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Abstract

This paper describes the development'of the equations and
computer programs for calculating the current induced on a
finite, perfectly conducting, solid cylinder in free space by
an electromagnetic plane-wave pulse polarlzed parallel to the
axis of the cylinder. Calculatlons were made for three differ-
ent cylinders havling length to diameter ratios of 10, 100 and

1000 and three different pulses: the unit step function and
-C; t_ —C: t

two pulses of the form e e .
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I INTRODUCTION

In the investigation of the vulnerability of misslle systems
to EMP it 1s frequently necessary to have a knowledge of the
currents induced on the surface of the missile by an electromag-
netic pulse., The results presented here are a first step toward
obtalning a knowledge of the magnitude and distribution of these
currents. |

We shall 1dealize the problem by treating the case of the
finite, perfectly conddcting, solid cyvlinder in a simple non-
conducting medium and calculate the total axial current induced
on the cylinder, The solution of the problem is divided into
two parts. First, the current induced by harmonic plane waves
polarized with the electric vector parallel to the axls of the
cylinder 1s calculated by solving numerically an 1ntegral equa-
tion for the current. Second, the time history of the current
induced by three different transient waves 1s obtalned by Fouriler
integration of the frequency-domain results.

Note that rationalized MKS units and e ®% time dependence
are used throughout.



IT FORMULATION OF THE INTEGRAL EQUATION

The integral equation derived here 1is equivalent to the
one reported in Sensor and Simulation Note XLV except that the
form of the equation 1n that report did not Indicate the nature
of the kernel at the intersection of the side and end surfaces
of the cylinderl. The form derived herein 1s betfer sulterd £o
the development of the quadrature formulas in the next section.

We begin with the integral equation for the current densi:iy

on a perfectly conducting surfacel’2

K(r) = ¥¥¥(r) + ﬁ(z) x lim j vG( p-r') x K{r')ds (S

2-r g
where
r = the positlon vector of a point on the surface S
a(r) = unit outward normal to S at r

p = the position vector of a polnt above the surface S

K(r) = surface current density at
X

K¥*(z) = n(z) x B¥*(z)
ﬁex(;) = magnetlc fleld at r due to externazl -ourcec
1k! p-r|
-pit) = E —
G( p-r') = “grporT
k = w/c
and the time dependence e'j'“’t has been suppressed.

For a clrcular cylinder, equation (1) becomes the coupled

set of equatilons




+
3
—~
<D
A
x
g
| \)
e
QO *— W

am h

K(z,a,8)= Kex(z a,0)+n(8)x 1im J I vG(z-z',a+8,a,0-8')x K(z',a,0"adz"'de
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where

fi(e) = % cos 8 + § sin 8

% = unit vector in the x direction
§ = unit vector in the y direction
Z = unit vector in the 2z direction
a = radius of the cylinder

2h = length of the cylinder

1kR
G(z-z',0,0",r-€") = Eﬁ;ﬁ

R* (z=2')2% + 0% + p'® - 24p' cos(B8-8') .

Now if we dot multiply equation (2a) by a2 and equations (ZL )
and (2¢) by 00(0) and integrate wilth respect to 8 we get after
expanding and simplifying

o

11, (z) = 1$%(2) - r T a® (1-cos ¢) F(z-z',a,a,y) I, (z')dz'dy

2

o-h
2~ a
~alh-z) T [ cos ¢ F(z-h,a,o!,¥) Iy (o' )do'dy
. J
0o
27 a
+ a(h+z) I [ cos y F(z+h,a,n',y) I (o' )do'dn (3a)
c o
an h
I1,(n) = 15%(n) - f I o(c-a cos ) F(h-z',0,a,¥) I, (z')dz'd"
o-h
zm a
+2ho [ [ cos  F(2h,0,0%,¥) I (o' )do'dt (=b)
0o



