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Abstract

In connecting a switched oscillator to a high-impedance load one may wish to increase the voltage (peak)
delivered to the load. One way to accomplish this is to insert a quarter-wavelength transformer (at the fundamental
oscillator frequency). This transformer consists of a section of transmission line with characteristic impedance

intermediate between that of the switched oscillator and the load impedance.
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1. Introduction

In [3] we consider a switched oscillator as a possible source for driving an antenna [1]. Modelling the

antenna as a resistive load (appropriate for certain kinds of antennas), one may ask how well the switched oscillator

is matched into this load for optimizing various performance parameters.

For a TEM antenna feed consisting of a conical transmission line, the region near the apex (connecting to

the switched oscillator) may have very large electric fields. One may wish to have this region in some high-

dielectric-strength medium such as oil. This in turn will affect the characteristic impedance of this portion of the

conical transmission line, potentially introducing reflections back toward the source. Noting the resonant character

of the source, such reflections can be beneficial if the length of this section and its characteristic impedance are

chosen appropriately. Let us think of this section as a transmission-line transformer and make a corresponding

mathematical model.

Consider an equivalent transmission-line network in Fig. 1.1 to represent this combination of switched

oscillator, transformer, and load (e.g., antenna). This is characterized by:

1. switch

Vs (t) = waveform from swich

= ¥ (t) = for example Vou(t)
2. oscillator

1, = transit time

Zgl) = characteristic impedance (real, frequency independent)
3. transformer

t, = transit time

z®

characteristic impedance (real, frequency independent)

4. load

Z3 = load impedance (assumed real, frequency independent)
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For convenience we also introduce normalized parameters
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We can consider that {3 is given a priori by the specified oscillator and load impedances, leaving only one of &}
and ¢ to be varied.
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2. Initial Transient Step Up

We can gain some insight by looking at the initial transient performance of the transformer. We have trans-

mission coefficients
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= step up into transformer
= (5)23 = 2[1+¢o]”! @1
Z +Z3
= step up into load
This gives a net step up of
- -1
T=nT =41+a] [1+6] @2)
with the transformer section included. Without the transformer section (ZE.Z) = Z3 ) we have
Ty = -122—3— = 2[1+¢3]" (23)
ZS. ) +Z3

which is the case in [3].

As {3 —0 without the transformer section we have Ty —2 as a maximum voltage gain for the initial
transient. With the transformer this gain can be increased. Ifboth ¢j and &3, then T — 4. With &3 fixed by the

oscillator characteristic impedance and load impedance we can vary {] to maximize the transient gain

-1
T = 4fi+g]" [1+¢—3] = 4 (24)
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by noting that the minimum of {j +¢3 {1_' occurs at
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for which case the transient gain is
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We have some selected values in Table 2.1. Note that the transformer characteristic impedance is constrained as the

geometric mean

1

) - [0

for optimum results.

) 40
100 3.31
50 3.07
25 2.78
10 2.31

5 1.91

Table 2.1. Selected Values of Transient Gain

2.7

The transmission-line model has limitations. In particular, as a conical transmission line extends from the

apex, the cross section dimensions (on a sphere centered at the apex) increase. When such dimension become

appreciable in wavelength units (in the local dielectric media) there can be non-TEM modes generated at the trans-

former output, depending on the details of the cross-section geometry.



3. Transmission-Line Solution in Frequency Domain

The voltage transfer through the transformer is given by

V3(s) S o= 1t &
V2(s) 1+ 538_2“2
~ = Laplace transform (two sided) over time ¢ 3.1

s = Q+ jo =Laplace-transform variable or complex frequency

where the delay through the transformer has been moved to the left side for convenience. The reflection coefficient
at the load is

§3 = Z3_Zc('2) - 1_4'2
z+20)  1+&

3.2)

The result in (3.1) has the same form as that for the switched oscillator without transformer in [1]. The impedance

Z(s) looking into the transformer (as indicated in Fig. 1.1) is

. —2st2
Zy(s) = ZP B —

(3.3)
l— 63 8—2812
Now consider driving into the switched oscillator from the switch giving (similar to (3-1) and (3.2))
Va(s) sty _ 1+ (s)
e 148 (s)e 2
Z3 (s) -1 1+.f3e_2S12 e
(1) —2st 1
~ VA 1-&3e 2
&(s) = - = 34
Z(s) 14 &6 212
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These combine to give
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A(s) [+a] + [-G)& e +[[1—§1] + [1+4]8 e—2s’2]e—2'”l

The total transfer function from switch to load (with delay removed) is then

[7‘:3(5) e‘[tl+‘2]= 2 1+53 (3.6)
1(s) [+a] + [1-G1)& e +[[1-§1] + [1+4)8 e"2“2]e‘2"1

Including a choice for the source voltage we have the voltage delivered to the load. For an ideal switch we have
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4. Quarter-Wave Choice for Transformer

Equation (3.7) is a very general result in which one can insert choices for # .75, {1, and &5. This gives

the frequency spectrum at the load, and by numerical Fourier inversion gives the time-domain waveform at the load.

