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Summary

This report contains an ‘analytical formulatlon for J. C.
‘Martin's treatment of the way in which the statlstlcal fluctuatlon
of the electrical breakdown strength in solids is related to: the

5 volume dependence of the mean breakdown fleld. . The pr;nc1pal_'_
' result is a relation between o' and m: where ¢ is the standard
dev1atlon of the breakdown field strength for a glven sample and m

is the constant in the volumewdependence expres31on
; f o | F= k/(v)l/m

F relatlng the mean breakdown field strength F, to the volume, v
(k and m are constants for a given material).

i- T In addltlon, some expreSSlons for non- unlform fields are
derlved An equlvalent volume is defined so that the non-uniform

E field problem can be treated in the same way as the unlform field
case.

l.:' Introduction

The theory of electrical breakdown in SOlldS has been the'
subject of extensive 1nvest1gat10n (References 1 and 2 are
{ reviews of the literature). The process can be divided somewhat
| arbltrarlly into thermal and 1ntr1n51c breakdown.

Thermal breakdown is brought on by the rise of temperature
resultlng from joule heating of the material in which conduction
_currents are flowing. This kind of breakdown is characterized by

vdltages which are applied continuously or for long pulse
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'short (or the conductivity of the material is low), one finds a

the breakdown process. This kind of breakdown_can be characterized
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lengths. To be prec1se, one must talk about a breakdown voltage
for a glven geometrical arrangement rather than a breakdown
field strength. The reason is that the transport of heat out of
the sample is an important consideration;_ A.decreasetin'the o
pulse length of the applied voltage produces an increase in the
thermallbreakdown strength. |

When the pulse length of the applied voltage is sufficiently'
different kind of phenomena (i.e., intrinsic breakdown) governing

by a breakdown field strength, since the process is relatively
insensitive to the geometrical arrangement of the electrodes (for
uniform fields) or the thickness of the sample. The values of the
fleld strength for intrinsic breakdown are, in general, higher ‘than
for thermal breakdown. A decrease in pulse length in the 10 -6 to
lO-8 second region has llttle effect on the value of the 1ntr1n51c

breakdown field strength.

In this report, we are primarily interested in the intrinsic
breakdown process. Many of the theoretical explanations for the
intrinsic breakdown process predlct sharply deflned values  of
breakdown field strength (i.e., no statlstlcal spread) and a
complete 1ndependence of the geometrlcal arrangement of the
electrodes, the sample thickness, etc. (Reference 3) .. However,
other breakdown theorles predict that the process. is 1nherently
statistical in nature and- that instead of a well-defined breakdown
field strength one should talk about the probability of;breakdown
as a function of field strength (References 4 and 5). Recently,
there has been more evidence of the statistical nature of the
breakdown process (References 6 and 7) as well as more data on *the
well~known thickness variation of the mean breakdown strength of
thin films (Reference §).
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g o J. C. Martln (Reference 9) has p01nted out that a real

m;> statlstlcal spread 1n the measured values of 1ntr1ns1c breakdown
fleld strength (not measurement errors) lmplles that the mean
value of the breakdown field strength would decrease W1th SR

'1ncrea51ng volume of ‘the sample. ' ' -

_ “The " reasonlng behlnd this conclusion becomes apparent when
one plots ‘the- probablllty of surv1val of a glven sample agalnst
the applled fleld strength {solid curve 1n Figure 1). If. one
placed tén of these samples in parallel or in serles, then
. presumably, breakdown of the comblnatlon would occur when the;
sample w1th lowest breakdown strength failed. The probablllty of
survrval for the combination can be calculated - by taking the
product of_the probabllltles of the_1nd1v1dual samples,

- The dotted curve in Flgure 1 shows the result of ralslng the

probablllty for a single sample to the tenth power. ‘The mean
i _ breakdown field is shifted to a lower value.

- From the emplrlcal data presented Ain Reference 9, Martln

i _ draws two 1mportant conclusions about the volume dependence of

| the breakdown field strength The flrst is the relatlon for the
mean breakdown_fleld strength- '

CFex/mim W

where v is the volume of the sample, and k and m are constants

for a glven 1nsulator.

