resonance, using series inductors. If this is done, the full induced voltage

appears across the load, if all losses are neylected. Zo does not appear in the equivalent

circuit of the probe when it is tuned to resonance, and under this circumstance, Equation 54

is not needed.

Conclusion

A method has been presented for calculating the power in the load of an electric probe

* encased in a partially conducting cylindrical shield. The analysis has been carried out for

sinusoidal signals. If the signal source emits repetitive pulses, it is necessary to make a
Fourier analysis of the incoming wave and solve the problem for the fundamental and several
harmonic frequencies. The total power in the load impedance is then the sum of the powers
absorbed at each frequency considered. Again it is assumed that the circuit dimensions are

small in terms of the shortest wavelength of the signal component that contributes significantly
to the power in the load.

The field incident upon the cylindrical shield need not be linearly polarized, as assumed
in the analysis. An elliptically polarized electric field may be decomposed into two compo-
nents which are fixed in space and whi'ch differ in phase, magnitude, and direction. In partic-
ular, the field may be resolved into two mutually perpendicular components which remain
stationary in space. One of these components may be chosen parallel to the cylindrical shield,
and the other perpendicular to it. Both vary periodically in time, but the latter contributes

nothing to the induced voltage; its magnitude and phase are of no significance whatsoever, and

[}
on



«

“iUinay be ipnored.  Accordingly, maximum power is delivered to the load impedance of the
probe when the hollow eylinder is oriented in gpace so that the major axis of the elliptical con-

tour of the electric field is directed parallel to the axisg of the cylindrical shield.
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