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Abstract

A mathematical theory of low-frequency electromagnetic shielding
is constructed on the basis that an appropriate set of toundary conditions
can be derived to duplicate the effect of the shield's wall on the fields
within the shield. Sﬂields with electrically thin shells are considered
in detail; mathematical methods that are best suited for computational
purposes are presented for calculating the shielding effectiveness of such
a shield of arbitrary shape. Shells with arbitrary electrical-thickness
are also treated but in less detail, since the shielding problem involving
this kind of shell is shown to be different from but no more general than
the shielding problem involving electrically thin shells. Explicit results

are given for shields of particular shape.



1. Introduction

The problem of computing the low-frequency electromagnetic shielding
effectiveness of a metallic enclqgure has been perplexing designers for
some time. At these frequencies the geometrical shape of a shield becomes
critical while the familiar attenuation and scattering losses of the shield's
wall, although accounting for a great deal of shielding at higher frequenciés,
become irrelevant. As a consequence, reliable data are available in the

literature only on a few particular shapes, such as a spherical shelll'2‘3'4,

5'6'7, and two-parallel platesa.

an infinite circular—cylindrical shell
These shapes have been chosen for study mainly because of the mathematical
ease with which they may be handled by the classical technique of separation
of variables, but they are not very closely related to any realistic shield
which one may imagine, such as a rectangular box or a finite cylindrical
box.

What is‘required now is a.general formulation of the low-frequency
shielding problem taking into account the present availability of rapid
digital computers. Two attacks have already been made on the general

formulation of this problem. The first of theseg’lo

» based on what may
be termed the circuit approach, is very approximate in nature although it
predictg correct results for a spherical shell. The reliability of the
results derived from this approach depends on a judicious guess of the
induced current density at each point on the shell. A more recent, and
more accuraté, approach11 is to formulate the problem as a pair of coupled
vector integral equations which one may write for a three-medium problem,

and then to make certain simplifications in these equations appropriate

for a thin shell. This approach, which was developed primarily to treat



scattering from thin shells, does not take advantage of special factors
which greatly simplify the low-frequency shielding problem. The present
paper reports an attempt to formulate the shielding problem in a manner
free from arbitrary guesses and yet in the simplest way sufficient to
account for the phenomenon involved.

It is common knowledge that the shielding of electric fields by
closed conducting shells increases as the frequency is decreased; hence
only the shielding of magnetic fields need be considered at low frequencies.
When the shell is electrically thin, i.e., when the skin depth of the
shell is larger than its thickness, the only way to shield the magnetic
field is to iﬁduce in the shell sheet currents which vary in such a manner
on the surface as to cancel most of the extermal field inside the enclosure.
Thus, the only phenomenon involved is the induction of sheet currents,
and that is the reason the words "inductive shielding" are used as a label
for the problem under study. - |

In secéions 2 and 3 are given special techniques for the treatment
of two-dimensional and axially symmetric shields, respectively. In section
4 the general problem is formulated in terms of a single scalar integral
equation which, for a shield of arbitrary shape, must bé solved numerically.
Section 5 is devoted to the shielding problem involving shells of arbitrary
electrical-thickness. The pﬁrpose of including this problem is to show
how the attenuation loss of the shield's wall can be taken into account,
this loss factor being of an exponential form. It is shown that different
assumptions are needed for the formulation of this problem than for the one
discussed in the previous sections; in this sense the problem in section 5

is not at all a generalization of the previous one.



The assumptions sufficient to account for inductive shielding are
that the displacement current may be neglected and that the conduction
current ig confined to a surface and is proportional to the component of
the electric field parallel to the surface, this tangential electric field
being continuous through the surface. Also assumed are that the relative
permeability of the shell is unity and that the source of the external
field may be specified by some quasi-static magnetic-field distributions.

