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Abstract:

The solution for the current induced in a long, straight conductor imoeddad
in a lossy dielectric by a parallel CW electric field is found, A suitabiz model
for the conductor-dielectric 3ystem is described,and the use of the modgl iu
solving the problem for more complicated geometries is discussed.

'I. Introduction.

The EMP problem divides naturally into two areas of concern., First, one
must understand the character of the EMP in a simple and somewhat idealized
environment. Second, one must understand the coupling of the EMP into vartous
types of systems. This second problem is by far the more difficult, and often
widers tanding of the coupling can be had only through an empirical approach.
dowever, certain simple but 3ignificant cases of the coupling problem can
he treated analytically, This paper will treat. one of these cases.*

Facilities for power distribution and communications generally contain
very long conductors near to or buried in the ground. It is possible tha:
the EMP may induce large surge currents in these conductors through either
a magnetic field interaction or an electric field interaction. ITais paper
will comsider only the electric field interaction, although several of the
observations made are applicable to the magnetic interactions as well.

II. Impedance of the Conductor.

Initially, consider a long, circular, cylindrical conductor imbedded
in an infinite nomogeneous lossy dielectric., The homogeneous form of
Maxsell's equations can be solved explicitly in the frequency domain for
sucn a systam,** OQutside of the conductor, the fields are

. (1)

E =ali,*’ (A\r)F (1)
no_ ot (1)

g, = -a—-}‘z .77 (Agr) F (2)

N
* Zxtensive work in this field has veen done by E. D. Sunce in nis 000K, Earth
Conduction Effects in Transmission Sustems, D, Van Nostrand & Co,, Ltd, New
York (1343)

** See Stratton, Electromagnetic Theory, pp. 346f and pp. 524f,
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where(l)

H ig the Hankel function, J. + ill
” > “n n

a is an arbitrary complex constant for the external fields

kI; the propagation constant in the conductor, =
J o2
M€ W + 11,040 (4)
Kgs the propagation constant in the dielectric, =
4 u252w2 + £u202w (5)
h, the propagation constant for the system, = ko
F = exp (tha-iwt) . (6)
2 _,2 .2 | |
Ay = kg - . (7)
2 .2 .2 . . ' .
Ay =k, -h” where 1\, is.defined by.the equation (8)
5 ,
2. YA My Kb _
(A b)) Inrgr—= 1 3= where b ig the radius-of the conductor and
2 2% My R, .
v & 1,781
The current in thg wiyﬁjis given by
ambo ju Kk, Hy TT(Ab)
I = @ = e, (32)
2 Aouk 2
2¥es
or, solving for a,"z

where Ib i8 the magnitude of’lg,

There are modes that are not symmetric in © which satisfy the boundary
conditions, but these modes are heavily.damped: and need not be considered,
There ave also possible transverse electric modes, but these, too, are
heavily damped,
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The radial current per wnit length flowing out of the wire at z_ 18

o
. .. e (11
I (z ,0) = - éfi = ~inl (zo,o) amp/m )
r “o az |z 3
o
e now define the tmpazdances:
For the transverse impedance, ZT’
4
2., = ~?£ ohm m (12)
i _'p
V. = f E_dr (13)
r r
o)

Solving for a in terms of I, from (7) and using this value in (2), we obtain

ux %n i, ogr)
B o= -1] = _ - (14)
usz ’ (2nccz) i, (A,0]
doting that _
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engn in the dielectric in radiusl), we obtain

Ir =

Al
- Mot YAg?
by T - 5 in —a (16,
4 2nu g X 4 ar
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For a conductor
BV 1)
he * LWu.c
1 i1 pLry
this reduces to
- ] ‘I'Api')
=  gorm—e— e R = ohm met (
P Snla, twe L] v 57 onm meters 18)
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luct approximation requires that tne cylinder te much less than a wave-



Next, define the impedance Z, by o 4 (1)