‘The second conclu51on is that the probablllty dlstrlbutlon of

the normallzed breakdown strength, F/F, is independent of the volume
In partlcular, this volume 1ndependence means that one should
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Figure 1. Probability of Survival Versus Applied Field Strength
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'h f,' be able to calculate the standard dev1at10n, c; for the normallzed
:) dlstrlbutlon, and then the standard dev1at10n for the probablllty
dlstrlbutlon correspondlng to any volume is glven 51mply by

whefe.dpiS'lndependent of the volume (see'Appendix 1)

I. Smlth (Reference 10) p01nts out that one can obtaln an
analytlcal expre551on for a probablllty dlstrlbutlon w1th ‘the two
propertles cited above by the following argument: Let P (F/F) be

"défined as probablllty that a sample with mean. breakdown fleld F
will survive an applied field F. P (F/F) is assumed to be _
L .1ndependent of " ‘the volume. Suppose that Fl is the mean breakdown*
fleld for a volume vy 'If the volume were increased to a new .
volume v2 = cvl with breakdown strength F2 then
_[P (F/F')]C = P (F/F,) -
1 _ 2

because of the way in which probabilities are combined. From
Equation 1 ' '

Im oy el/m o, 1/m A/m

= F /C
i : HSO £hat'
B ] R (e £3

.One function which has the property expressed in Equation 3

; o B : lP (F/F) = exp.[;a (F/fjm.' | . : (4).

!
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. In the next section, we will derive expressions for the
constant a ana'the standard deviation ¢ for the functidn’in
Equation 4. | . ' B |

It turns out that ¢ is a function ofﬁm'Only; 'This result
allows-one'to_calculate the mean breakdown fieldIStrength for
any - volume Qnée the mean breakdown field Fiand'the standard
deviation ¢' = ¢F have been measured for a givén_samplé.

2. Standard Deviation for.the Normalized Probability Distribution
Define: f = F/F E ' o - (5)

) m
P (f) = e 2f

P (f) = Probability of surviVing a normalized field f

p (£) df = Probability that breakdown will occur in
an internal (f, £ + df)

_then

P (£ + Af) = P (£) - p (£) Af
&~ - p (£)

df

The probability function is properly,normalized

23

fp (£) df = - 'fg-i- df = - exp’ (-Fa'fm)]; =1.0

(o) o] . : o

The mean value of the normalized field strength is

oo ) oo

'f=ffp(f)a'f=-ff§§af o (6)

) _ o




where
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‘One gaﬁ integrate this\by'parts

__ff_a-f-df-_fp] _-.fP af

Since by L'Hospital's rule

S limfP = lim —L — = nm —— L .
oo B fre exp . (af ) freo amf exp (af )

Also using Equation A2'in_Appendix‘2
: : o oo )

o Cef™ o T (1/m + 1) | -
fP df —.fexp (-af™) df = a(l/m) _ A7)

o o

where I' is the usual gamma function defined by

r(n) = fxn'le'xdx  n>o0
: O

_ From the definition of Equation 5, f = 1 (see Appendix 1).
If this is combined with Equations 6 and 7 one gets the result

‘that

a='[r(1/m+1)]m' R  (8)

_ The standard deviation for the normalized.distribution is
giVen-by '

2 _ _ =2 dP ..
ot = f(f £)* S5 af (9)
A |
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To integrate by parts, let

u f (f - B o - dv = 3F df

dlﬂ(f f)2 & df{s (f-f}z exp("afm)]' —2.J/.(f—f)_exp(—afm)af (10)

o]

'.'Appiying'L'Hospital's rule as before

-(f—f)z-exp'(—afm)] = -f2 = -=1,0 (11)
"."- Also u51ng Equatlons A2 and A3 of Appendlx 2 -
f ) exp( af™ ) df = f £ éxp (-afm)_ df—?f exp (-afm) df |
.Y _ o] o _ o : -
r(2/m + 1) = TI'(l/m + 1) - e e
- f . .
S L/ (/™ (12)

"Combining Equations 9,_10; 11, 12, and_remembering thaﬁ ff= 1.0

2 a2/M™ L om + 1)'—72 M p gy 1

(2/m)

and substituting for a the expression in ‘Equation 8 gives

g = J-Ff2/m + 1) 5 - [ S (13)
{P(l/m + 1)] :
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The quotient in Equation 13 is very close'to 1.0 for‘latge
:} values of m, so that a considerable amount of accuracy is

required to calculate the values of g. The double prec1s1on

4 FORTRAN library program for the gamma function was used with an
IBM 360/44 computer to evaluate ¢ as a functlon of m. _The
};. .. results are plotted in Figure 2.

3. A Probablllty Function for Non—Unlform Flelds

All of the foregoing ideas about intrinsic electrical
i breakdown are intended specifically for the condition that ‘the
electric field throughout the sample is uniform. One should be

E cautious about applying'the same formalism for non~uniform

o fields. There are definite polarity effects associated with'

1 some electrode shapes that givé non-uniform fields and it is

J not clear how this polarity effect can be explained in‘terms of a

volume-dependent breakdown process. However, it is interesting
to apply the prev1ously developed theory to dielectric samples

N

in which the electric field. is not uniform. A comparison with
experlmental data mlght be very useful for determining the
._appllcablllty ‘of the theodry of Sections l and - 2.