am h
T, (p) = I§%(0) - [ [ o(o-a cos ¥) F(-n-z',p,a,¥) T (' )dz'ay

o-h
3w a :
+ 2hg J' J' cos y F(-2h,p,p',¥) Ia(p')dp'dy ,
[oJRe)
(-h<z<h), (p<a), - (3c)
am h
$L (h) = #Ta (a) = I7¥(n)-[ f a®(1-cos ¥) Fl-z',a,a,V) Lie') dz'dy
o-h
an a
+ 2ha [' f cos § F(2h,a,0',¥) Is(p' )dp'dy (3d)
o O
- a7 h
3L (-n) =%Ls(a) = IF*(n) -[ [ a®(1-cos¥) Fébrz,a,a,9) I (2')dz' dy
o-h
arm a _
+ 2ha [ J" cos § F(-2h,p,0',4) Io(p' )do'dy (ze)
[oJaNe]
where
134
I, (z) = J‘ 8-K(z,a,0 )ads
Q
am
Ia(p) = -[ A(e)-K(n,0,0)pd0
(o]
3T
I (o) = [ 6(8)-K(-h,p,6)pde
(e}



an a0

Ilex(z)s.r 2-_xgex(z,a,e)adesf 2.1(8) x H®®(z,a,08)ads

(o] O
an an
15%(0)=- [ 5(8)k**(n,0,8)0a8=-[ fi(s)-2 x E(n,0,0)0d0
o] (o]
an
= [ z-A(e) x H®*(h,p,a)pde
. |
27 Rt
15%(p) = [ 6(08)-K°F(-h,p,6)pd0= -[ A(6)-2 x HE*(-n,p." Jocr
o} (e]
3an

f z+f(68) x H*(-h,p,0)pds
(0]

ikR

(ikR-1) e
L4nR3

»F(Z'Z'JOJQ';w) =

R?® = (z-2')*+e®+ a'® 2pp' cos ¥

I, (z) 1s the total current flowing in the directicn of the axis
of the cylinder, Iz(p) and I3(p) are the total currents
crossing a circle of radilus p on the ends. It should be noted
that the integral equation 1s exact; no approximations have been
made in the derivation. Further although there may be circum-
ferential currents on the cylinder depending upon the external
sources, these currents do not couple to the axlial and radial

currents.




ITII NUMERICAL QUADRATURE

We assume that the external magnetic fleld is in the
positive x direction and is that of a plane wave propagating
in the -y direction. That is

.}_{ex(z:a:e) = *-H)ecx e-'iky .
Hence

I (z)

314 .
[ 2-8(e) x 5% (z,a,0)ade

T

= -[ HZ¥ sin o e~1Ka 51n 8 44
o
3T
= -aH;x f sin 6 {cos(-ka sin 8) + 1 sin(-ka sin 6)}ds

(o]

12ma Jy (ka) Ho©

am
1% (o) = f z-n(e) x H¥*(h,0,8)pds
(o)

12mp Jy (ko) H;x

an

I%(p) = [ 2-6i(8) x H*®(-h,p,6)pdo
(o]

12np Jy (ko) Hix .

If the length of the cylinder is much greater than 1ts diameter
the current on the end wlll be much smaller than the current



elsewhere (excluding minima) and the computational labor can be .
greatly reduced by assuming

Ia(p) = I, (h) £(p) .

In reference 1, to satisfy the requirement imposed by the inte-
gral equation that Iz(p) and its derivative be zero at p = O ,
f(p) = p?/a® was used. Here we will use

flp) = i - (l-caa/aa)’ar

whlch, in addition to satisfylng the above requirements at

p = 0, leads to the correct form for the charge density for
p—~a . Later, when the results of the calculations using the
two forms were compared, there was very little difference 1n
the current even at the end.

