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Kaden's quasistatic analysis ;f a circular aperture in a conducting
plane is reviewed and the field components of interest are obtained. The
numerical results of Kaden's theory are gorrelated with the experimental
data obtained for an interior field component within an open-ended, long
cylinder with circular cross-section and with a circular aperture on the
lateral surface. The single aperture numerical results ocbtained from
Kaden's theory incorporate more terms in the series solution than the
results obtained in an earlier note.z.Quasistatic analysis of multi-aperture
problems is discussed and the approximation of linear superposition of inde-
pendent solutions for a double aperture problem is made and numerical
results obtained. These numerical results are correlated with experimental

data obtained for an interior field component due to two circular apertures

on the lateral surface of a cylinder.



I. SINGLE APERTURE THEORY

Consider a plane shield of infinite extent which is vanishingly thin
and of infinite conductivity with a circular aperture of radius f; .
We employ spherical coordinates r,e,e with an origin located at the
center of the aperture. In the upper space, & )'ﬂ}ﬂ; , we consider a
magnetic field of strength /12 oriented parallel to the plane of the

shield as shown below in Figure (1):
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The problem then is to calculate the magnetic field in the lower half-
space, @>mw/a - Kaden has solved this problem in the manner indicated
below.

In the quasistatic or long wavelength approximation, the magnetic
field can be derived ffom a magnetic scaler potential.

We have then
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The boundary conditions for the problem are given by
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In the upper half-space, ©<77/2 , a solution is
form given by

assumed of the
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and in the lower half-space, g 711/2
form given by

, a solution is assumed of the
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r>r ,.Tr/2<e< .

Using the boundary conditions, Kaden evaluates the constant

A
the calculation of which will not be repeated here, for the upper and lower
half-spaces and for the "hole-sphere' region in which

potential solutions are found to be:
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In shielding theory we are primarily interested in the fields that

penetrate the shield under 'consideration. Thus our interest lies in the

IR

"hole-sphere" region and lower-half space region in which we desire the
magnetic field components. Secondly, most practical considerations of
interest, in w'hich the quasistatic approximation can be applied, are
concerned with aperture radii which are smaller than field point distances
where fields are to be calculated. In essence, then, we restrict our
attention to the potential and field solutions in the lower-half spaces
for which r>r, and 7/2<O<TT and for which equation (9) gives the
magnetic scalar potential solution.

The desired field components in the region of interest are found to be
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where (11) has been evaluated using formula 8.5.4 in the NBS Handbook of

Mathematical Functioms. The first few terms for each of the above field

components become:
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In the experiments to be discussed, it is experimentally advantageous

to measure Cartesian components of the magnetic field. To obtain the

Cartesian components of the magnetic field we first express the Cartesian

unit vectors in terms of the spherical unit vectors so that
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and thus obtain directly
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After a little algebra given in the Appendix to this paper, the
Cartesian components are found to be
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The first few terms for each Cartesian component of the field are found

to be, ";\:
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II. SINGLE APERTURE EXPERIMENT - f{z

To verify Kaden's theory for a circular aperture we consider an

experiment involving transient magnetic fields. A transient magnetic

field is generated inside a solenoid, or coil, by feeding the solenoid
with a current pulse supplied by a capacitive discharge system. The
resulting axial magnetic field within the solenoid is relatively uniform
and small test items within the solenoid are exposed to the axial field.
Since any quasistatic approxima:ion'for shielding problems places wave-
length restrictions on electromagnetic fields, we must first investigate
the frequency content of the transient magnetic field within the solenoid
discussed above.

Desired magnetic fields measured within a solenoid at the ERDL

Experimental Facility correspond to a critically damped case with
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amplitude A and rise time ¢ as indicated in Figure (2):

S
FIGURE (2) /,/ /_\

Analytically, then, the field can be approximated by the expression:

—-—aT
28)  Hrt)=ptE

where @ and o( -can be expressed in terms of the amplitude and rise
time of the pulse. The critically damped case was implemented to obtain
a magnetic field with the fastest rise time possible and yet with a
reasonably large amplitude to facilitate measurement. The fastest rise
time possible was used so that higher frequency components would be
present to test the validity of the quasistatic approximation.

Setting the time derivative of ft(“f) evaluated at = ¢ ,
equal to zero we obtain

X =

£
t
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Similarly, setting /9 (4} equal to A, we have

F= s
so that (28) becomes
_t/t
(29) H ¢) = Afte

To obtain the frequency spectrum of the field, we take Laplace trans-~

forms of (29) so that
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Using Ss=(w , we have directly
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so that the normalized frequency spectrum is found from
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Equation (32) is plotted in Figure (3).
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From Figure (1), we note

1L Hoal = 0./ i

Ae

otk

N

wt =3

.s0 that the frequency spectrum of the solenoidal field is down 20 db at

a value of

(33) W= 3/4

For a rise time of 4 =/5‘ seconds, the frequency spectrum of the field

is thus down 20 db at an angular frequency of three megacycles or

~500kc. The corresponding wavelength at this frequency is about 600
meters and is necessarily longer for lower frequencies where most of the
spectral energy occurs. With the characteristics of the main solenoid
field specified, we now consider a particular experiment.