These assumptions imply that we must write Maxwell's equations in the form

VxE-=dwH (la)

<
»

o
]

gE, §(z-x") , (1b)

with the time-dependence factor exp(-iwt) suppressed throughout, where
the subscript s denotes the coﬁponent parallel to the surface defined
by r=1x"(u,v) , u and v being the two variables specifying the surface.
The function g , which equals the product of the conductivity o and
the thickness A of the shell, defines the sheet conductance as a function
of surfage'position, while the delta function in (1b) has the dimension
of reciprocal length. In addition to equations (1), the external field
must be specified.
Alternatively, one may lcok upon equations (1) as the definition
of the inductive-shielding problem. The following sections, except section

5, will be devoted to methods available for solving these equatioms.



2. Two~Dimensional Geometry

2.1 Longitudinal Case

In this section we shall consider the magnetic field inside an
infinitely long, cylindrical shell of any cross section when the shell is
exposed to a uniform external magnetic field parallel to the axis of the
shell (Fig. l1). Since the external field H¥*  is parallel to the z-axis,
it is obvious from the geometry of the problem that there is only a Hz
everywhere. From (lb) it is seen that, off the surface, H 1is irrotational;
consequently Hz is constant everywhere inside (Hin) and outside (HZUt)

the shell. Integrating (la) over any cross section of area A of the

cylindrical shell we obtain
E de=dww AHD . (2)
2 ] z

Substituting into (2) the expression

which follows directly from (1b), and solving the resulting equation for

H:n we finally get

-1
jwu A
in _ ex 0
Hz N Hz 1 - ] de ! (3
g()
where we have used H:Ut = H:x .

When oA 1is constant, equation (3) gives



in ex iwuooAa -1
H = H [1 - 3 ] %)
for a circular-cylindrical shell of radius a , and
in ex -1
Hz = Hz [l - iumocAd] (5)

for two parallel plates of separation 2d .

2.2 Transverse Case
When tﬁp external magnetic field is perpendicular to the axis of
the cylindrical shell of any cross section (Fig. 2), the problem of finding
the magnetic field inside the shell can be solved most effectively by
means of the vector potential A. Since V:H = 0 everywhere, we can define

A by

together with the Coulomb gauge

Then from (1b) it follows that

A(x) = Aex(_r_) + uoj G(x,r') g(x") _E_s (x')de' , (6)



where 21G(r,r') = -fa {r-r'|[ . Let us now eliminate the surface component

Es in favor of A and the scalar potential ¢ by means of

E =ivA -V @
=s —s s

which is the direct consequence of (la). Substituting this equation into

{6) one gets

- M, [ G(z,r")g(x" )V p(x')dr" . (@)

Let us pause for a moment and examine under what conditions Va¢ will

vanish on the surface. Taking the surface divergence of (lb) we have12

Vs-ggs = VS-V xH=VVxH- an_g-v x H
=-2 gnE =0 (8)
oan ° — =s ’

whence

In the present case g 1s independent of z and Es is parallel to the

z-axis. Hence the equation (8) implies that = 0 , This, in turn,

Vv E
s —s
means that

v2g = 1w7 A .
- 8 —S



Thus, on a closed surface Vsﬂ £ 0 if and only if vs.és 0. It is to
be noted that the Coulomb gauge does not in general imply that vs.As =0 .
In some special cases, e.g., the case we are considering in this section and

the case we shall consider in the next section, = 0 holds true and

A
we then obtain a pure integral equation for A by omitting the last integral
in (7) and by letting r 1ie on the surface.

We now return to the case we have started out to consider at the

beginning of this section. From the nature of the problem we see that A

has only a z-component and is independent of the coordinate z. Thén we have

Vs.és = 0 ; .consequently we obtain from (7) the integral equation
A (2) = A:x(l) + fup J G(L,2")g (')A (2")de' . 9)
A:x is not necessarily the potential of a uniform field and can be any

function of the transverse coordinates x and y , e.g., it can be the

potential of 'a current-carrying wire. We now introduce the surface current

K which is related to Az by
K= iugh .
Substitution into (9) gives

K = 1ng:x + fon g I G K(L')de’ (10)

ex

where K , Az and g are functions of & . Once K has been found

from this integral equation the magnetic field inside can be obtained



immediately from

EM@ - B@ - e, 7 [ o RGDar ()
where the subscript t denotes components transverse to the z-axis. The
expression (11) is, however, not convenient to use especially in the case
of highly conducting shields, since most of the contribution from the
integral will be cancelled by the external field. To obtain a representation
best suited for computational purposes we proceed as follows.

i

When the shield is perfectly conducting, .ﬂtn is identically zero;

therefore froﬁ (11) we have
ex - . .
H " (r) e xV f G xw(z Ydg

for r inside the enclosure. - K 1is the surface current on the perfectly
conducting shield. The equation (11) can now be rewritten in the following
useful form:

in ' ' .
Et (r) = e, x v j G Kd(l )de (12)

where Kd = Kb - K.

