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Abstract

Various condltions near the end of a seml-inflnite, perfectly
conducting plpe with a perfectly conducting flange are critically
examlned with regard to their effects on the interior field when
the plpe is exposed to a low-frequency magnetic fileld. This 1s
accomplished by solving several partlicular boundary-value problems.
The results of this investigation indicate that (1) the effect
of removing the flange 1s about 34%, that (2) the effect of in-
serting a resistive cap 1s to yield a "shielding ratio" similar
to that in other low-frequency shielding problems, and that
(3) the effect of an extremely narrow annular slot in an other-
wise perfectly conducting cap is surprisingly large.
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I INTRODUCTION

An important problem in EMP shielding theory is that of
calculating the leakage fleld inslde a perfectly conducting,
semi-infinite circular pipe imbedded in a conducting dielectric
half—spaée when the pipe 1s exposed to a slowiy time-varying
magnetic field. The varlous effects which contribute to this
leakage field all involve particular geometrles or materials
near the end of the pipe. To make thls general problem math-
ematically tractable these various effects will be consldered
separately and, in each case, an idealized problem will be
solved under the quasi-static approximation to estimate the
magnltude of the effect. First, the effect of the conducting
dielectric half-space on the leakage field wlll be estimated
by consldering two extreme cases, namely the case of a vlpe
wlth a perfectly conducting flange and the case of an untflanged
pipe in free space. The effects of different kinds of caps will
then be investigated and, for mathematical convenience, this
investigatlion will be carried out for the case in which the
plpe has a perfectly conducting flange. Two particular caps
will be studled separately - a resistive cap and a perfectly

conducting cap with a narrow annular slot.

In Section II the problem of calculating the fileld inside
a perfectly conducting semi-infinite circular pipe with a
perfectly conducting flange is solved for the case in which
the pipe i1s exposed to a uniform magnetic field. The method
of solution 1s first to deduce, by Green's theorem, an appro-
priate integral equation for the aperture fleld and to solve
the integral equatlon by the technique of elgenfunctlon expancion.

The effect of the flange on the leakage field is investi-
gated in Section III by sclving the problem of calculating the
magnetlc fleld insilde a perfectly conducting unflanged pipe in
free space. The method of solution is to employ the Wiener-Houfl
ftechnique.



The calculatlon of the effect of inserting a resistive cap
at the mouth of the plpe 1s presented in Sectlon IV. First an
appropriate set of boundary conditions at the mouth of the pipe
is obtalned by Integrating the Maxwell equations through the
thickness of the cap. These boundary conditions, in combina-
tion with Green's theorem, give rise to a coupled set of integro-
differential equatlons which are then solved by the method of
elgenfunction expansion.

In Sectlon V the fleld leaking into the plpe through a
narrow annular slot 1n an otherwise perfectly conducting cap is
calculated. First 1t 1s observed that the kernel of the inte-
gral equation for the normal component of the field in the slot
can be split up into two parts. The flrst part is twice the
Green's function of an infinlte plane with vanishing normal
derivative at the plate. For a narrow annular slot this Green's
function resembles the kernel of Carleman's integral equation1
The second part corresponds to the regular part of the Green's
function of an iInfinitely long cylinder with vanishing normal
derivative at the cylindrical surface. This part is estimated
numerically for the case where the distance of the slot from
the cylindrical surface is at least of the order of the width
of the slot. Then the reduced integral equation 1is solved

according to Carleman.

A discussion of all the results obtained 1s given in
Section VI.

An appendix is devoted to some methods of evaluating certain
integrals which appear in the solutions of the above four problems.
These integrals are difficult to evaluate and have not been re-

ported in any published llterature.
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ITI FIELD INSIDE A FLANGED CIRCULAR PIPE

The geometry of the problem is deplcted in figure 1 where a
uniform magnetic fleld falls into a perfectly conducting circular
pipe with a perfectly conducting flange. The problem is to de-
termine the magnetic field inside the pipe. In mathematical
language the following equation is to be solved

with

33 =0 for 2=0,p>a; z<0,n=a, (1)
and

¢ * Bx for z 4 =

The magnetic field 1s obtained from B = Vo

Inregion I (psa , 2z < 0) one has, by applying
Green's theorem,
3w 3G
YT I~ .
¢r = J ot O T @1 Far )48’ (2)
S

where n' is the ocutward unit normal to the surface S ., The
Green's functlon GI satisfies

926, = -6 (z-2") 6(n-n+) 2o281) (2)

=0 for An=a,z <« 0 and pn < a



Solving equation (3) by the standard technique of separation of
varlables one obtains, for 2z < z' < O

i e 2'63 urJn(“r”') Jn(ur“) M2
= I pX — cos n(¢-¢') 555 5
n=0 r=1 " (a"uz-n®)0J, (u,2)]

G cosi z!
o M,

I
(2)

Here Jn is the Bessel function of the first kind of order n
and for 2z' <« z s O one simply interchanges 2z and z' in (&).
53 is the Kronecker delta. The u;s are determined by