From symmetry

L (z) = I (~2)

Ia(o) Iz(p)

therefore, equations (3) become
anm h

I I a?(1-cos y) [F(z-z',a,a,y) + F(z+z',a,a,y)] I(z')dz'dy
o o

an a
+ 3I(z)-I(h)a _[ I cos ¢y [(h-2) Fh-z,a,0",¢) + (h+z) F(h+z,a,0, ¢)]
O 0
13 32'
"[1-(1- £=) Jdo'dy = 12na J, (ka) H;x , (0 <z <h); (La)

a
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' 2 h :
. [ J' a® (1-cos ¥) [F(h-z,a,a,i) + F(h+z',a,a,i)] I(z')dz'dy
o o

an a

+ I(h){§ - 2ah I [ cos ¥ F(2h,a,o',m)[l-(l-p'3/aa7g]da'dw]

o 0

= 12na J; (ka) HO'

Now, referring to figure 1, let the cylinder be divided

into Np zones and the last zone divided into NS + 1
according to the formulae

P

2N1 =N-l

zJ=2JA', 0Os J<N
a' = a'

d(J“"l) = d(‘j )/33
ZNy +3-1 = h-3(ald) + a(3+1))
QA(J+1) = d(J) - d(J+l)

for (1 < j SNS)

and zNl +Ng = h .

‘ Also assume the current is constant over a zone, “hat is

11
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I(z) = I(zJ) .—.‘1J

for z within zone

Then equation (6) becomes

Ny
c I =Y
nEO m,nTin m O=ms= N,
where
Nu = N1 + NS
- I ex
Y, = i2na J; (ka) H,
((U(5,,8) + U(g,,8) ; 0<n <N
_ U(ga)é) H n=2~0
Cm,n'
| U(5,-6/2,6/2) + U(g,-6/2,6/2) + T(s,) + T(5y )5 mPn = N,
3u(0,8) + & + U(2h-8/2,8/2) . T(2 2) ; m=n=n

Z -2
£ = Lm "nf | [m-n|s

a a
2z _+z
Ep = —5—= = (m+n)s
(1)
§ = Aa
n/a &
_ 2 3, 7. _ e
U(g,s) = = f I sin® y (ikaRy 1)~—;§——

o -§

ikaRu
dt dy + z8(g)
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RO = (t+£ ) + 4 sinéw

6(E) = { 0, £#0

1, £=0
ika
- a_ (ikaRp-1) e T
T(g) = - &5 [ [ cos y [1-(1-t7 )Ty =T dtdy
| =" oo Ry

Rp =8 + 1+t - 2t cos y

Numenical Incegration

U(0,8) ‘cannot be evaluated in 1ts present form because the
integrand 1s infinite for t = §y = O . To handle the singularity
we add and subtract 1 + %k?a’R; to the integrand. Then

4 A 2 ikaRu dtd
U(0,8)= 4%+ += I J.sinaq;{[l+%kaa. Ri+(1kaRu-1)e 1,-[1+§L?a‘R;j} =
o o Ry
n/2 & a n/a
%_ﬁrrsiantdwa_%__a_ dy
™ . ] 3 " ™
o) (£ +4 sin®y) o J8°+4 sin®y
n/3
-3 (1- 2 2 )
o J1 + 2 sin®y
<
8
n/a .
-3 (1- 22 2 ]
J&3+l4 o J1 - cos? ¥
6% +4
=3 -2 2L«

J&2+4
13




" where the modulus of the elliptic integral K 1is 2 . If .
J83+4
_l&? <01, ([1+ —l-;; sin’t]'% is expanded by the binomial theorem

8 . 8
and integrated term by term with the result

n/
1.2 f Q17 (A 103 (A 1f3est (dye
™ > J1+ _&; sin®y 03 \g3 p3.43 \g3 03 .43 ,63 Vg3
‘ 8
Also .
2“'"/361’“11:(1 2 " J82+4 sin?
sin 8§ + /82+4 sin®y
- = kaaa | NI = K2 a® I sinatl log( S sTn )dv‘u_
o o .Jt3*+4 siny o
. n/a ' ﬂ/;—.
= - —?; K*a® (- j sinat log sin § dy + log § f sin®y dy
o 2 0
n/3
+ j sin®’y log (1 + J1 + (%)a sin®y1dy}
o
n/a
= -3k%a® {—g j sin®y log [1 + J1 + (—f—) sin®yJdy + log 6 ~ %}
o
Now define

U (t) = [1 + 21Pa®R+ (1kaR-1) elkaRq pa

with R® = t? + 4 8in®y , and
5 N
J’U,(t)dt =3 I w U (st))
n=1
)
where

t, = 3(1 + x)

14



and L and X, are the weights and abclissas of the N point

Gausslan quadrature, and

6 .

