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An expression to calculate the current induced in cables in the earth
by CW surface electromagnetic (EM) fields is presented. A few simple
approximations, pertaining to bare cables in good electrical contact with
tne eartn, are performed on this expression to permit the use of Laplace
Transforms in analyzing the current induced in these cables by pulsed EM
fields. In particular, the response of a bare cable in the earth to a unit
step function field (either magnetic or electric) is determined. The convo-
lution integral of a general field pulse with this step function response is
tne basis of the MARS2 Cable Current Code.
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where x is the distance along the cable, measured from the end nearest
the field source (meters),

d is the length of the cable (meters),

Kﬁe and Kze-r(d-x) are the currents reflected from the cable
ends x = U and x = d, respectively (amps),

constant for the current in the cable-earth

),

' is the propagationl
transmission system (meters”

Z 1is the characteristic impedance for the equivalent transmission
line approximating the cable-earth transmission system (ohms),

v is a dummy variable which ranges from O to d (meters), and
E (v) is the component of the electric field along the wire axis that
would exist at the spatial position of the wire's axis if the wire were
absent.

The propagation constant is

I o= (z v)/? (2)

where Z is the longitudinal impedance per unit length of the equivalent
transmission line (ohms/meter), and Y is the transverse admittance per
unit length of the equivalent transmission line (mhos/meter).

Furthermore, the characteristic impedance of the system is

z = @/nt? (3)

For a cable in good electrical contact with the earth (either a bare
cable or a cable with a hign conductivity cgvering), the propagation constant
[ becomes large (see Figure 1). For £ > 107, the current induced at a
specific point on the wire will attenuate to a negligible value before it
travels more than a few hundred meters. Examining equation (1), we see
that, as I becomes large, practical electric fields will be of approximately
constant magnitude over the range of v where e-Tix - vihas appreciable
value. Therefore, the integral term of equation (1) is
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Figure I. Current Propagation Constant vs Frequency
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To further simplify equation (1) we must examine the reflection
terms, Using the expressions for the reflection coefficients in
AFWL-TR-65-94, we see that.
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where Z. and Z, are the respective termination impedances of the cable to
the ground (ohms)

and F(x) is the integral term of equation (1). For practical fields and
cables, F(x) and Z, are finite for all x and f. From this fact it may be
snown that K; and Ky remain finite as [d becomes large, independent of
what Zl and Z, may be.

If we consider points on the cable that are more than 2 to 3 hun%r
meters from the ends of the cable, at fre%uen ies f > 103 -Tx and e d-x)
<< 1, This means that K eTx and K, e become negligible, and the
integral term (equation %4)) becomes Eo (X) Therefore, along most of the

length of the cable, the current is
E (x)
I(x) & —— (3)

If the frequency range of interest is £ > 104, equation (5) may be
used to calculate currents as close as 100 meters from the cable ends
(Figure 1). This frequency range is sufficient for many practical calcula-
tions of induced currents from lightning and EMP.

Although dependent on the distance variation of the field magnitude
and the length of the wire, equatlon (5) will be valid through most of the
frequency range of interest (f > 103) for many practical cable systems and
electromagnetic (EM) field distributions, This expression may now be used
to determine the current induced in a cable by a pulsed electromagnetic field.

Approximations on Frequency Dependent Factors.

Equation (5) may be rewritten as

Eo(x,w)
I(x,w) = @) (6)
6. Comparing this text with the given references, K, = K and K, = Lerd.
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where w = 2nf (radians per second) 1s the radian frequency of the EM wave.
By using Laplace Transforms, analytic expressions for the current induced
by a given pulsed field may be derived. First, however, we must determine

the longitudinal impedance Z(w).

The longitudinal impedance may be written as
Z(w) = R(w) + 1 wL(w)

where R(w) is the effective longitudinal resistance per unit length of the
cable-earth system (ohms/meter), and L(w) is the effective inductance per
unit length (henries/meter). CW calculations have shown that the inductive
impedance outweigns the resistance (wL>>R) for the higher frequencies (see
Figure 2);7’8 that is, the frequencies at which the resistance is frequency
depencent. Therefore, to a first approximation,

R (w) = RDC = a constant

where 0 is the conductivity of the wire or cable sheath metal (mhos/?eter)
and A is the cross-sectional area of the wire or cable sheath (meter®).