Il (nga) = 0, (5)

where the prime denotes differentiation with respect to the
argument®. Equation (2) now becomes

n)

m a
- . 5¢I _
<pI(sz}¢) = J J (-a'—z—i'> GI(D:D';ZJ¢'¢’) b'dp'd¢' N (b)
o o
where
* There are a few remarks which should be made, concerning

equations (3) and (L), to those interested in following the
details of the calculation. One is that equation (2), because

of the nature of Neumann's problem, implies that the integral of
the flux of the Green's function over a cross section of the tube
for z - 2' 1s unity. Another is that this behavior is implicit
in equation (4) if one allows for a term with n = O and

np = 0 by formally letting u, approach zero in equation (-)
for n= 0. The last remark is to the effect that there is
actually an invisible "n" index on the u;s of equation (4) as
is obvious from equation (5), but that since shortly one will only
need the n =1 sum, simpliclty of notation dictates a slight
ambiguity in the equations for the time being.
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mpdp(upe') I (ue)
GI(P:P',Z,¢"¢')= z z n cos n 05 o' ) T

n=0 r=1 T (a2 p-n )T, )12

In region IT (z > 0) one has, after emplnying Green's

theorem,
3 dG
A W I\ 1o
orr = @1 * | (FaT Opr - opp war)dS
S
where
S 1s the Infinite plane at 2z = 0O ,
Py = Box = Bop cos ¢
Here GII satisfiles the following equation

VPG = -6 (x-x') 8(y-y') a(z-z')

’ wlith

dG
an

1T

G = R — 1. — + . - - - _1_:__;.__.___ [T —
11 2. 2 2 T oN2) Y
ﬂn«/(x x-x1 )24 (y-y )24 (221 )% Hm(x-x' )Pr (y-y1 )+ (242" )
. . L o
Substitution of (10) into (8) with o7 = - a7 glves
27 a
~Bmpcoss -k [ [ (edl) .. p'do'de
©11 = PoP or YA - 7ﬂ¥==44 -
o o

VP +p —2pp' cos(¢—®')

HpnZ

(7)



For z =0, p < a one has the following boundary conditions:

vl
1 = 911
91 _ 811 _ 39
— = = 9%
5z 3z 2 - (12)
By equating (6) and (11) at z = 0, p = a one obtains the
following integral equation for '%%T
2m a
1 3 p'de’de
Boyp c0s ¢ - 5= [ [ G e
o o Jo+p' “-2pp' cos(g-¢')
2n a
/
N I f Y%§T> GI(P’ﬁ':O:¢‘¢’) n'dn'ds' . (12)
o ©
To simplify this integral equation it is to be noted that 1
and ©py Vary as cos ¢ and so will a¢I/az and dpyy/ 32 . ed
Accordingly, one substitutes
39 - B cos ¢ £(n) (14)
z o] -
into (13) and obtains, with 5 = ax', a' = ax' and {p = au, ,
the following integral equation in dimensionless form
1 2y
x - " r(xt)xtax %; F -—**JgﬁifLégi,:;zv
o) o Jx2+x‘2—2xx' cos 8
. 20,7, (¢.x) T, (¢x")
= r f(xl )_dexl 3 s e s (*5)
5 r o (¢-1)05, (¢,
-
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The kernel on the left-hand side can be transformed as follow"q

2n 2m ot
3 cos 6 d 1 2 %12 oxx
5; | — © = 5 j cos 8 de J I, (kAT1x1S-2xxt cos 8 )dk
0 JXT+x'T-2xx!' cos 6 o o
2n . *®
-1 j cos 6 a8 % (2-82) cos né f J_(kx) J_(kx')dk
- 21’1’ =O n e n n
o o

«©

- J 3, (kx) 3, (kx!)ak . (16)
O .

To solve the integral equation (15) for f(x)

one
substitutes the expansion

f(x) =% Cq Jl((sx)
s

into (15), and then multiplying both sides of the equation by

AJl(QrX) and integrating with respect to

x from O to 1
one obtalns the lollowing matrix equation

b

T [J (u)] .
rL2€3 + £ duJ
I ( r,> ° [J
- 2 Cr) - 5 “1ltes” i : - (U)-] 5 du
¢ld;(c )] s;‘r Cp) B (05-c2) (uP-c7)

(17)

The integrals in (18) are evaluated in the appendix for
¢y = 1.84118 and €y = 5.33144
that, if the couplings of Cl
C1 1s given by

Solving equation (18) one f'nds

with all other C's are neglccuiec,



Cy = 1.6401 (no coupling), (19)
and that, if only the coupling between Cl and 02 is taken into
account, Cl is given by

C. = 1.6758 (coupling between 1st and 2nd mode). (20)

1
It is felt that the value given by equation (20) for C; s
rather accurate.

To obtain the field inside the vipe (region I), one simply
substitutes (14) together with (17) into (6) and carries ouvti ihe
integration. It is found that

z/a

- ~1 . gr -
w; = B,a cos ¢ ? C. Cp Jl(gr a/ale , z-0 (21)

The principal (first) mode is, by virtue of (20), given by

(p) €, z/3
op ‘= 0.9102 B a cos 3 Jl((,l p/a)e , z.-0, (22)

whence the magnetic field of this mode along the axis of the

pipe 1s

N
)
e

B, = 0.838 B, exp({y z/a) , z<0 , (

where ( = 1.84118 ,
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IITI FIELD INSIDE AN UNFLANGED PIPE

An explicit solution may be exhlbited to the problem of a
perfectly conducting, seml-infinite, hollow circular cylinder
immersed in a static external magnetic field which is uniform and
perpendicular to the axis of the cylinder. T..e physlcal situation
is diagrammed in figure 2 where Bo represents the external
magnetic field.