Uy (9) = {I U, (t)dat - sza logll + J1 + (%stinaw]} sin®y ,
o

u‘n/a . N

;{ Ua (¥)dv = I wy Us(vy)

where
__TT
wn = ﬁ(l + xn) .

Then -

N .
U(0,8) = 53U (8) + = w_ Us(y, ) - 2k%a® [log & - 3]
n=1

where

Up (&) =

]
H
]
= BTV
0 “—
Qs
b=

Next define

3
U (t) = f‘-i‘:L‘i (1kaR-1 )el¥aR
R

where
R® = (§ + t)® + 4 sin3y
8
1 N
Uy (8) = 5 [ Va(t)at = E Wy Us(6%;) .
-8 n=
Then

15



AT

IIMZ

u(e,s) = %

Next, adding and subtracting 1 + %kaaaﬁg from the integrand

of T(x) , we get

" |
T(x)-—---z— “ {(1kaRT 1)eikaRTu (1-t3 ):r]_,_ 1 +2k3a2RT1dt 'c;: o du
00 T

+ 5— “‘ 1+ -}kaaaRT] at cos y dy , and

- Ry

m o
X dt cos ¢ dy _ X cos ¢ l-cos ¢ Cos \
Zn ff I I B +sin? [ re—") dv
00 R% o X F8INT¥ 3. 5.0 cos ¢ W/XPH1
n/2 -
z__%_ ‘[ 1 (I l-cosy ___1+cos ¥y  2cos . .,
n 3 F )
o X +siny JX2+2-2 cos § J/X°+2+42 cos ¢ JxZ+1
n/=
[—2— - —2_7)ay + 2 [ - | = dy .
N R X CJxP#1 JxPel o X sInTy
TT/3
- X f 1 { l-cos ¢ - l4+cos ¢ 4+ o COS w]cos y
2n 2 R
) X+ sin®y JEE+2-2 cos § /X +2+2 cos § JEE+1

=2 - 2 g)ay ¢ B - 2 L
JE+1 /P +h Jx3e1 /xPd xR+l

16



A d

ml .
k®a®x ” dt coe ¢ dy _ kaaax f log[l oS U+./x7+2=2 cOS { (oo 4 4y

Jx2+1 - cos

Now define

2 .
£~ (t) = { (1kaR-1)eT¥R[1_ (1-£3 JT1+1+3K%aR? }/R®; R® = x®41+t3-2t cos *

. 3
£¥(0) = {(1kaR-1)e ¥R 1_ (12 T 141+ BE PF 1 /R3; R® - x®+1+t%42t cos -

(]
—~
g

]

n

-2
=)
[v)
——
-
[0
ct
i
™
=
-3
—
o~
C
N
ct
It
N
Ld
.
b
o3
S’

2 3
[l-cos ¥ + ./x +2-2 cos ¥1[/x"+]1 + cos =7

L(r) = log
[/x%+1 - cos %1[1 + cos % + Jxa+2+2 cos
B(y) = 1 (1 l - cos ¥ _ ; + cOs + 2 COB Y-
x“+sin Jx242-2 cos Jx3+242 cos Jx2+1
2
- T - = .
Jx3+1 /x3+d
Then
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n/a ' ' . | .