Also from CW calculations, we see that the inductance is rela§ively
insensitive to frequency changes (varies as lnw "~ see Figure 2).8’
Therefore, to a first approximation, the constant value of the inductance
will be taken as the value at the frequency which corresponds to the rise
time of the induced current. This will necessitate a preliminary rough
calculation of the pulse current to determine its rise time, but to use 8
pure guess would result in an error in the inductance of less than 2DZ.l
The calculation of the inductance is discussed in AFWL-TR-65-94.

Using the above approximations and equation (6),
Eo(x,w)

Iow) = g )

7. AFWL-TR~65-94.

8. Figure 2 shows the calculated impedances and inductance for a copper cable
sheath of lengtn 1000 meters, of outside diameter 2 centimeters, and of sheath
thickness 1 millimeter,

9. W. R. Graham, Electric Field-Induced Cable Currents, EMP Interaction Note
I, AFWL.

10. For a more accurate determination of L, see SGC 726IM-6, Part II,
Theoretical Studies Relating to the Space General Corp. Pulse Model, A.
Stogryn, Space General Corp. (11 July 1966).
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Unit Length vs Frequency for a Typical Bare Cable Sheath
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. where R is the DC resistance of the wire or cable sheath and L is the
constant value of the inductance discussed above.

The driving electric field E_ (x,w) for this problem is a component
of the electric field tangential to the earth's surface. However, these
tangential electric fields are often difficult to measure or determine
because of the presence of a much larger vertical electric field component.
Fortunately, there is a simple approximate relation between the tangential
. electric field and the tangential magnetic field. For points on the surface
of the earth greater than a skin depth in the earth away from the field

source,

| =n_|u l

IEtangential g tangential

)1/2

iwy

where ng = g+iwe

u is the magnetic permeability of the soil (henries/meter)
o is the conductivity of the soil (mhos/meter)
€ is the dielectric permittivity of the soil (farads/meter)

gnd Hcangential is perpendicular to Etangential'

The earth conductivity normally ranges from 10“4 to 3 x 10-2 mhos/meter
and € is normally around lO'lo to 5 x 1079 farads/meter. Therefore, g>>we,
except for very 11m1ted ranges of ground conductivities_and frequencies
(primarily, for w >10° ). For most problems of interest

. 1/2
iwy
ng = f-j;—)

For pulse current problems, the maximum deviation from this approximation
will come at times less than 10~® seconds. For currents of rise time
slower than 1070 seconds, the approximation should be good.

Step - Function Response.

Now that the frequency dependent impedance factors have been
simplified, we can use Laplace Transforms to solve for the current response
of a bare wire or cable sheath to a simple pulsed electromagnetic field.

In particular, we want to find the response of the conductor to a unit
step-function field, since this normalized response may be used to calculate
the conductor response to an arbitrary (in time) field through the well-
known associated convolution integral.

11. AFWL-TR-65-94.
12. Further borme out by detailed analysis in SGC726TM-6.
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Assume a driving electric field at the surface of the earth of the
form:

IR

The Laplace Transform of this field 1513

1
X [E, (£)] = E (s) =3
where s = iw. From equation (7), we see that

E (s)
I E(s) o] 1

o R+sL  s(R¥sL)

Therefore, for a unit step function electric field as the driving field,

-t
I Eey =Xt [1.E(s)] =% [1 -e L } u(t) (9)

[o]

where IOE(t) is the response to a unit step electric driving field.

For early times, when % t << 1,

n

1 Ee) i— (1-1+ % £] u(t)

= £ (o) (10)

For practical cables, this approximatjon corresponds to times less than
50 microseconds.

If the field of interest is a pulsed tangential magnetic field,
then it is necessary to determine the cable response to a unit step
magnetic field. That is

H(t) = u(t)
H(s) =§

From equations (7) and (8)

13. Handbook of Mathematical Functions, National Bureau of Standards,
U.S. Dept of Commerce (June 1964).




1/2
H _ sy 1
I, (s) = ( g , s(R+sL)

Therefore, for a unit step function magnetic field as a driving field,

1/2
H oy _yl  H . _ " R
I, (t) =L I "(s) z(m RL) ue) D (Y1 ©) (11)
2 h 2
wnere D(x) = e j e” dA, known as Dawson's Integral, may be found in
13 o

tables,

and 1 H(t) is the response to a unit step magnetic driving field.
For early times, as previously defined,

1/2 1/2
H . R
I (£)y = 2 ( — ) (L t) u(t)
. 1/2
-2 ¥ v
"L W t u(t) (12)

Now that we have derived the response of a cable's current for a
unit step electric or magnetic field, we can use the convolution integral
theorum to determine the current induced by an arbitrary pulsed electro-
magnetic fieild F(t).

t
I(t) = j\ Io(t - 1) F' (1) drt (13)
o

where Io (t - t) is the unit step response for the field of interest

dF(t
Fee = _uJ
de t =1

and T is a dummy variable ranging from O to t. For a few special field wave-
forms, this integral may be analytic. In general, it is not. The following
section will explain the formation of the MARS2 computer code from this
integral equation.