The method of solution of this problem is based on the
Wiener-Hopf technique, and the only work which will be referred
to in the following exposition 1s the book by Nob1e3. The fol-
lowing two theorems from his book willl shorten the exposition
considerably:

Theorem A (Liouville's theorem)

Ir f(a) 1s an integral function such that |f(a)l < Mla]®
as o » » where M,p are constanis, then f(a) 1s a polynomial
of degree less than or equal to [p] where [p] 1s the integral
part of p

Theorem B

Let f(a) be regular and non-zerc in a strip r_ < 7T « 1_ ,
- - g < ® wWhere aq = o0 + 11 . Furthermore let f(a) » +1 as
o + o 1in the strip. Thenone can write f(a) = £, (a) f_(a)
where f+(a), £ (o) are regular, bounded, and non-zero in

T> T_s T < T, respectively. Moreoverone may write explicitly:

ic+e

j In f{o') da'

a'-a

1
In £,(a) =775
ic-w

1g+e
1 In f!a'! dg.!
2l | a'l-a

1d-w

In f_(a)



where c¢,d are any numbers such that 7_<c¢ <7 <d<r7T

The solution of the particular problem posed above will be
obtained, for convergence reasons, from that of the corresponding
scalar wave problem in which the medium has a slight loss, 1.e.,
the potential o in

_B_ = V(p (21"l)
will be obtained from m;ocal where
total ikx -
tpk = cpk + e (45)
and
(v2 + k%)o, = O Im ! :
<" o = 0, Im k > O (26)
with
A total
"k
Ty =0 for p=a, z<0 (27}

S'nce ¢ must vary as cos ¢ from the symmetry of the problem, one

”ﬁOtal

will first identify the corresponding term in and then

take the limit k-0 to obtain = , i.e.,

~(n,z,¢) = B, cos ¢ le T— [— J -“Otal(p,z,g') cos ¢! dﬁ'] . (28)

The scalar wave problem is an extension of work presented by
Noble in Section 3.4. Defining

© 2n
$(0,a,n) = 1 r7 cpk(o,z,'ﬁ) o ino eiaz a6 dz (20)
® 0
one can easily obtain from (26)
*(rya,m) = A (e) K (vr) -z a
= B (a) (va) 0< 4, < a (=0)

10
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where In and Kn are modified Bessel functions of order n
while

Y=»\/a.2"k2.

The cuts are shown 1in figure 3 and the brancl! i1s chosen in such =a
way that for o =0, y = -ik

Now write

@ 2m
§+(a+o,a,n) -1 jelaz J cpk(a+0,z,¢)ein¢ do¢ dz
2m o o
o) 2n
3 (a+0,a,n) = L Ieiaz I q;k(a+0,z,¢)e1n¢ de dz
S .

with similar obvious definitions for & (a-0O,a,n) and &_(a-0,a,n)
Further, introduce

*® i
3
3' (a,a,n) = —— o102 ]' X eI 54 g (31)
+ 5 J . 3p
T oo o
with another obvious definition for @'(a,a,n) . Then it may

readily be shown, from the natire of wk(p,z,¢) and the theory
of Fourier integrals, that ¢+(a+0,a,n) s é+(a—0,a,n) and
éi(a,a,n) are regular in the upper half plane Im a > -Im ¥ ,
while ¢ (a+0O,a,n) , & (a-0,a,n) and @l(a,a,n) are regular

in the lower half plane Im a <« Im k

Employing the above notation and invoking the boundary
condiltion (27) one may write

-



¢, (a+0,a,n) + &_(a.0,a,n) = A (a) K (va)

§+(a—0,a,n) + @_(a-O,a,n) Bn(a,) In(ya)

8/ (a,a,n) + 3 (a,a,n) = vA (a) K (va) = yB (a) I;(va). (32)

By algebraic manipulation of egeation (32) it is easily shown
that, by defining

D_(O-:n) = é_(aJ'OJC.Jn) = ‘1)_ (a’O,a,n>
D_(a,n) = —g—rt—r re. (a,a,n) + ¢ (a,a,n)] , (33)
v“al (va)K (va)
where
, kJ (ka)
¢ (a,a,n) = (-1)"1 f_'———-—— .

The latter expression is obtained from equations (25) and (27)
and the definition of é:(a,a,n) analogous to equation (31).