E’z Y uzk;, 5 (Ago) ’
- 7/
7 %2 ‘ o 4
o . S L2 YAP B Ko s,
¥ith tne approximatior (15), and noting that A 5)" Iln «gr— =1 —
. 2 2% Mg kZ

ZS = L9 . 2——17) . Wiy onms/meter (21)
VT 5

which 15 just the skin impedance of the conductor wnen the skin deptn “n the
wire i1s less than tne wire radius. PFinally, we snall consider the "“inda. .mce'
per wnit lengtn L tharougn tne relation:

L,I‘g = ¢, the flux per unit length
o={8, «ar (22)
0
and, with an analysis similar to that used in finding s e find tnat
_ My YAgb : '
L = 2—_“'- in o3 (23)
and therefore
Zwu YA 0
s 2 2
Zr = in 57 (24)

III. The Effect of a Driving Electric Field.

Jow comstaer tne case of the conductor current being driven by a wuntform
electric field in the z direetion, Ezo . Sinece tne wire is a conductor, tne
electric field at its surface will be much smaller taun tne value of E_ at
large distances from the conductor. Therefore, the current in the wiré must
generate an electric field wnich nearly cancels Ezo at the surface of the
wire. Inhe resultant field at the surface should Dé tne field generated dy
I flowing tarougn the skin impedance. To find the effect of Ezo’ start with
tHe equation e

§E-dz = —ﬁ-dA, (25)

Rb’tratton, pp. 628
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and integrate around the path and over the area snown in figure 1,

[4 . — — _ L WTRE ?

Figure 1

b 2+AZ o«
SE’r(z)-dr +J‘Ez s dz + fEr (z2+483) dr = -ﬁ-d/l {26)
[-- 3 b

If we take the limit of this equation divided by bz as Az> 0, we have

&1 A,

Er e dr + Ez =

R~
O-S—3

.g 3. dr (27)
b

By (11), (12), and (13)

; g

b %
By (22), and (24),
-d_ J’
at ) B - dr = -ZLIZ (29)

E, 1s composed of two terms, the first by Z_I_, the skin impedance field,
o P 500" 57z
artd the second by the canceling field ~E

Therefore, equation (27) becomes

&I,

r .z
az

+ Z

- (ZL + as) Iz = = Ezo (30)
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(30) is just the inhomogeneous form of the Hdelmnoltz equation which deseribes
the transmission line shown in figure 2,

EARER &—a—E—

Figure 2. The Equivalent Dispersive Transmission Line

Indeed, the forms of equations (16} 2L, and (24)are very suggestive of the
eoaxial transmission line. ,

IV. Transmission Line Model

Jear the conductor imbedded in the loss dielectric, we would expect the
electric field lines to aave the shape shown in figure 3.

1 0 ] )
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The point at which the field tends toward the conductor occurs about a skin
depth away from the conductor. At this distance, a cylinder drawn parallel

to, and coaxial to, the cornductor intersects the [field lines at nearly right
angles, so that such a surface is approximatzely an equipotential, Thus, if

we were to place a conducting cylinder around the conductor at this radius,

the field path between the cylinder and the conductor would not be severely
distorted. We nave now constructed a coazial transmission line., The tmpedances
of the line are easily calculadvle:

2 e in &
L an b+62

-1 b

2, = : In —
T 27!'(02-Lw62) o8,
. !
z (1--L) 1 ?
s 27b 1
Fl
where OS_ is the skin deptha in the lossy dielectric.

2

As one might guess, the skin impedance from the exact analysis and the
transmission line models are the same. Furthermore, Z,. and 7., differ only
in tne logarithmic factor. A comparison of the value OF the appropriate
and exact logarithmic terms is given in Tables I and II,

Table I. Nwmber 10 copper wire,

wire Radius = 1.28 = 10°° m

Wire Conductivity = 5.88 x 107 mro/m

Wire Magnetic Permeability = 4mn z 1077 henry/meter

Ground Conductivity = 2.9 z 107% mho/m
Ground Mugnetic Permeability = 4n x il nenry/meter

Even at L me, the displacement current is < 1% of the conduction current,
<. E, was set to zero.