1 f 2 2 .-

T(x)==£% j {[5G(y )+Ek®a®L(t)rcos v+ B(y )ldv+ | -
(o}

L./x3+1 JxP+1  /x*+h

N = -~
= § U w [ 136y, )i a™Lln, ) 1cos 4B (i) | + 2__ [ 2
- X Jx2+1 JxP+1 xP+4

If x >1 define

+ .. otkaR" o oLlkaR™ 2
Ts (t) = {(ikaR -1) =——— - (ikaR -1) ———] [1-(1-t?)3]
(R7 ) (R7)?
where
(R")® = x3 + t3 + 1 + 2t cos v
(R7)® =x® +t® +1 - 2t cos ¥ , and
b N
T, (") = 2 cos [ T, (t)dt = cos y T wnTs(tn) .
o n=1
Then
(x) = 2 z T, (4, )
T(x) ==— ¥ w
l6n=l n‘q’n

IV  FOURIER INVERSION

The method of obtaining an inverse Fourler tronsform
numerically is thoroughly discussed by Sulkowski3 and will not
be repeated here. It 1s only necessary to add thzt the frequency
response of the dipole between data points 1s obtained by

Lagrangian interpolation. ' .
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V COMPUTER PROGRAMS

Three computer programs were developed to do the computa-
tions required to obtain the current on the cylinder induced by
an electromagnetic pulse: (1) DIPOLE, (2) DIPLOTK, (3) FORGE.
DIPOLE calculates the cufrent induced by a plane wave 1lncident
with the electric fleld parallel to the axls of the cylinder as
a function of distance along the axls for a fixed value of the
wave number k . DIPLOTK converts the data from DIPOLE into
current as a function of angular frequency w at a fixed dils-
tance along fhe axis. FORGE performs an inverse Fourler tranc-
form on the data from DIPLOTK and prints the current as a function
of time at a fixed axlal distance. All of these programs are
written in FORTRAN for the CDC-6600 computer. The information on
memory requirements and running time was cbtalned from checkout
runs on the CDC-6600 computer at the Los Angeles Data Center.

Program DIPOLE

Intrcduction

DIPOLE is a computer program consisting of a main program
deck DIPOLE and twelve subroutlne decks. It requires as lnputs
the number of primary and the number of secondary zones 1into
which the dipole length has been divided, the radius of the dipole
and 1ts helght or half-length and the complex wave-number of the
Incident wave, DIPOLE produces as output a table of the complex
amplitudes cf the current flowlng in the direction of the axis of
the dlpole as a function of the distance along the axils.

Operation

The Input parameters are read from a punched card. Any
number of problems can be run with one loading of the deck silnce
upon completion of one problem the program will go back to the

19



beginning and read another input card. The program stops upon ' ‘
reading an end-of-file card.

Input Parameters

1. NP  TYPE INTEGER. This 1s the number of primary zones into
which the dipole 1s divided and must be odd so that the
midpoint of the dlpole is also the midpoint of the
middle zone. The value of NP must be limlted to 2¢+
maximum. '

2. NS  TYPE INTEGER. Tiis is the number <{ secondary zones
into which the last zone 1s divided less one. The
value of NS must be limlited to 5 maximum.

3. A TYPE REAL. This 1s the radlus of the dipole,
4, HITE TYPE REAL. This 1s the height or haif-length of the
dipole.

5. KC TYPE. COMPLEX. This 1s the complex wave-number of the
incident plane wave.

Output

The output from DIPOLE 1s in two forms: (1) a printed out-
put of the real and imaginary parts of the complex amplitude of
the current and zone length vs. 2 for the upper half of the
dipole and (2) a punched card or BCD tape output of the direc-
tion cosines, x and y coordinates and zone lengths in addi-
tion to the currents and 2z coordinates for the whole length of
the dipole.

Accuracy

The accuracy of the current values depends upon the ratlo of
the zone length divided by the dlameter which in turn depends upon
the number of zones and the heilght to radius ratio -of the dipole.
Calculatlions have been made with HITE/A ratios of 10, 100 and 10C0. ‘
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For HITE/A = 10, NP was 65 and NS was 4. For HITE/A = 10C, NP
was 129 and NS was 5. For HITE/A = 1000, NP was 257 and NS was
5. Using these values of current the electric fleld at the
surface of the dipocle was calculated and compared to the correct
value of zero. From the results, 1t 1s belleved that the error
‘15 less than 1% for HITE/A ratios of 10 and 1CO and less than
5% for a retio of 1000.