Now the Wiener—Hopf technique 1s employed. That is to say,
equatlon (33) is rewritten in a form such that the left hand
side of the equation is regular in the upper half a-plane while
the right hand slde is regular in the lower half a-plane., When
this 1s done it 1s found that both sides approach zeroc as g = ©
3ince the rewritten equation is trve everywhere in the strip
-Imk < a < O, 1t is clear, from complex variable theory, that
both sides define the same function of aq in the whole plane.
r'rom Theorem A, and the asymptotic behavior, this function Iis
identically zero. In thils manner one finds that

~-2i(-1 n '\fé—‘; J1 (ka) _
D_(e,n) = 3 Cy (GK)aK (0,n) - (2%)
12

24




where K+(a,n) and X_(a,n) are given by

o+ic

1 1 1 t
In[-2K (y a)I_(y a)
+1 : n n >
in Ki(a,n) = 51 J - T o do'! , Ima < c
-otlc
which are obtailned from Theorem B by setting
1 !
f(a) = K(a,n) = -2 (ya) Ip(va)
Now from equations (25), (22) and (30) one has
- o+ib
total 1kx 1 -ing -iaz
o (0,2,8)=e" s I e ® I e B (a) I,(y2)do
(21)* “n=-= -o+1b

(25)
for -ImMmk<b <O and 0O s p s a
Elimination of Bn from this equation 1n favor of D_ by means
of equations (22) and (22) gives

o+ib
total 1 1 S -ina -1 '
0,02 (o,z,os)=e1“‘+(—2W§ p e [ em20% k! (va)D(o,n)I, (v )a
m)T Tn=-e ~or1b

(26)

Substituting (3%) into (26) and then into (28) one finds
that the potential o of the magneto-static problem is glven by

o+ib .

J (k ) + -igz !

_ 2 cos o e YK (ya)I1 (yn)

= Box- = MMy K 0,17 | a(a-k) K_la,1) 9o
lwtib

o+1ib

1 1 el”ZYT-l(YP)K‘a,l)
kKa K, (0,1) 2n1 o (am k)I (va)

(37)

= B X + Boa cos & Lim
k-0

-o4+1b

1 1
where K _(a,1) K_(a,l) = -2K1(ya) Il(ya) has been used.

[
(0



In evaluating equation (37) it is expedient to state three racts
wilthout proof. The demonsiration ol their validity is quite
straightforward but unilluminating.

(1). £,(0,1) = /K(0,T)

(ii). For 2z <« O one may close the contour »f ine integral
in equation (37) by a large semicircle in the upper
half-plane. The only singularities oi’ the integrand
in this half-planc are poles at 0 and the zeros of
1 (va) .

(113 ). The contribution of the vole at « 0O in the
Integral (27) just cancels the potential of the
external field, the term given by Box

Il

Using all these facts in evaluating equation (27) and going
to the 1limit k + O of equation (2&) one obtains for ihe d.slired

potential function

-1 , Crz/a s
v(p,z,8) = Bja cos 8 £ C,(."J (¢ p/a)e , 2 <O (7&)
r
where the sum ls over all gés
In equation (38) €, 1s given by
[g] R | H
1 Lgr [ ln[—Zhl(X)Il(X)] . )
C = - = exp| — = x] . ("
r Jl(grf -1 .o X2 ; C,;

Equation (239) may be evaluated nunerically, the result for thre

cocfficient of the first mode beling

Cl = 2.245

Henece, the magnetic field of the flrst moue along the axis o
the pine i3 given by

; = 1 =/ T - LD
B = 1.12 By exp(gl z/a) , ot 0 (Lo)

where (; = 1.84118




IV FIELD INSIDE A FLANGED CTRCULAR PIPE WITH A RESISTIVE CAP

In this section the effect of a resistive cap on the slowly
time-varylng magnetic field leaking into a circular pipe with a
perfectly conducting flange 1s calculated. The grcometry of the

<

problem 1s shown in figure 4.

The first step 1n the solution of the problem 1s to derive &
set of boundary conditilons for ®r and ©r at the cap
(z =0, p <a), by treating the thickness d of the cap as
vanishlngly small and the product od as finite, o being the
conductivity of the cap. In addition, the cap 1s taken to be
non-magnetic and 1ts skin depth 1s assumed much larger than d .
Under these conditions the tangential component of the eleciric
field (or, equivalently, the normal componcnt of the magnetic
field) does not vary appreclably through the thickness of the cap.
On the other hand, the tangential component of the magnetic field
is discontinucus through the cap due to the presence of a curren:

sheet. To find such a discontinuity one integrates the equation

v X B = 0E (41)

through the cap és indicated in figure 4, My being the free-

space permeability. By means of Stoke's theorem one obtains

BII,X - BI,x

n,od E (Loa)

y 2

Bri,y ~ Br,y

-H,0d E . (4ci)

Differentiating (42a) with respect to x and (42b) with respec:.
to y and then adding the resulting equaticns onc has



- B

%i LBII.x - BI:x] E %§ [BII.y T.y.
- oo (5 - 57 | (20
= lwu od By , (L3b)
= lwn od BII,z {(U4zc)
The last two stens follow from the equation
v X E = iwB (L)

and the contlnuity of the normsl comvonent of B . Here and
henceforth the tlime harmonic factor exp(-iwt) 1s suppressed
throughout all discussions. Since B = Ve , equations (43) yield

the following boundary conditions for o when 2z = O. p < a

.EEE — éfil —_ 99 /b:a)
oz dz z V-
2 2
o .12 1 3" - = i 99 L)
(2 - adn T 2><‘*’II pp = leagjod 5 (h5L)

Since w©p # ¢yp 2@t the mouth of the oive. the Integral
eqration will differ from the one given by equation (13) where
the resistive cap 1s absent. Subtracting equation (6) from
equation (11) and making use of (4ba) one cets

2m a
e - oY (éﬂ_. G (n t 0 d-é') 1dn' dat
\TT "1 ¢ v \dzf, TN N
(o] o]
2m 2
> s 1 1 a1
= Hon cos & - %n' j J \’%‘/ e 2R for z=0. n -
o o NG ~2nn' COS((’)-G)') (o0

16
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where Gy 1s given by equation (7).

