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Internal Voltages and Currents in Complex Cables

E. F. Vance

Stanford Research Institute
Menlo Park, California

Abstract

Techniques for computing the internal currents and voltages in
cables having one or more shields when the outer shield is driven are
described. Computed results are given for an example cable for which

experimental data are available.



I INTRODUCTION

Analytical techniques for determining the current induced in long
conductors near the surface of the ground by surface fields have been
developed by Sundel* and Wait.? These techniques have been verified for
insulated and bare conductors in experiments conducted with a CW trans-
mitter, and computer programs have been developed to ca.culate the cur-
rents using a version of Sunde's theory.3’4 Until recently, however,
cable-current theory was limited to determining the total current in-
duced in a cable. Nevertheless, for many applications where shielded or
multiply shielded cables are used, it is important to know what voltages
and currents are induced in the signal-carrying core of the cable. The
purpose of this note is to describe one technique that has been developed

to compute these internal currents and voltages.

The technique described here combines the shielding theory of
Kaden® and the transmission-line theory of Sunde. Classical shielding
theory is used to determine the axial electric-field strength at the
inside surface of the shield from the current flowing in the shield.
This axial electric field is then used in the transmission-line equations
for a line with a distributed driver to compute the current in the core
and the core-to-shield voltage. (In the case of multiple shields,
multiple applications of these two steps are required to progress from

the outer shield through the inner shields to the core.)

In the following analysis, it is assumed that the shields are good
conductors (o >> we), that the diameter of the cable is small compared
to the shortest wavelength of interest, and that the current is uniformly
distributed over the circumference of the cable. It is also assumed
that the coupling between the core or inner shields and the outer shield
is loose, so that variations in the interior currents (due to differences
in the terminations or to standing waves on inner shields or core wires)
do not cause significant changes in the total cable current. This

restriction, although seemingly scevere, does not impose a significant

K
References are given at the end of this note.



limitation for most practical shielded-cable configurations, in which
over 90 percent of the total current flows in the cuter shield. Finally,
only solid shields of circular cross section are considered in this note.
The same general approach can be used for other types of shields (e.g.
braids) providing the transfer impedance for these shields can be

obtained.
II TRANSFER IMPEDANCE

All of the properties of cylindrical conductors that are important
in this analysis can be obtained from the analysis of a cylindrical
tube. We are concerned here with axially directed electric fields and
conductors that support only the TEM modes of propagation. We assume
that the conductor diameter is smaller than the smallest wavelength of
interest, and that radiation from the conductor can be neglected.
Considering first a tubular conductor driven at its outside surface, the

electric and magnetic fields in the conductor are obtained from
2 . . . .
v Ex = juulo + jwe) Ex s V X E = -juuH . N

Solution of these equations, subject to the conditions that Ex = EO at

the outside surface and H; = 0 at the inside surface, gives

&

ARECRIE ROREROR Hé )(p)

Ex=Eo—<‘fr—“* Ly @

(p)J() H (p )J(o)
and
OE,x (l)(p) IR H(l)(p)
H. = (3
N (1)(0 ) 3yoy) - Hél)( ) 3G, )
where
5 = Grpo) 172
p =-(1 - j) r/5, r = distance from axis of tube




(N

fo -1 - ro/éro = radius of ovutside surface

) -(1 - ri/éri radius of inside surface

1)
n
functions of the first kind, respectively, of order n.

i

and Jn(p) and H (p) are Bessel functions of the first kind and Hankel

The electric field on the inside surface of the tub~ may be obtained
directly from Eq. (2) by letting p = o4 It will be more useful in the
induced-current analysis, however, to determine the field inside the

tube in terms of the current in the tube. This current is

I = 2nry Hg(p) (4)
so that
(1) 1)
Ex(pi) 1-3 H/ (pi) Jo(pi) - H0 (p.l) Jl(pi) )
I =T 2rro6 | (D) (1)
0 H, (oi) Jl(oo) - HJ (po) Jl(pi)

It is noted that in the limit as p, — 0 and - 0 with p./p. constant
Py Po 0 Py ’

the ratio of the axial field to the total current approaches

2

ey S ol - S (6)
I ~ 2 mr o6 N2 2 B 2 2
dec 0 -(1 J)(IO 1i) Wq(ro ri)

which is recognized as the dc resistance per unit length of the tube.

For the high-frequency case (pi > 1, 0g > 1)
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If /r07ri ~ 1 and ry - r, = T, Eq. (7) is identical to the solution

obtained for a thin sheet of width 2ﬂr0.