The next step is to obtain an integral equation directly for Kd .
To do this we first express A:x on the surface in terms of K . The
required expression for A:x can be easily obtained from (10) by letting

g go to Infinity and by keeping K finite. Then we eliminate A:x in (10)



in favor of K_ , and by adding K_ on both sides of the resulting equation

we finally obtain the teqﬁired integral equation for K. :

q°
Kd(z) =K _(2) + imuog(z) [ c(L,2") Kd(l')dl' . (13)
Here K 1is well known to satisfy the equation
1 - k% - | 26 "yt
7 K. () = K@) fan SCADETANNN (14)
where K%* « e, (n x sz). The equations (14), (13) and (12) constitute

the formulation of the problem posed at the beginning of this section. For
a cylindrical shield of arbitrary cross section these equations must be
solved numerically on a digital computer.

In the case of constant g and a circular-cylindrical shell of
radius a one can readily solve (14) and (13) by the method of eigen-function
expansion. Wﬁen the external field is uniform one finds that the interior

field is also uniform and is given by

H~ = H 1 -

t t 2

-1
iwp oAa
in ex 0 ] (15)

which is identical to (5). Thus the magnetic shielding effectiveness of

a circular-cylindrical shell is the same for both polarizatioms.



3. Three—Dimensional Geometry with Axial Symmetry
The low-frequency shielding problem can be formulated as a one~

dimensional integral equation if ‘axial symmetry obtains in the problem,
{.e., if the external field and the shield have the same axis of symmetry.
For example, when the external field is uniform and parallel to the axis
of the shield, or when the axis of a uniform current-loop which produces
the external field coihcides with that of the shield, one will then have
a case of axial symmetry. In such cases the vector potential has only a

¢—component and is independent of ¢ (Fig. 3). Hence = 0 , and

v -A
s —s

we obtain from (7), with the line integral replaced by a surface integral,

Ay(s) = A(S) + dung f cos (¢-¢")G(s,03536" )8 (s IA, (s')p"dd s (16)

where 4nG = ]5:5'1-1 and (s,$) are the coordinates of the shield's

surface.

We now introduce the magnetic flux ¢ and the surface current

k¢ related to A¢ by
® = 2ﬂpA¢ , K¢ = 1mgA¢ . _ (17)
The equation (16) then becomes

o(z) = %% (2) + J M(z,z')K¢(z')dz' . (18)

where the kernel M has the meaning of mutual inductance and is given by

10



m
L
M(z,2") = u pp’ 3:. J cos? ideA ’ (19)
o

v p2 + p'2 = 2pp' cosb + (z-z')2

p and p' being fuanctions of z and 2 respectively. For a given 9%
one first solves (18) to obtain K¢ from which one can calculate the field
everywhere inside the shield. Or the field insid. can be calculated by

the procedure similar to (12) - (14). 1In the case of constant g and a

spherical shell of radius a 1in a uniform field, one finds that the interior

field is also uniform and is given by
iwy cha(-1
pl® = g [ - ——g———:l . (20)

The induced e.m.f. in a loop of radius b situated at 7 = z, inside
an axially symmetric.shield can also be calculated by the method leading
to (18), provided that the presence of the loop does not destroy the axial
gsymmetry of the problem; Let -Rb and Lb be the resistance and inductance
of the loop when it is in free space, and let I_ be the induced current

b
in the loop. Then the total flux linking the loop is given by

ex ' ] ]
¢b(zo) = ¢b (zo) + LbIb + J Mbs(zo,z )K¢(z )dz
shell

whence, by virtue of the relation RbIb = jwd

b ’
ime e [] ] '
[1 - —§;—J¢b(zo) = Qbfzo) + I Mbs(zo’z )K¢(z )dz ' (21)