K cntinpmmsad

Let v be the volume of a dielectric with a non-uniform
applied field. Con51der a small element of volume Av located
in v. Avy is-assumed to be suff1c1ently small so that the
electric fleld is approx1mately uniform in Av . The mean
breakdown fleld 1n Av is (from Equation 1)

- (1/m) L -
F, = k/(av) /T - e

The probablllty of surv1val P for the element Av When a
fleld F is applied is (from Equatlon 4)

1

P, = exp [-—a (Fi/Fi)m] . (15)
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Comblnlng Equatlons 14 and 15 and substltutlng for a from

Equatlon 8 glves

m

'_r(l/m'+ 1) Fi

If. U is the potentlal dlfference applled to the volume, Vi

then the probablllty of surv1val P(U, v) for the whole sample 1s -

‘P(U,v) -T_[ P, = exp {: _P(l/m ; l) Fl] L.

where

=

- Av
i=1

Taking the limit as the maximum of the elements, Av, goes to
zero ' ' -

P(U,V). = exp < - [”l/mk* 1’]' _me ar

v

It is possible to define an equivalent volume v' bY'letting

. m . o m Cmm
fF dr = F_ f (F/Fb) dt = F  v'
v . ,V. ‘ '

where | _ v' = f.(F/Fo)m dt

and F is the maximum field strength in v. -

11
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The probablllty of surV1val can be expressed 1n terms of F

'and V as’

P =exp 4-v (17)

.'[r-(lkm + 1) . ]m S

" From Equation 16, one can see that tbe pfébability'of

'V:surv1val in: Equatlon 17 is the same as if a unlform field F weref

applled over the equlvalent volume v' As an example, con51der

the breakdown problem between coaxial cyllnders. The inner and

-'outer radii are r, and T, respectively, and the axial;lehgthlis'e

: 1
Zol

E The electrlc fleld at any p01nt between the conductors is

"glven by

L Y |
r 1n (rz/riT

F =
where U'is the potential difference between the conductors.
The maximum field is

N U ..
o) rl';n_(rz/ri)

' The equivalent volume v' is

= f (F/Fo)m.d'r = f (J:l/r)In dr =._ |
v 7

v
_ ré -
27 ZOf -(:1/3:)
. r,
C T e e . i
v' = 27 rl'Zo (ﬁ:") [l - (rl/bz) n _ N ' (18)
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The équivalent volume for this case is just-the area of the-

inner cylinder multlplled by a. fractlon of the radlus of the

‘inner cylinder. For r /r = 2.0 and m = 8,

':v'_= (21 r

x, 7o) (.164:rl)

'The expression in square brackets in Equation. 18 is usually

. negligible for interesting values of m, so that the equivalent

volume for coaxial cylinders is approx1mately the area of the
inner cyllnder multlplled by ¢ /(m 2)

In a similar way one can obtain the expression for the
equivalent volume for concentrlc spherlcal electrodes (1nner
radius r,, outer radius r ) '

e NT o (2m-3)
2 : 1
] —_ . —r———— —
vi = Am Ty \3p53 o/

13
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.,_APPENDIX 1

_ ThlS sectlon is concerned w1th the formal relatlon between
the probability functlon for the field strength F and the
'.probablllty functlon for the normalized fleld strength f

F/F |
P(F) = :P[F(_.f)]

4P _ dp dF

o ' df = &F Jf ar
= [ _. ap o = Y= AP = e
.F- fFademfFf (l/F)'a-"def—Ff
(o] ' [« 30
so that T = 1.0
also

(6)? = _—.j'(F'—’I?')2 &< ar
o Y _

- _g?f(F/f—l)_z (1/F) g—lff- F df

-F?f £=H 2 L
e}

(612 =2 F
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APPENDIX 2°

,’To_e?aluaté'the integral

| fxq. exp (-a :_'cm) ax
o '

: .let

vy = ax"
dy = am % dx = am (y/a)(l 1/m) - ax
L/ L el
then

P (a/m) -
fxq exp (- ax’ ™) ax = f(i(r{?r)n) '(Txg/n(l)Y) dy
2 m

= (q/ml+ 1/m) fy(q/m * l/m - b é.XP("Y). dy
a m _

() oo o]

where the gamma function is defined by

oo

r(n) = _fznml e ? 4z

fo)
n >0

and has the useful property (Reference 11)

nr(n) = I'(n+l)

2-1 -

3(Al)
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- f = S,

Tt

P_IIk—_ZO—,7d o

v R - _
. From Eqﬁa-tii'on Al:with'q =0 -

oo

./-'-é-xp_("-.':-a x_m). Ax = (1/m) T (l'/'m'),.';_. [(l/m + 1)

T L™ TLm

o

1

" From. Equa}t‘iQn Al with g

o

J Ty g l2/m) B B 2'_,a(2/m)_

f’; exp (~a xﬁ) ax = {2/m) T (2/m) _ I(2/m + 1)

S (m2)

. (a3)