Memory Regqulrements

The program requires a field length of 136700y for loading
and 132600 during execution.

Running Time

The central processor time for HITE/A = 10 1s about 25
seconds; for HITE/A = 100 about 13 seconds and for HITE, A =
1000 about 32 seconds.

Program DIPLOTK

Introductlion

The main purpose of DIPLOTK 1s to convert the output of
program DIPOLE which 1s dipole currents as a functlon of axial
distance for a set of wave numbers to the input required for
program FORGE which 1s dipole currents as a function of angular
frequency for a set of axlial distances., It also multiplies the
current by a phase correctlon factor to make the phase reference
the first element of the cylinder hit by the incident wave. 1In
addition DIPLOTK prints or plots the magnitude of the dipole
current as a functlion of wave number at the users option. The
plot 1is useful 1in establishing the range of 1lnterpolation of the
current for wave numbers between data points of the input.

21



Opegration

The input data 1s read from punched cards and/or magneiic
tape. The current vs. angular frequency output can escsily be
accommodated by punched cards but magnetic tape may be used 1f
desired. The plot output is in the form of a magnetic tape
which produces a plot on a Calcomp plotter,

Input Parameters

T
()

1. INU TYPE INTEGER. This 1s the logical unit number of
unlt from whilch the 1lnput currents are to be read.
60 indicates the card reader. A O indicates that th
current 1s to be the output'from & previous run.

2. IM TYPE INTEGER. This 1s the loglcal unlt number of the
unit on which the output currents are to be written.
A 62 indicates the card punch. A O indicates that
thls output 1s not desilred.

3. Id2 TYPE INTEGER. This 1is the logical unit number of the
unit on which the current magnltude vs., wave number
1s to be written. A O indicates that thilis outour is

D rs

not desired.

4, IPL TYPE INTEGER. This 1s the loglical unit number of tlre
plot tape. A O indicates that a plot is not desired.

5. NzZg TYPE INTEGER. This 1s the number of values of axial
distance z for which output currents are desired.

6. NW@ TYPE INTEGER. This 1s the number of values of angular
frequency w or wave number k .

7. VU TYPE REAL, This 1s the scale factor for the plot

) ordinate,

8. HU = TYPE REAL. This is the scale factor for the plot
abclssa. —

9. ID HOLLERITH ARRAY. Thils 1s a title for the printed

output. It 1s contained on two punched cards or
equivalent magnetic tape records.
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10. KL(N) TYPE INTEGER. For interpolation between the N-1
‘ and Nth value of w sets the lower limit to the

KLth value of w . .

11. KU(N) TYPE INTEGER. For interpolation between the N-1
and Nth value of o sets the upper limit to the
KUth value of w .

12. 2@¢(N) TYPE REAL. The Nth value of z for which the
current vs. w 1s to be outputted.

Input Data

The input data will be on‘punched cards or magnetic tape--
the output from program DIPOLE.

Accuracy

The accuracy of the output current values depends upcn the
~ separatlion of the input data points and the interpolation range.
‘ The Lagranglan 1nterpolatlion scheme used in the program is
equivalent to approximating the current as a function of w Ty
a polynomial, If thls approximation 1s attempted over too grecs.
a range of w there can be large errors in the result. If the
‘interpolation range parameters KL and KU are chosen to produce &
smooth plot of current magnlitude vs. k and the data points are
not too far apart there wlll be no degradation of accuracy of
the currents,

Memory Requirements

The program requires a fleld length of 53,5004 for loadlng
and 47400, during execution.