shell

where K¢ is the induced surface current in the shell; Hbs is the mutual

11



inductance between the loop and a differential loop-element of the shell

and is given by

n
L}
M (2 ,2') = ubo' 55 f cos® db . @2)
o /Bz + p'2 - 2bp' cos 8 + (zo--z')2

Another equation that relates o and K¢ is provided by (18) with

an added term due to the flux from the loop:

ex ' ' ' iu’Mbs(z’zo)
(z) = ¢ " (z) + M(z,z )K¢(z )dz' + ———————————¢b(z°) . (23)

shell Rb

The equations (21) and (23) constitute the mathematical formulation of the
problem. To find the induced e.m.f. (im¢b) in the loop one first eliminates -
¢ in (23) by means of (21) and then solves the resulting integral equation

b
for ¢. With ¢ omne calculates ob- directly from (21).

12



4. Three-Dimensional Geometry — The General Case
In the previous two sections we discussed special methods that are
best suited for problems involving shields of particular shape. We now go
on to consider a shield of general shape and we shall see that this general
problem can be formulated as a scalar integral equation.

First, we note that H 1is irrotational off the surface of the shield;

hence we can write

H=vQ . (24)
Moreover, Vﬂg = 0 holds true everywhere. Thus

v'a =0 - (25)

for points off the surface. Next, we shall derive the boundary conditions
for Q@ and 3R2/3n , where n 1is always taken to be pointing into the
exterior region of the shield. To do this we recall that the equation (8),

i.e., Vs'ggs = 0 , implies that

=saxve . @6

E
=s s

where ¢ 1is often called the stream function of the current density. The
connection between Q and ¢ 1is provided by equations (1) and one can

easily show that

a(x) = o) + f %g—.w(y) ds' (27)

13



for r 1nside or outside the shield. Here G 1is, as before, given by

4nG = lg—_r_l-l . From (27) we immediately deduce the boundary conditions:

out in
qn N an
én = on = an (282)
Qout _gin Ly (28b)

It now remains to find a relation between ¥ and 3%/3n on the

surface. Scalarly multiplying (la) by the outward unit normal n we have12
iwuH=n-VxE=n-[V xE+-a—anJ
on — - = s — n-—

=n « V xE=n-[V xE +V anJ
- - =s —n

Upon substituting (24) and (26) into this equation we get

3 1 2
an imuog Vs\y (29)

where, for reason of simplicity, g has been assumed constant.

The equation (25) and the boundary conditions (28) and (29) are the
basic equations for the general problem. Wherever the method of separation
of variables applies the equation (25) can readily be solved together with
(28) and (29). For example, the cases of a circular-cylindrical shell and

a spherical shell become trivially simple and the results derived by the



present method agree respectively with (15) and (20).

For a shield of general shape one must translate the differential
equation (25) into an integral equation, taking into account the boundary
conditions (28) and {29). The standard procedure of doing this is to
express, with the aid of Green's theorem, the magnetic scalar potentials
inside and outside the shield in terms of their vaiues and their normal

derivatives on the surface. Thus we have

in
i 3N oG 1
Q n(E) = J {Ga—n, - EE,Q n} ds' (30a)
out
2%t (r) = %% () - I [o-gg - &, Q°“t]ds' : (30b)

where r 1is off the surface.

Let us consider briefly the case of a highly conducting shield.
In this case the field inside the shield can be obtained by the perturbation
method. We first substifute (28a) and (29) into (30) and then bring the

point xr onto the surface to obtain

loin o _ [ @in 26 45 v L | ¢ %y ast (31a)
2 an luu g s
lﬂout = %% 4 J Qout gg' ds' - - 1 J G V'2¢ as' . (31b)
2 an iwu g s