The most convenient geometry to employ for experiments within the
solenoid are long hollow circular cylinders with open ends. The cylinders
for the experiment discussed here are made of aluminum with an outside
diameter of 33 centimeters. The thickness of the aluminum shell is
approximately 3/16 of an inch so that diffusion fields within the cylinder

due to wall penetration of the external or main solenoid field are orders
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of magnitude smaller than internal fields due to the penetration of the
solenoid field through the aperture considered. The aperture introduced

on the lateral surface of the cylinder is circular and of 10 centimeters

in diameter.

The geometry and coordinates for the experiment performed are

indicated below in Figure (4):

— N1
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Z.o= RALIUS OF LYLINDER

AXIS QF CYLINDER

FIGURE (4)

17

- __g—ﬂXlS



Time history measurements were made of the Hz(F)-t) field inside the

we g

cylinder at points along the axis of the cylinder. As nearly as the

oscillograms can be compared, the time history of the Hz {F) t)

measurements is the same as the time history for the external field,
H. (¢) , produced by the solenoid in the absence of the cylinder

with an aperture. Magnitude scaling of interior fields is now considered.

III. CORRELATION FOR A SINGLE APERTURE.

To compare Kaden's quasistatic theory with the results obtained in
the previously described experiment for /H (~¢) , it is convenient to
z' )
express equation (27) in terms of Cartesian coordinates, noting that

values of Hz for positions along the axis of the cylinder correspond

to Xx=op where @=%X1/3 for y>o or %<o , respectively. Also
for positions along the axis of the cylinder, the coordinate 2z is

fixed at E== . We have then,

r= VR

6= - fa.n-l(‘i—, )

(-}

CP=I7T/2 FOR g)c, CR <O
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so that equation (27) becomes for @ =+TW/2 and 'j>°
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In numerical evaluation only the terms indicated in (34) are used in

NP

that the series converges rapidly for t = ,/zz+gi ’r
(=4
The experimental results and theoretical values obtained from

equation (34) are given in Figure (5). Only yro is shown in the

figure, however, equation (27) yields directly ’
() - [t
H H,
P= g p=+I
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for y<o and the experimental results also exhibit this odd symmetry
in ¢ . The results in Figure (5) represent the sealing of the
interior field at any particular point in time for which Fg(t) and thus
f#z(F{tj have values, however, fhe experimental values shown are for
the peak fiz{Fft’ values and peak Ft(t) value. Peak values of the
experimental results were used simply because these values can be read

more accurately from the oscillograms than other values.
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IV. MULTIPLE APERTURES AND LINEAR SUPERPOSITION

We again consider an infinitely conducting plane of infinite
extent with a vanishingly small thickness in which several circular
apertures are located. The apertures need not be of the same radius,
but each aperture's diameter must be small compared to wavelengths
present in the external field. If we assume proximity effects are
minimal for long wavelengths and small apertures, the most straight-
forward approximation to the problem is that of superposition of the
individual aperture solutions. In Figure (6) below, we consider two

apertures and desire the magnetic field at a point P

- /'L(t)

b,

»

FIGURE (6)

In the above approximatiom, we take the field at the point P to be

the sum of the fields due to aperture #1 in the absence of #2 at 5:
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and due to aperture #2 in the absence of #1 at E . In this manner

any number of apertures can be treated approximately by superimposing the
individual solutions. To test the approximation we consider now a two
aperture experiment and the correlation of experimental and theoretical

results.

V. TWO APERTURE EXPERIMENT AND CORRELATION FOR M=

The external field illustrated in Figure (2) and given by equation
(29) was employed again in the two aperture experiment. Also the geometry
employed was the ﬁ' meter diameter aluminum cylinder used previously with
a wall thickness of about Z% inch. Two circular apertures both of 10
centimeter diameter were introduced on the lateral surface of the cyvlinder

with a center to center axial spacing of 25 centimeters. The geometry of

the experiment is illustrated below in Figure (7):
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Time history measurements were made of the h;(Flf) field inside
the cylinder at points along the axis of the cylinder. As in the one
aperture experiment, the time history of the /{Z(f;b) measurements
is the same as the time history for the external field, ﬁt(f} . We
now apply quasistatic theory and the superposition approximation to
obtain the field scaling. Applying equation (34) and the relation (35)
to both apertures, we obtain the results shown in Figure (8). Now,
choosing the intersection of the center line between the two apertures,
shown in the lower part of Figure (7), with the y‘ , and %2— axes as an
origin, the theoretical solutions can be added and plotted about this
origin. The theoretical and experimental values obtained are given in
Figure (9).

In conclusion, I would like to thank Mr. Ronald Bostak and Mr.
George Crowson for engineering support and the measurements taken in

the above considered experiments.
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QUASISTATIC MAGNETIC FIELD TRANSMISSION THROUGH CIRCULAR APERTURES
APPENDIX

" first for H

To obtain the Cartesian components of the magnetic field, we have
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and thus
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