Equations (45b) and (46) constitute a coupled set of
integro-differentisl equatlons for the present problem. First
solve equation (£5b) for 9rp - ©; when 3¢/dz 1s gilven by

é‘g = ! - < l
S; = B, cos ¢ g Cq Jl(gs p‘a) , for z =0, p <8 . (47)

It is easily found that the solution of (45b) 1is given by

oy - @1 = iw_uooda2 B, cos ¢ L S% Jl((_',s p’a) , (ne)
s Gg
which satisfies the conditlon of regularity at n = O and the
boundary condition 3(@ry - or)/dn = O at a =3 . Substituting
(47) and (48) into (4#6) and following the same procedure as in
Section 1II one finds that the C;s satisfy the following matrix
equation
2

(-1 iwu oda BT [J (n)’ -
F*r ]
Crl5 3\t - ) * f ‘‘‘‘ 2'—2‘*” dv |
2 o}
JE(gr) £ C Jl(cs) ° Ue[Ji<U)]2 g (11(‘)
- e— e —. - . .. —_ — u . O
¢ [3,(c )% sdr 3 T1(E) 0 (2 2) (2 2)

Solving equation (49) one finds that (see appendix) if the
couplings of C1 with all the other C's are neglected. ¢
is given by

1.64 ‘ . :
C, = v 0.338 e (no coupling) . (v0)

17



and that if only the coupling between C1 and Cg is taken
into account, C1 1s given by

_ 1,6769 _ 0.0011 ~ /coupling between\ (51)
17 1T -1 0.3392 ww, T - 1 0,0098 w/wy \lst and 2nd mode, -

which, upon combining the two fractions togpether, becomes, to a
very good accuracy, the following simpler form:

_ 1,6758
C1 = T=10.300 ooy (52)

In equations (50), (51) and (52), w;l = (uoa)(od) . Comparison

of equations (50) and (51) shows that the effect of the coupling

of the second mode, and perhaps ol all other hizher modes, on the
first mode, is indeed negligibly small. From equations (21) and

(52) one can easily find that the magnetic field of the fir:st

mode along the axis of the pipe 1s given by

0.838 B, exp({y z/sa) z <0, (53)

Bx = T-10.3%9 o/, "o

where (q = 1.84118 .

18
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V FIELD INSIDE A FLANGED PIPE WITH A SLOTTED CAP

This section 1s devoted to the calculation of the magnetic
field leaking into a flanged plpe through an annular slot at the
top of the pipe. The cylindrical wall, the flange, and the
slotted cap are all perfectly conducting and hence the normal
component of the magnetic field vanishes there. The geometry of
the problem is depicted in figure 5.

The 1integral equatlon for the normal component of the
magnetic field 23¢/32z 1in the slot is similar to the one given
by equation (13) except that now the limits of the p'-integration
vary from ¢ to b , It 1is glven by

2n b
/ \
BO cos o = J I %;L‘)[GI(I,,D' ’o:¢-¢' )+ GII(Dap' ,O,¢-¢' )]P'db'd¢'
(o] (o4

for csp<b, (54)

where G; and G;; are respectively given by (7) and (10).

When one attempts to solve equation (54) a serious difficulty
which he wlll encounter 1s that GI and GII have seemingly
different forms. For the case of a narrow slot GII can be
approximated as a logarlithmic kernel which 1s well known in the
theory of integral equations. However, GI as given by
equation (7) does not seem to reduce to any familiar kernels even
in the case of a narrow slot. Thus the first logical step in
solving (54) is to find a desirable representation for Gy
rather than that given by (7). To achieve this end one solves
equation (3) anew, keeping in mind that the inverse distance can
be expressed in terms of modifled Bessel's functions as followsu

19



1 1
yie
J(x-x1)% + (y-y')2 + (z-2')°

2
2112 m

[

0(2-6;) cos m(g=-a") I Km(ko)Im(kn') cos '(z-z')dk ,
o

(S
\n

o> o' . (

If p < p' interchange p and p' in (55). Solving equation
(3) one easily obtains

B 1 -1
GI = + e

b J(x-x7)° & (y=3')% + (2-2')°  dr J(x-x' P (y-y')° ¢ (zs2?)?

T K!(ka)I (kp)I_(ko) -
1 oy o} Km( Im P/ m
- —= T (2-% )cos(¢-¢')r - fcoskﬁz+z')+coslc&-z') dk
0n° =0 M ) I, (ka) J
N I |
The first two terms combine to give G as given by (10).