In the zeroth approximation, we assume the shield to be perfectly con-

ducting so that the last terms on the right-hand sides of (31) can be

neglected. Thus, in this approximation, Qin is identically zero and
0

ﬂ:ut satisfies an integral equation of the second kind, the subscript

15



denoting the order of approximation. 1In the next approximation, we insert,

according to (28b), ¢ = QEUt in (3la) and obtain an integral equation

of the second kind for Qin . It is worth pointing out that the integral
out in

equations for Qo and Ql have the same form and the same kernel,

Thus the same method of solution applies to both equations. With a knowledge
of the value of Qin on the surface one can compute the first-order
potential everywhere inside the shield by (30a). For example, in the case

of a circular-cylindrical shell of radius a in a uniform external transverse

field we find

in 21 ex
H1 wuocAa H ’ (32)

and in the case of a spherical shell of radius a in a uniform external
field we find

in 3i ex
HI = qucAa H (33)

Clearly, (32) and (33) can also be obtained directly from (15) and (20) by
neglecting the term unity in the denominator of the lattér two expressions.

Let us now return to the general case where the shield is not necessarily
highly conducting. First, we bring r in (30) onto the surface. Then,

addition and subtraction of the resulting equations give

= oF¥ 36 ' _ 90 '
Q+ Q7+ 2 J an,ﬂ_ ds 2 I G o ds (34a)

16



30
o = 0% 4+ 2 ja—g.m, ds' - 2 J G =+ ds' (34b)

where 2Q; = Qout + ﬂin s 20_ = QOUt - oM, Inserting (34a) in (34b) and

thea uvzing (28) an! (29) w= obtain

ex
.%w(_r) = J G(r,xr') %ﬁ- as' + ” (™ %;..G(g",g) %.G(L' ,r)ds'ds"
1 L |2 L}
- imuog f G(x,r') Vs ¥ dS . (35)

The last term on the right-hand side presents some difficulties in compufation.
It is necessary to transform this term into a form suitable for computational’

purposes. This can be achieved by the formula

J G(r,r'") V;Zw ds' = Lim J [w(g') - ¢(£)] V'2G das' (36)
g+o s
S T
» |
where § 1s a closed surface and o 1s the area of a very small circular
disc centered at r . The proof of (36) is omitted here, since it follows
essentially the same procedure that leads to the familiar factor one-half
in (14), (3la) and (31b).
Insertion of (36) in (35) gives the required integral equation for

the general problem. Although the integral equation thus obtained looks
quite complicated from the viewpoint of analytical treatment, it can readily
be solved with the aid of a present-day computer. Having found the numerical
solution for ¢ from (35) one then substitutes it into (3la), solves the
resulting integral equation numerically, and finally calculates the field

inside via (30a). The reason for taking this secmingly roundabout way

17




instead of the direct way via (27) is mainly for numerical accuracy, for
most of the contribution from the integral in (27) cancels the external

potential a®* if the shell under consideration has any shielding effect

at all.

18



5. Shells with Arbitrary Electrical-Thickness
So far we have been considering the shielding of a shell against a
low-frequency magnetic field. The assumptions that we have used are the.
following:
(a) the quasi-static approximation is applicable,
(b) the shell under consideration is geom.:rically thin, 1.e.,
kA << 1, x being the sum of the two principal curvatures
of the shell's surface,
(c) the shell is electrically thin, i.e., &8 >> 4 , 6§ being the
skin depth of the shell.
When these three conditions are met the results derived in the previous
sections are acceptable regardless of the relative magnitude of « and § .
In this section we wish to treat a shell of arbitrary electrical-thickness
and, thus, the condition (c¢) no longer applies. Although the condition
(c) will be discarded, two conditions must be added in the present case,
These added conditions, as will be shown below, are the following:
(¢') k6 << 1,
(d') the source of the external field must be far away from the
shield.
The condition (c') places quite a stringent restriction on the geometrical
shape of the shell; in this sense the results obtained below, although
taking into account the attenuation loss of the shield's wall, are not as
general as those given in the previous sections.
Let us now proceed to consider a shell of arbitrary electrical-
thickness and we shall assume the conditions (a), (b), (c') and (d') to

hold. The shell can be magnetic as well as resistive. Inside the shield's

19



wall we have

VxE=dwH, VxHe=oE (37a)
and outside the shield's wall

VxE=iwu°§_, VxH=0. (37b)
Ir the following the permeability u and the conductivity o will be
assumed constant mainly for reason of simplicity.