Running Time

‘ The central processor time 1s about 15 seconds.
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Program FORGE

Introduction

FORGE 1s an adaptation of the program FORPLEX by
Sulkowsk13. It performs the inverse Fourier transform on the
dipole currents as a function of frequency to obtain dipole
currents as a function of time. The major differences between
FORGE and FORPLEX are: the angular frequency range has been
arbitrarily fixed at 6 decades with the upper frequency limit
set at 4 x 10° therefore the parasmeter sigma determines only
the frequency increment; only one pass 1s made through sub-
routine CALCLT for each value of sigma; CALCLT has been modil-
fled to correspond to the harmonic time dependence e’i‘“t R
the multiplicity of subroutines has been reduczd to two SET

and CALCLT and one subroutine RCVCOM to calculate F(w) has
been added.

Operation

The number of time ranges, sigma, time interval and time
range are read from punched cards by the main program FORGE.
The time values are calculated and stored in array T. Then
subroutine SET 1s called which calculates the  values and
stores them 1n array ZM. Subroutine RCVCOM is now called which
calculates F(w) and stores 1t in array RCVC. CALCLT is called
now to calculate the inverse Fouriler transform of F(w) and
store it in array V. After printing T and V, FORGE goes back
and calls RCVCOM. This loop 1is repeated until the input of
dipole current vs. w 1is exhausted when the program stops.

Subroutine RCVCOM

A different subroutine RCVCOM 1s required for each 1ncldent
waveform. Two verslons have been written: one for the unit step .
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function and one for the function et et | e dipole

current vs. o data 1s read in this subroutine and values of

current for values of  1n between the data points are cal-

cﬁlated by Lagrangian interpolation over a rangé determined by
the parameters KL and KU. '

Input Parameters, Program FORGE

1., NT TYPE INTEGER. This 1s the number of values of DT
and TIM. , | -
2. 3IG TYPE REAL. This 1s the accuracy parameter sigma

which determines the frequency increment in the
inverse Fourler transform integration.

DT(N) TYPE REAL. This is the Nth time increment.

4, TIM(N) TYPE REAL. This is the Nth time range.

(@V)

Input Parameters, Subroutine RCVCOM

1. IU . TYPE REAL. This 1s the loglcal unit number of the
unit from which the current vs. frequency data are
read.

2. NQ TYPE REAL. Thils 1s the number of data points in the

current vs. frequency data.
KL(N) TYPE INTEGER. For interpclation between the N-1 and
Nth value of @ sets the lower limit to the KLth
value of w .
4, KU(N) TYPE INTEGER, For interpolation between the N-1 and
Nth value of w sets the upper limit to the KUth
value of o . '

(SN

Input Data, Subroutine RCVCOM

The input data will be on punched cards or magnetic tape--
the output from program DIPLOTK.
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Memory Requirements .

_ The program requires a fileld length of 56200, for loading
and 52600, during execution.

Running Time

' The central processor time required 1s about 22 seconds
for sigma = 0.01.

VI RESULTS

Geometrical relationships are shown in figure 1. The mag- .

nltude and phase of the currents as a function of wave number
are presented in figures 2 through 7. Figurec & through 1z
exhibit the currents as a function of time with distance a
parameter and current as a functlon of distance at the times
where the current has a relative maximum or minimum. The 1n-
cldent pulse was the unit step function.

Figure 14 1s a plbt of the function e &% _e % ynicn

was used as the incident pulse in the succeeding current plots.

Figure 27 1s a plot of the damping constant a as a
function of a/h obtained by fitting a curve of the form Ae
to the envelope of the plot of current vs. time at the center
of the cylinder. ‘

The following symbols are used

= radius of cylinder [meters]

= length of cylinder/2 [meters]

unit magnetic field [1 ampere/meter)

= 2n X frequency [hertz)

= w/¢ = wave number

= speed of light in a vacuum [meters/second]

OFE‘FS‘N
u
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I = current [amperes)

‘ t = time [seconds) '
z = distance along the axls of the cylinder

measured from the center [meters]
a = damping constant

REFERENCES

1 Sassman, R, W., Latham, R. W., and Berger, A. G.,
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