1T

Insert (56) in (54) and set 23o/23z' = B, cos ¢! rlp') ,
p=ax , a' = ax' . Then equation (54) reduces to the'following

dimensionless form

b/a
X = f £(x') x'(K(x,x') + % Kc(x,x')de‘ B (57)
c/a
where
2
K(x,x') = 267y (x,x") =% ) cos ¢ d8 : (-&)
o ng - x'2 - 2xx' cos §

st
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o 1 1
Ko(Z) I,0x') I,(0x)
Ky (%) = -[ 22— ar . (59)
¢ . (0)
o) 1
K is always posltive for real and positive x and x' . 1In

c
the case of an annular slot in an Iinfinite plane the integral

equation for f(x) can be obtained from (57) by setting
K = 0 . Thus, Kc accounts for the effect of the cylindrical

c
wall on the aperture field.

In the followlng consider only the case where the annular
slot 1s narrow, 1.e., A = (b-c)/a << 1 . Then the kernel K
takes a simpler form, as 1s shown below5:

2m n/2 5 o
K(x,x") =_% I cos 6 dé6 - 2 I sin"¢~cos ¢ do
o Jx2+x'2—2xx' cos 6 o J(x+x')2—4xx' singm
/2 2 2
_ 4 J sin“gp-cos g do 12 - Yyx?
T T (xx') — ’ . 1 1\2
o Jl—k2 sinzm (" )
+x1 2
= X5 [(2-}: )K—EE] , (60)
where K and E are complete elliptic integrals of the first
and second kind. For |x-x'] << 1 , equation (6C) has the
followlng approximate form5:
K(x,x') z'éé [1n 8x - 2 - 1n|x—x'|] B (61)
X

where X 1s the arithmetic mean of b/a and c¢/a . Kc(x,x')

1s well behaved for O < (x,x!') = 1-e(e > O0) and becomes
logarithmlically singular only at x = x' = 1 . Thus, when the



distance of the slot from the cylindrical wall is at least of the
order of the slot's width and |[x-x'| << 1, K, can be taken

out of the integral sign in (57) and replaced by

©

_ K (3)L1, (0%)1°
K (x,x1) ~ Ky (%,%) = - 0
[o]

. 6
Ii(l) ax (62)

For a given value of X equation (62) will be evaluated

numerically.

Substitution of (61) and (62) into the integral equation (57)

gives

b/a
X £(x!') In|x-x! [ax!
c/a
b/a
—[In8 - 2+ % Kc(i,i)jj £(xt)axt - 5 x . (6%)
c/a
Let
X = X + % u, x! = X + % ut, (x + % ut) = F(ur) .
Theri equation (63) becomes
1
J F(u') Inju-u!|du?
~1
— 1 —
= [1n -1§X -2 + X K.] J Flat )dut - ﬂAi‘ - 121 w o, (&h)
-1
-1

The last term on the right-hand side is small compared to 2
and can therefore be neglected., The remaining integral equation

has the solution1

22




_ _ 1
F(u) = —t _[mx (1n-1—i-’—c -2+ X Kc) ul‘ F(u')dur]. (65)

5 A
mln2 /1-u -1

Integrating thls equatlion from -1 to 1 and sulving the resulting
equation one obtalns

1
I F(u)auw = F L . (66 )
-1 5 1n 2 -2 - ln A+ In X + X K
One can now proceed to evaluate the coefficlents Cr which
appear in equation (21). It 1s easily seen that
: 2y ]}/a £(x1) 7y (C i Jxrax:
X x!)xtdx
r 1‘®r
(C 1)[J (Q )] c/a
C2 1
T 5 % J3(¢%) & [ Fluawr .
(Cr—l)[Jl(gr)j -1
Upon subétituting (66) into this equation it gilves
2
g J (Q X)
Cp = ) = T e . (67)

r (gi—l)[Jl(Cr)jg 51n 2 - 2 = In A+ 1n %+ % K, (x)

Equation (67) for C.. 1s accurate up to the order of a/(1-x) ,
l.e., the ratio of the slot'!'s wldth to 1ts distance from the
pipetls wall,

Two numerical examples are now consldered in order.



Example 1:

For AT = 2304 and % = 0.9 ,

it is found that
K, (X) = 1.1343 by numerically evaluating (62). Then equation
(67) gives Cy = 0.6051 from which one obtains the magnetic

field of the first mode along the axls of the pipe

cc be
B, = 0.303 B, exp(gl z/a) , z <0, (68)
Example 2:
For 470 = 2304

and X = 71/72 , equation (62) gives

X, = 2.091 and equation (67) gives c, = 0.6698 , 1In this case

the magnetic field of the first mode along the axis of the pipe
is given by

B, = 0.335 B, exp({; z/a) , z <0 (69)

where (, = 1.84118 ,

The results gilven by equations (68) and (69) are accurate within

1%.