For many cable configurations T/r0 << 1, and plane-wave theory is
applicable. Since the Bessel and Hankel functions of the cylindrical-
wave theory are more time-consuming to compute for large arguments, it
is convenient to use the plane-wave solutions when permissible. The

plane-wave theory gives

Ex(T) 1+ 3 1 (8)
1 ’“’2nroca inh [T

where

- . 1/2
F''= [Juulo + jwe) ] . (9)
A plot of the normalized transfer-impedance magnitude and its phase,
obtained from the plane-wave solution, is shown in Fig. 1. Also shown
in Fig. 1 are the high-frequency and low-frequency approximations to the

transfer impedance.
III TRANSMISSION LINE WITH DISTRIBUTED SOURCE

The analysis of the transmission line with a distributed driving
source is similar to that of the more conventional transmission line with
lumped sources, except for the source term. For the transmission line
with a distributed driving source -E per unit length, the voltage drop
is given by

dv

- - 17

ax E 1 (10)
where Z is the impedance per unit length of the line. The line current

is

-— = -VY (11)

where Y is the admittance per unit length of the line. (Formulas for
the impedance and admittance are given in the Appendix.) Differentiating
(11) and substituting in (10) gives the second-order differential equa-

tion for the current in the transmission line:
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— - yzl = -YE (12)
dx

[\V]

where yz = 2Y.

The solution of Eq. (12) for the current I is of the form

I = Kler + Kze—yx + F(x,w) (13)
where
F(x,w) = - 5%3 eY* f e Y Eax - & V¥ I eY* E dx] (14)
Z, = /z/r

and K1 and Kz are arbitrary constants.

Substituting (13) into (11) the line voltage is obtained:

royx —vx '
V = —ZOLKle - K,e + Fv(x,w)] (15)
where
1 | 3F (%, w)
Fv(x,w) = ; [;—E;L_g] . (16)

From Eqs. (13) through (16) and the boundary conditions (terminating
impedance) the constants Kl and K2 can be evaluated, and the line current
and voltage can then be evaluated from Egqs. (13) and (14). Thus for a
line extending from x = a to x = b and terminating in Za = ZaZO at x = a
and Zb = zbZ0 at x =D,

V(a) = ~I(a)2 V{b) = I(b)2Z (17)
a b




and

“Ybey _ - - oTva -
~ e (1 Zb)[Fv(a) zaF(a)] IS (1 + ”a)[Fv(b) + sz(b)]
K, = - 2 - -
1 ey(b—a)

: = (17)
A+z)0+z) - ;v(b-a) 2 )(1 - z)

eYb(l + zb)[Fv(a) - zaF(a)] - eYa(l - za)[Fv(b) + sz(b)]
- 2 .8 —_—— = . (18)

K, = - T e ==
e Yma) -
1+ Za)(l + zb) e (1 a)(l zb)

2= T yGe-a)

The form of F(x,w) given above is useful if the driving field
E(x,w) is of such a form that the indicated indefinite integrals can be
evaluated. Where numerical integration is necessary to evaluate the
integrals, however, it is more convenient to use the definite-integral
form

rb

Flx,w) = é—é—o- o oYIxv] E(v,w) dv . (19)

Iv IMPULSE RESPONSE

The response of the interior of the cable to a unit impulse of
'v current on the extcrior shield is of particular interest, since this
response gives an indication of the effectiveness of the shielding sys-
tem in preventing energy from being coupled into the interior. The unit

impulse propagating with velocity w/k on the outer shield is

I(x,t) = 8\:t - 1‘—") (20)

w
In the frequency domain, this propagating pulse is represented by

I(x,w) = RES . (21

Since the axial field inside the shield depends only on the local shield

current, this field is

j I
ECG,w) = Zy e (22)



where Z_ is the transfer impedance given in Eq. (8). The current in the

T
inner shield (or core) is thus given by Eq. (13), where

A3

jkx 8-
F(x,w) = - 5 2y z

23
-0 k2 + yz

T

Vv COMPUTED RESULTS (IMPULSE RESPONSE)

The techniques described in Secs. IT and III were used to compute
the properties of a doubly shielded cable having a 20-mil copper outer
shield, a 10-mil mild-steel inner shield, and a core comprised of 8
pairs of 16-gauge copper and 18 pairs of 19-gauge copper. A cable
length of 640 meters (2100 ft) was chosen, since this length of cable
had been used in experiments in which some of the computed properties
were measured. The cable shields were assumed to be shorted at the ends,
and the core-to-inner shield termination was assumed to be open-circuited.