We now integrate the second equation of (37a) around the rectangle

abcd inside the wall (Fig. 4) to obtain

gout _yln o _ f E dz , : (38a)
y y x

gout _ gin _ J E dz , (38b)
x x y

where the integrals are over the thickness of the shell.l In deriving these
equations we have used the continuity of the tangential H across the air-
shell interface. Also, because of the conditions (b) and (d') we have
treated Hy, Hz’ Ey’ etc. to be comstant along ab or c¢d . Consequently,

the integral of Hz over bc cancels the integral of Hz over da.

To find Ex and Ey inside the wall we begin with the equation

@2 + B E =0 (39)



and a similar equation for Ey . Here kz = jwpoc . Clearly, the condition

(¢') 1implies that the equation
2
[———d + kz] E, =0 (40)

is a good approximation to (39). Substituting the solution of (40) into
the integral in (38a) and using the continuity of Ex across the air-shell

interface we obtain

out in Q out in

Hy -Hy =—(—0E(Ex +E ), (41a)
and similarly

Hout _ Hin =3 a (Eout + Ein) (41b)

x x wH y y '
where

wy ol
0 tan(ka/2)
@ 2 ka/2 . (42)

We now differentiate (4la) with respect to y and (41b) with respect
to x and add the resulting equations. Then, using the first equation of

(37b) and introducing Q through (24) we finally obtain the first boundary

condition
vZ @ - a!™ = 10 - @ + 2™ | (43a)
8 an
3 3 a2 | 2
In obtaining (43a) we have replaced -—— by —— and —5 + —5 by the
9z an ax2 ay2

21



surface Laplacian Vz . This is permissitle in view of.the condition (b)
that KA << 1,

To find the second boundary condition we integrate the first equation
of (37a) around the rectangle a b ¢ d inside the wall (Fig. 4), then

follow exactly the same procedure leading to (43a), and obiuin

%_ (Qout _ Qin) =g VZ (Qout + Qin) (43b)
n s
with
v A
r tan(kA/2) (44)

8=~ a2

and v = u/uo . Thus, we see that the effect of the shield's wall on the
interior and the exterior field can be duplicated by (43a) and (43b), that
is to say, a three-medium problem can be reduced to a two-medium one.

The Laplace equation, .Vzﬂ = 0‘, together with the boundary conditions
(43a) and (43b) constitute the formulation of the shielding problem involving
shells of arbitrary electrical-thickness. Wherever the method of separation
of variables is applicable, solutions can be readily obtained. For example,

one can easily find that

u -1
in _ _ex 1, r ka,_.
I-It = Ht l:cos ka + Z(k—a ——ur)snx kA] (45)

for a circular-cylindrical shell of radius a in a uniform, external,

transverse field, and that

22



. 2u -1
H'™ = H®® |cos kA + l(——E - Eﬂ)sin kA (46)
3'ka ur

for a spherical shell of radius ‘a in a uniform, external field. The
expressions (45) and (46) agree with those obtained by Kadenl3. In the
non-magnetic case, i.e., u_= 1 , the term proportional to (ka)-l in
both expressions should be neglected, since the condition (c') implies
that ka 1is much larger than unity,

The longitudinal case of a two-dimensional problem as described in
section 2.1 can be treated by the technique employed in that section. One

point to be noted is that, contrary to the case of an electrically thin

shell where the tangential component E2 is continuous across the shell,

out in

one must, in the present case, distinguish Ez and El immediately
outside and inside the shell's surface. The relation between E:ut and

E:n can be obtained by integrating (37a) across the thickness of the shell.

The final result is that -’

-1
i [cos ko - *A gin kA:I . (47)
z z M P

where A 1is the cross-sectional area within the cylindrical shell and

p 1s its perimeter. The results derived from (47) for a circular-
cylindrical shell and for two-parallel plates agree with those obtained

by Kaden13.
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Figure 1.

Two-dimensional geometry - the longitudinal case.
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Figure 2.

Two-dimensional geometry - the transverse case.
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HEx

Figure 3,

Three-dimensional geometry with axial symmetry.
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Figure 4,

Section of a shield's wall with the indicated path of integration.
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