The MARS2 Code.

Assuming a practical electromagnetic field, with no gross discontinuities
or singularities,

k .
I(t) = lim y I (- [n- %]AT) FinAT)-zé[n—ler) At

At Q =l

where k = 5% . Using a finite At that is sufficiently small so that the
F(t) of interest varies approximately linearly over the range of each At
from 0 to t, we may say that
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k
I(t) :’E: Io(t—[n— %ﬂAT) ;F(nAT) - F([n—l]AT)}

n=1

This is the relation used in the MARS2 program, with equations (9), and (11)
used for Io(t).14 F(nAT) is read in as data at each point nAT.

If F(t) is the tangential electric field, Io(t) (from equation (9))
may be readily calculated by the computer. However, if F(t) 1s the tangential
magnetic field, it is necessary to calculate Dawson's Integral (equation (11)).
It is possible, of course, to read in this quantity point by point from a set
of tables. It is much easier to derive a simple expression which will approxi-
mate Dawson's Integral within a percent or so. The following approximations
were used in MARSZ,

2 - 2
D(xX) = e x j eA dd» = x, x < 0.1 (error 0.7%)
)
= — 5 X % 0.1 < x < 1.9 (error 1%)
1 + 0.668 x“+0.192x
. 0.5 0.254 0.5 0.5 g
= + x3 + x5 + x7 s X > 1.9 (error 0.8%)

The final thing that must be considered in writing the computer
program is the size of the differential At. AT must be small enough so
that F(t) is approximately linear within the interval. Yet, it should be
as large as possible to minimize the number of calculations performed
by the computer. Therefore, a simple system of regridding At, based on
electromagnetic fields of interest to the Air Force Weapons Laboratory,
has been used. Two tgmes are read inso the program: one marks the
change of AT from 10~ seconds to 107/ seconds, and the other marks
the change from 10~7 seconds to 10™° seconds.

There is a similar regridding scheme for At, defined by:

t, =t +ot
This mechanism determines at what times tm the current will be calculatec_i_8
Again, there are two times read in, corresponding to the changes At = 10
to 10~/ seconds and At = 10~/ to 107® seconds.

The MARS2 program, written in PORTRAN IV for a CDC 6600 Computer,
uses the above approximations to calculate the current induced in bare
wires and cable sheaths in the earth by an arbitrary pulsed electro-
magnetic field.

14, The early time approximations, equations (10) and (12), were used in
tne original MARS program. Using this program is equivalent to neglecting
the resistance of the wire.
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III. Conclusions.

This note has discussed the MARS2 computer code, a computer program
designed to calculate the current induced in a noninsulated wire or cable
sneatn in the earth by an impressed electromagnetic field. General limita-
tions are inherent in this program. It is limited to cables or wires that
are in good electrical contact with the earth throughout their length. It
is limited to points on the cable more than 100 meters from the cable
terminations, since it does not account for termination reflections. It is
therefore limited to cables greater than 200 to 300 meters in length. The
cable must be greater than a skin depth in the earth for the lowest frequency
of interest) away from the source of the external field if the magnetic
field is used as the basis for calculating the induced currents.

At present, there is no dependable time-history data on pulsed cable
currents induced by external fields with which we may compare the MARS2
calculations. However, the MARS2 calculations compare within a factor of
2 with peak current measurements made on a bare #10 copper wire and bare
lead sheath cable during the Small Boy nuclear test, except at distances
less than 200 meters from ground zero. Also, the MARS2 calculated waveshapes
compared well with waveshapes calculated by Stanford Research Institute using
a Fourier Integral cigputer code, a code which uses much more computer time
than the MARS2 code. For cables and wires in the earth which meet the above
limitations, the MARS2 code should give an excellent first approximation to
the current induced by a pulsed electromagnetic field at the surface of the
earth,

I would like to thank Dr. William R. Graham for suggesting the use of
Laplace Transforms on this problem.

15. DASIAC Special Report 41, ”Electroﬁagnetic Pulse Phenomenology and
Effects,'" DASA Information and Analysis Center, Santa Barbara (April
1966 ~ SECRET RD).
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