Other properties of the cable are given in Table I.

Table 1
PROPERTIES OF EXAMPLE CABLE

Outer Inner
Characteristic Sheath Gap Sheath |  Gap Core
air, mild
Material copper | polyethylene steel polyethylene copper
Radius (cm) 2.2 - 1.5 - 1.0
Thickness (mils) 20 - 10 -
Conductivity™ 7 5 .
(mho/m) 4,7 x 10 0 7.5 x 10 0 5.8 x 10
Relative
Permeability 1.0 1.0 620 1.0 1.0
Dielectric
Constant 10 1.4 10 2 10

the fact that the outer sheath was corrugated.

The magnitudes of the transfer impedances computed from Eq.

shown in Fig., 2 for this cable.

%
The reduced conductivity of the outer sheath was used to accommodate

(8) are

As is apparent from Fig. 2, the corner
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frequency (3 dB point) for the 20-mil copper sheath is at 110 kHz, while
the corner frequency for the mild-steel inner sheath is at 4 kHz. Above
the corner frequencies the transfer impedances decrease exponentially,
and very little axial field is produced at the inside surface of the
shields by currents impressed on the shield. Below the corner frequency,
the transfer impedance is relatively independent of frequency, and the
axial field at the inside surface is essentially the same as the axial

field at the outside surface.

The response of the current in the inner shield to a unit impulse
current in the outer shield is given by the solid curve in Fig. 3. Note
that because of short-circuit termination between the inner and outer
shields, the current in the inner shield is a fixed fraction of the total
current at low frequencies, where the impedances of the copper and steel
sheaths are essentially the dc resistances of the shields. At approxi-
mately 500 Hz, however, the impedance of the steel sheath begins to
deviate significantly from the dc value because of skin effect in he
permeable steel. The fraction of the total current that flows in the
inner shield thereafter decreases with increasing frequency up to 200
kHz, where the first resonance effects are noted. The peak of the first
resonance is 40 dB below the low-frequency response, however, so that it
does not influence pulse shapes significantly for the cable length used
in this example. It is interesting to note that even in the low-
frequency region, the inner-sheath current is less than 6 percent of the
total current, so that the "loose-coupling' assumption is satisfactory.
As will be seen later, the current in the inner sheath is the same at
all points along the cable except at the high frequencies (above 100 kHz).
The dashed curve of Fig. 3 shows the current in the core when a unit
impulse of current is applied to the inner shield. To simplify this
calculation, the core was assumed to be a solid copper conductor of 1.0
cm radius. Because of the open-circuit termination between core and
shield, the core current is zero at the ends of the cable; hence the
core current shown in Fig. 3 was computed at the center of the cable
where the current is maximum. The line formed by the inner and outer

shields and that formed by the core and inner shield differ mainly in

10
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their terminations. The effect of the steel shield in limiting the
current at frequencies above 500 Hz in the line formed by the two shields

also causes a difference in the behavior of the 1lines.

Because of the open-circuit termination, the current in the core is
induced by capacitive coupling to the voltage generated in the inner
sheath. Hence at frequencies up to a few kHz, the current is directly
proportional to frequency. Above a few kHz, however, the shielding
effect of the inner sheath becomes significant and the driving field
inside the inner shield begins to decrease exponentially (see Fig. 2).

Thus the current spectrum in the core has a broad maximum at about 9 kHz,

The internal voltages, computed from Eq. (15), are shown in Fig. 4.
The shield-to-shield voltage is computed at the center of the cable
where this voltage is maximum, and the core-to-inner shield voltage is
computed at the end of the cable, where it is maximum. The same unit

impulse of driving current described above was used.

The core-shield voltage curve is very similar to the inner-shield

transfer impedance of Fig. 2 (except for some suppressed resonances

above 100 kHz). This follows from the fact that the core-shield line is
open-circuited at the ends, and the voltage drop along the core is insig-
nificant compared to the voltage generated along the inner sheath. Thus,
to a first approximation, the voltage appearing between the core and the
inner sheath at the end of the cable is the integrated axial field (along
the inner shield) from the midpoint of the cable to that end. For longer
cables, however, propagation effects may be significant, and cable

resonances may fall within the passband of the inner shield.