24




@

VI CONCLUDING REMARKS

The results of thls report can be s'mmarized in the
following chart:

The magnetlc field of the first mode along the axis of
the pipe 1is given by

¢y

B, = 5 B exp (¢, z/a) , z <0,

where () = 1.84118 , B, = external field , a = pipe

radius.
Perfectly condicting, seml-infinite pipe Cl/g

1. wlth a perfectly conducting flange 0.838

2. without a flange 1.120

3 with a perfectly conducting flange 0.838

: _ and a resistive cap 1-10.349 w7wo

wlth perfectly conducting flange and cap a) 0.203

L, having a slot of width a/2304 at a distance gbg 0'5?5

of (a) a/10 and (b) a/72 from the pipe's wall $ o
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It is not the purpose of these concluding remarks to discuss -t
the various mathematlical manipulations that were necessary to
produce the data exhibited in this table. Rather a few thoughts
of an intuitive nature will be offered which may help 1in inter-
preting the above results and in using them to get some rough
ideas of the behavior of similar physical system. .

A comparison of ltems 1 and 2 shows that the absence of a
perfectly conducting flange increases the coefficient by 34%.
This Increase may be ascribed to the fact that in the case of
an unflanged pipe the Incident field exlsts in the whole space,
whereas in the case of a flanged pipe the incident fleld below
the flange 1s almost annulled by the field of the flange
currents alone. This means that the pressure of the external
field in the former case pushes abovt twice as much energy as in
che latter case 1nto the viclnity of the end of the pipe. ‘liuls
1s equivalent to roughly L0% more field lines inslde the pipe 1n
the former case, In dealing with problems of thilis kind 1t is -’
often helpful to think of the analogous ones 1in potentilal flow.
When the flange 1s resistive the coefficlent should lie between
those in items 1 and 2 since the latter represent the two extreme
cases. It 1s expected that the effect of the absence of a flange
on the coefficients in items 3 and 4 would also be 30% or 40%.

The presence of a resistive cap not only decreases the field
strength inside the pipe but also introduces a phase shift, as
can be seen by comparing items 1 and 3 in the chart. The decrease
in field strength is clearly due to the fact that the slowly time-
varying 1lncident fileld induces in the cap conductlon currents
which cancel part of the magnetic field 1Inside the plpe. The
dependence of the coefficlilent on frequency, as gilven 1n item 3,
1s well known 1n low-frequency shielding problems. The physilcs
of thils behavior can be more easily understood 1In the time
domain. To 1llustrate this point conslder a step functlion in-
cldent pulse. According to Lenz!s law, currents will initially —_—
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be set up in the cap to render the fleld zeroc inside the pilpe.
These currents wlll gradually dlssipate due to the finlte resist-
ance of the cap and as they decay the field will slowly approach
the value that 1t would have 1f the cap were not present. ' Thils
gradual growth of the Interior fleld resembles the gradual trans-
fer of the current of a current source from « reslstance to a
parallel inductance. Thls circult is well known to have a
frequency behavlor similar to that glven by the coefficlent in
item 3.

The results in item 4 are indeed startling when compared
with the one in 1tem 1. The comparison shows that a perfectly
conducting cap with an annular slot, even though the slot is
extremely narrow, seems to have not much effectiveness 1n shileld-
1ng against the external magnetlc fleld. This strange behavior
becomes comprehensible when one thinks 1n terms of the current
flow on the flange and cap. Since the annular slot 1solates part
off the cap the currents there must flow 1in closed loops. This
means that by cutting the annular slot 1n the infinlte plane on
which the currents would be uniform in directlon and magnitude i1n
order to annul the external fleld below the plane, the current
flow wlll be greatly disturbed, especlally on the disc. In fact
the currents at both edges of the slot are flowlng 1n opposlte
dlrectlons and thus they enhance the normal component of magnetic
field In the slot. For a narrow slot the integral of this com-
ponent of the fleld 1s dilrectly proportlonal to the coefflcient
of each mode inside the plpe. As the slot gets narrower and
narrower the disturbed currents will be conflned in a smaller
and smaller area around elther side of the slot and, consequently,
only in the slot's immediate neighborhood willl a large fleld
appear. Eventually the fleld below the cap goes to zero wlth the
slot!s wldth.

27



ACKNOWLEDGMENT

This work was sponsored by the Air Force Weapons
Laboratory and partially funded by the Defense Atomic Suvport
Agency. The authors also wish to thank Professor C. H. Panas
of the California Institute of Technology and Captain C. E. Baum
of the Air Force Weapons Laboratory for their interest and help-
ful discussions durlng the course of this work.

26




/

///



FIGURE 2.

o - PLANE

FIGURE 3.

30

\4




&S
Z|Iﬁrﬂ.|

.- @)

////

|||I|I Q —_—— — —

///r

—




APPENDIX et

This appendix is devoted to the solution of equations (18)
and (M9). Particular attention will be directed to the evalua-
tion of the integrals which .occur 1n those equations.