2
b YA
Frequency in v ; in —5r—
Real Imaginary

10% cps 12,34 -12.75 -1.25

10°, cps -11.19 ~12.15 -1,23

105 cps -10,04 -11,55 -1,23

103 cps - 8,89 -20,95 -1.23

10° eps - 7.74 -10, 34 -1.24



Table II. Lead Sneatin Cable
Wire Radius = 2.07 © 1072 m
Wire Conquetivity = 4,45 x 10° mho/m
Wire Magnetic Permeability =dn x 107 henry/m
Ground Conductivity = 2.9 x 107¢ mao/m

Tround dagnetic Permeadbility = dm x 1077 nenry/meter

€y ~ 0,
, AD
Trequency = in Y.Z —
Sreq -3+62 2T
Real Imaginary

10§ -9.56 -10,53 -1.24

105 -8. 41 ~10.02 ~1.24

10% ~7.26 - 9,42 -1,24

102 -6,11 ~ 8,81 -1,25

10 ~4.36 - 8,20 .1,25

In many cases of interest, the transmission line modzl gives quite good
accuracy, as will oe seen from reports by AFWL and SRI to de puplished in
the near future. when greater accuracy is desired, Iln _© 18 a good first

b -~
A 3,

approximation to use in the iteration by which In 22_ s found,
1

Perhaps the greatest value in the transmission lineg model Lies in the
ease with which more complicated conmfigurations can be treated. For ezample,
i1f the long conductor lies on the surface of the ground, then the “semi-
coazxial' transmission .ine Ls tiae appropriate riodel. (See delow)

Wire

Y —d; ——
T W
\ /
\ / —— Equivalent outer
\ / conductor
\ /
N s
h ”
~ -

The effect of termination of long lines <is alsc simple to treat via
transmission line theory, If the conductor is of langthn d (d>>)\_), and nas
terninal impedances ZZ e Z,, then the sclution to (30) is “

2
o
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where
v /’(Z, + Z_)
J 2=
2y
2 = )z iz +2)
© J T 7L 3
d
If F(2Z) =§-— g e~ 17 4
o
"o

the reflection terms are

Td . .
(ZZ+ZO/ (ZO-ZIJ e Flo) + (ZZ—ZO) (aZ-ZO/ Fo(d)

K = , : _
a 7 Ied —Vd
(Z1+Zo)(22+zo) e —(ZZ—ZOJLZZ—AO)Q

-4 ' R
(_jz"zo){zo_‘_z_z{?. F(o) + (L, +2 )(Z,y=3 ) F (d)

i = --\d
(ZZ—ZO)(ZZ-ZO) e -(ZZ+ZO)(ZZ+ZO) e

a

This theory should de applicadble to curved conductors as well as straight
conductors as long as the radius of curvature is large compared with §,, For
tne case of an electric field not parallel to the conductor, only the parallel
component of the field need be considerea, since the normal component will
generate only nignly awmped modes,

The case of an insulated conductor can ce rreated 2y considering tae
solvadle probiem of a coaxial transmission line in wnich the center conductor
18 surrounded 2y successive dielectric cylincers of difereat properties,

V. Conelusions.

In this note, an aczurate jorm and a sirpler approximation for tae current
inauced in long conductors aave Leen derived jor the case of CW excitation.
Tne next step is to consider the pulse probiem, One way to treat a pulsed
field ic to maxe a Fourrier decorgposition of the field at each space point,
solve the resuliing C¥ problem, and then transjorm the answer back into the
time . domain. It is acped, hcwever, that sorme simpler and more elegant way
o] treating the pulse problem will be found.




I would like to thank Mr, E., Vance of SRI for first suggesting the
transmission line model and to Lt D, Marston for many useful discussions
and calculational assistance,
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