The low-frequency shield-to-shield voltage indicated by the solid
curve of Fig. 4 is produced by the current flowing through the inductive
reactance of the shield-to-shield transmission line short-circuited at
its ends. Thus this voltage is proportional to frequency in the low-
frequency portion of the spectrum where the driving field (transfer
impedance of Fig. 2) and line inductance are constant. Above 100 kHz,
the voltage is affected by the shielding of outer shield and by reso-

nances of the short-circuited shields.

12
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VI COMPUTED RESULTS (EXPERIMENTAL DRIVER)

Additional computations were also made with a specific driving
current in the outer shield. The driving current used for these compu-
tations was an analytic representation of the actual driving current used
in experiments on the 640m test cable.® Experimental data are therefore

available for comparison with these computed results.

The driving current in the outer shield was a pulse having a rise
time of approximately 150 ns followed by an exponential decay. The time
constant for the decay was approximately 150 ps. This current pulse is

represented by

I(t) =1 % - Pt

0 ) (24)

7
where IO = 700A, ¢ = 6670, and B = 1.3 X 10 . A plot of this pulse is

shown in Fig. 5.

In the frequency domain, the pulse is represented by

1 1
I =1 ( — - - J 25
(w) oLo + jw o + B + jw @5
which is plotted in Fig. 6. As can be seen in Fig. 6, the spectrum of
the pulse is flat out to f = /27 ~0 1 kHz, above which the spectrum is
inversely proportional to frequency. At f = (o + B)/2m ~ 2.1 MHz, a

second corner frequency, associated with the pulse rise-time, occurs.

Since the spectral components of this pulse propogate in the same
fashion as the unit impulse, the response of the outer sheath and the
outside of the inner sheath to the driver spectrum of Fig. 6 is obtained
by multiplying the driver spectrum by the impulse responses of Figs. 3
and 4 (solid curves). The spectra of the current in the inner shield
obtained in this manner at five points along the cable are shown in Fig.

7, and the shield-to-shield voltage spectra are shown for the three

2
interior points in Fig. 8 (the voltage at the endpoints is zero because
of the short-circuit terminations). As can be seen in Fig. 7, the

current spectra are nearly identical at all points along the cable at

14
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frequencies below 50 kHz, and at the higher frequencies where significant
differences occur, the magnitude of the spectrum is more than 60 dB below
the low-frequency amplitude. The inverse Fourier transforms of the
current spectra of Fig. 7 are shown in Fig. 9. The current pulses at

all five points along the cable are identical on the scale of Fig. 9.

The pulse shape of Fig, 9 is also in good agreement with the shape mea-

sured in the experiments on the 640m test cable,

The sheath-to~sheath voltage spectra shown in Fig. 8 are similar in
shape below 100 kHz, but show significant deviations above 100 kHz
because of resonance or standing-wave effects. Because the resonance
differences occur at spectral levels within 30 dB of the maxima of the
spectra, they influence the shape of the pulses in the time domain. The
voltage pulses in the time domain, obtained from the inverse transforms
of the frequency spectra, are shown in Fig. 10 for all five points along
the cable. Note that at the end points these pulse amplitudes are zero,
and that the amplitude is greatest at the midpoint. The pulse appears
to be a 100 kHz damped oscillation. This is approximately the natural
frequency of the shield-to-shield transmission line in the half-wave
mode. (The phase factor in this line is almost twice that of free space
because of the dielectric and the low Q of the line at these frequencies.)
No experimental shield-to-shield voltage data were taken for comparison

with the results of Fig. 10.

To carry the analysis through the inner shield to the core, the
current in the inner sheath as defined by Fig. 9 (or Fig. 7) was assumed
to propagate down the inner shield with the propagation velocity charac-
teristic of the shield-to-shield transmission line. The axial field
produced at the inside surface of the inner shield by this current was
then used in the transmission~line equations to compute the core current
and the core-to-sheath voltage. It should be noted, however, that this
technique is satisfactory only if the current in the inner sheath is
essentially independent of position along the cable (as was the case
here), or if the passband of the inner shield is such that only the
quasistatic components penetrate the inner sheath. That is, if the axial

field along the inside surface of the inner shield is not of uniform

19
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amplitude and essentially in phase along the entire length of the cable,

this field must be treated as a variable in the integral of Eq. (14). ~ ‘
(The same conditions apply to the outer sheath, but in the e#amples;

described here, the'driving current was assumed to be unattenuated in

propagating down the outer shield. The amplitudes are therefore inde-

pendent of position along the line, and the phase is accounted for by

the phase of the unit-impulse spectrum.)