First 1t 1s noted that because of the identity,

2
(T5-

2 [-<)
1 X
X =17 j FI-ING)
5 (x7-¢2)

T x0T (x)]
R 2 2,2
: -C5)

2 2
2JOJ2+J2)

dx , (A-1)

part of the problem can be reduced to the evaluation of several

integrals of the form

@ 2

x° I (x) J_(x)
I(m,n,k) = | so— dx , (a-2)
(x +k<)
o)
where m,n are even integers and k 1s a complex number.
Stbstituting6
T (x) 3, (x) = oar | D (-s)T (men2sel) ()™ 7128
m n 2ml T(m+SL1}FTm+s%1)F(m+n+s+1)
_M_im
2
into (A—2) and interchanging the order of integratlon one obtzins,
after carrying out the integration with respect to x ,
1 .
-R m+n -1
1 L n2s-1 (s + )T (min-2s+1)T(-5s)
I(m,ni)=gr | £ B T
! T(m¢s+1)T(n:541)T(m+n+°+1)008n(s+—:—)
_min g, z
2
(£-2)
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Thilis integral can be evaluated by the method of resildues by
closing the contour in the right half s-plane. The singularities
inside the contour come from the poles of T(-s) and the zeros

of cos n(s + E%E . Thus, 1t is found that

I(m,n,k) = F(m,n,k)

: )1“;52 o= <k>m+n+2q (q+1 + I_nl‘;-r—])1‘(m+n+2q+2) (nb)
- (-1 5 £ A , A-
I _ m+n 2 T(q+§)r(q+m+§)r(q+n+§)r(q+m+n+§)
where
E%E o ® pmtn+2p-l (p + m+2+1)r(m+n+2p+l)
Plmnk) = (1) 5 2 (3)  r(pen)re(pmme )T 5T (e )

p=0

The integral (A-1) is now given by

® %715 (x)1° ) . )
I 22 dx = g 1(0,0,1¢ ;) - 5 1(0,2,1¢, )+ 3 T(2,2,1¢.) . (5-5)
o r

It can be shown that, F(0,0,igr)— 2F(o,2,1gr)+ F(2,2,1gr) =0

by making use of the fact that Ji(gr) = 0 . Hence, one ocobtains
from (A-4) and (A-5)

x2L3, (x)1° = ¢ 29
J S dx = E (-1)3F Aq<7§> , (1-6)
S (x5-¢2) q=0
where
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_m (g¥1)r(2q9+2) 2g+1 2q-+1 ) (2q-1
fa 718 T Ty - )7 RS R

A, = 3.678249 x 1071
Ay = 1.362429 Ag = 4.787085 x 1077
Ay = 1.308725 Aig = 1.84994L x 10”8
Ay = 5.54321k x 1071 Ay = 5.920465 x 10710
A, = 1.319129 x 107t A, = 1.595076 x 107+
Ag = 2.01258) x 107° Ay 5 = 3.642798 x 10713
Ag = 2.138086 x 1073 Ayy = 7.283233 x 10715
Ay = 1.673561 x 1074 Ay — 1.261560 x 10715
Ag = 1.005684 x 1072 Ay = 1.833897 x 10718
For ¢, = 1.84118 equation (A-6) gives
PESEMCIE
f ———5—— dx = 0.115875 . (A-T)
o (X -gl)
For (, = 5.33144 equation (4-6) glves
- Xg[Ji(X)]E
J_—é~2—2— dx = 0.084680 . (A—8)
0 (X —€2>
Following the same procedure as above one finds
=0T, (x)12 - A€ 2q
1 +1 /°r
I(¢) = | ——5— ax = © (-1)3* 4 (°r (8-9)
=7 Xz_gg o SESERN :)
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from which one can evaluate

[¢2 1(g,) - ¢&1(e )1 . (a-10)

- xz[Ji(X)]2
dx =

£ x2-¢2) (x°-c%) e-¢

B

In particular, for gl = 1.84118 and g2 = 5.33144 |

o o

x°[J, (x)]
j 5 [21 5= dx = -1.63200 x 1072
5 (xT-¢7) (x"-¢3)

(A-11)

After obtaining the values ¢l the above integrals one can
now go on to evaluate the matrix equation (78) of Section II
whlch can be re-written as

, Mrs D = T3 (a-12)

where D, = C, Jl(gr) . Keeping only D; and D, in (A-12) one

has
3.0733 D1 - 0.1632 D2 = 2.9490

-0.1632 Dy + 1.7516 D, = 0.3533 . (p-13)

Solution of equation (A-13) gives

D, = 0.99363 , D, = 0.2911 ,
whence
Cy = 1.6758 , ' (coupling between \
the 1lst and 2nd mode
Cp = -0.8410 . (n-1L)



If the coupling between C1 and 02 were neglected, there

would result

Cq = 1.6401 (no coupling) . (A-15)

Now matrix equation (49) of Section IV will be solved.

Keeping only the first two elements one has
(3.0733 - 1 1.0k w/w_) C; + 0.0971 C, = 5.0680
O.27h4 ¢, + (1.7516 - 1 0.017 w/wo) C, = -1.0207 . (A-16)

where, as in Section IV, m;1 = (uoa)(od) . Solution of equation

(A-16) gives

o, - 1.6769 _ 0.0011 (coupling between \
1 -~ 1-10.3392 u)/wO 1-10.0098 w/@g the 1st and 2nd mode ' (A-17)

If the coupling between Cl and 02 1s neglected, there results

1.649

Ci =173 733% o (no coupling) (A-18)
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