The core-current spectra computed by this technique are shown in
Fig. 11 for experimental driving current in the outer shield. The core-
current spectra in this case are similar to the unit-impulse current
spectra (see Fig. 3), since the experimental driving-current spectrum is
similar to the impulse spectrum over the passband of the shield system.
The core-current pulses in the time domain are shown in Fig. 12 for the
five points along the cable (at the ends of the cable, the current is
zero because of the open-circuit terminations). The current=<pulse shapes
are very similar to those measured in the cable experiment, &nd the
computed amplitudes are in reasonable agreement with the measured ampli-

tudes, considering that the actual core was comprised of 52 insulated

conductors instead of the solid copper cylinder assumed in the

computations,

The core-to-shield voltage spectra are shown in Fig. 13, and the
voltage pulses are shown in Fig. 1l4. As the figures show, the voltage
_is skew-symmetric about the midpoint of the cable, with the maximum
voltage appearing at the ends. The computed voltage peak is 22V at the
ends for a 700A peak driving current. The core-to-shield voltages mea-
sured in the experimental program for this driving current were 14V to

22V peak, and the pulse shapes were very similar to those of Fig. 14.
VII CONCLUSIONS

The techniques described here, together with the associated computer
programs, are believed to be adequate to describe the internal currents
and voltages in complex cable systems. vfhe simplified techniques used
in the examples described above are adequate for short cables (less than

5000M) if a uniform driving current in the outer shield is applicable.
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For longer cables or nonuniform driving currents, an additional numerical
integration is necessary, which adds considerably to the computer time
required. Much insight into cable problems can be gained, however, by
studying the simpler cases such as the example analyzed above. The
ability to compute pulse shapes and amplitudes that compare well with
those obtained experimentally provides the confidence in the analytical

approach that is needed to proceed to more complicutied systems.
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Appendix
IMPEDANCE AND ADMITTANCE FORMULAS

To use the transmission-line equations, it is necessary to compute
the impedance per unit length and the admittance per unit length of the
line. The properties of the line may be computed iLrom available for-
mulas for the internal impedance of cylindrical conductors and the in-

ductance and capacitance of coaxial cylinders.

For coaxial cylinders, the impedance per unit length may be expressed

as the sum of three components: the internal impedance of the outer
conductor, the inductive reactance of the gap between the conductors,
and the internal impedance of the inner conductor. The internal impe-
dance of the inner conductor can be obtained from Eqs. (3) and (4) for

tubular conductors:

(@Y (@B
, . -5 M (03 5Py = Hy " (0g) 3, (Pyp) A-1)
i = 2nr, o6 L, - (D,
0 Hy 7o) J,Cog) - Hy W lpg) I, (o)

If the inner conductor is solid, oy is zero and Eq. (A-1) reduces to

. J . (p)

(Lt - 070 .

7. = - Solid . A-2)
i Zﬂrocé [Jl(poi} (Solid) (

The internal impedance Zi of the outer conductor is obtained by

interchanging pi and Po in Eq. (A-1) for a tubular conductor:

(@Y (L)
(1 -5l H (pg) Jplpy) — Hy " (py) I (0
Ze ¥ Tonr ob ﬁ(l)( y g (— ) :7H(l)( Yy J.(p) (4-3)
i 1 Po? IRy 1 Py 4%

If the outer conductor is solid (e.g. for a cable buried at a large

depth in the soil), - o and Eq. (A-3) becomes

Po
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¢))

. H (0.

jr 0 i . _ ,

Ze =" Fro D (Solid)} . (A-4) s’
i Hl (pi)

Since the principal application of Eq. (4-4) is where the scil is the
outer conductor, it will be necessary (in some cases) to include the
displacement current in the internal-impedance calculation by

substituting

V-iwko + jwe) for - R J (A-5)

in determining p; and § in Eq. (A-4).

The inductive reactance of the gap between the conductors is

- r
. 0 0
Zg =3 = In ;—; (A"'G)

where ro and rl are the inside radius of the outer conductor and the

outside radius of the inner conductor, respectively.

The impedance per unit length applicable to Egs. (10) et seq. is -

thus the sum of the three component impedances:
Z =Z, +7Z + 12 (A-T)
i e g

When both the inner and outer conductors are good conductors (metal),
the admittance per unit length is simply the capacitive reactance per
unit length of the gap:

21T0E

= juwC = J ————+ . (A-8)
g ln(ro/rl)

Y =Y

If dielectric loss is important, the permittivity e in Eq. (A-7) is
complex:
e =¢'(L -3 tan ) (A-9)

where tanée is the loss tangent for the dielectric in the gap.
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