Let us now simplify the result for greater analytic understanding.

An interesting choice for 75 is 4 so that at the basic oscillator frequency (unloaded) the transformer is a

quarter wavelength long, maximizing the transformer gain at this frequency. For convenience then define

R(s) = e = e 252 4.1)
so that (3.6) becomes
P3(s) g1 (s) = 2 1463 “4.2)

(s) D+al + -als X(s)+[1-al + [1+¢]é X ()] X

The denominator is a quadratic in X(s) yielding two solutions for the denominator zeros, say X; and Xj, giving

the factored form

= S -1 e -1
V3(5) g1y — o 1+63 [1_5(3)} [1_ X(s)]
"(s) 1+4 X1 X2

1+

= 2I+—§%xlxz[xl - X(S)]—l [X2 - X(“)]_l

(4.3)

This can be inverse transformed into time domain, yielding a sequence of delta functions, using the technique
discussed in Appendix A. Convolution with ¥j(#) is then merely a sequence of time-shifted #)(¢) pulses. For the

special case of step excitation as in (3.7) the time-domain voltage waveform on the load is described by a series of

step functions.

As a special case suppose that '(,' » = 1 implying & = 0. Then (4.2) reduces to

R
Z(l) 4.4)
¢1 =63 = Zc3



~— This is the previous result in [1].

Another special case concerns the optimum transformer for the initial transient discussed in Section 2, for
which we have

G =gy = 20 7 [Zgl)r
1=¢2 =437 = =

2 7 Z3 4.5)
£ = -6 _1-¢
3T G 1+4
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V3(s) o - < vor Tt
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Again, this can be put in time domain by the technique in Appendix A. There are limiting cases including
£y =1 (all impedances the same) 4.7)
giving a single delta function in time, and
¢y = 0 (very large impedance ratios)
Xy = -1 4.8)
2
V3(5) g1 Z (T2
—=X""(s) = 4|1+ X(s
P @ = 4[+X0)]
In this latter case we have a set of second order poles at
~—



X(s) = P R

1 _ 4.9 o
sy =|n+ E]” , n = all integers
Note that £, = 0 is impractical and so a small ¢ can be used to give some damping to the second order poles and
keep the energy bounded.
e
~r
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5. Concluding Remarks

The inclusion of a transformer section after the switched oscillator gives us additional design flexibility for
improving performance. By making it a quarter wavelength long at the basic oscillator frequency there is a voltage
step up to a high-impedance load. This transformer section can also serve as a region with a high-dielectric-strength
medium to withstand the high electric fields near the exit from the switched oscillator. While present considerations

have, for simplicity, considered a section of uniform transmission line, a nonuniform section might also prove useful

2]
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Appendix A. Time-Domain Representation

One can consult tables or readily find from geometric-series considerations the Laplace-transform pair

1 0
[l —a e——sta] _ z ae " Sa

n=0
[+ o]
o E a"5(t-ntz) (A.1)
n=0
g 20

For this to apply to a passive system we also require [a| < 1 (with a real for real coefficients if the above is the
only term).

A more general form considers two such factors with the Laplace-transform pair

—~st -1 ~st 1
[l-a e a] [l—b e bT rRs
[+ o

Q0

Za”a(t—ma) 0 Zb"é‘(t—m,,)

n=0 n=0
= 8(r) + [ab(t-15) + bS(1-13)]
+ [a25(1-21g) + abS(1-15-13) + b6 (1-21,) (A2)

+ cee
o = convolution with respect to time ¢

15,15 20 , a,b realfort, #1

If1, =t =ty (=2#) we have the case in Section 4. The Laplace-transform pair is now

—1 -1 1
[1 — e~ ] [l _ be—sto] - lil —[a+ b]e——sto + abe—z‘"o ]

[e o]
© chtf(t—nto)
n=0

a

cn = E am bn—m

m=0
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b

la| = |b| < 1 (for passive system) (A.3)
tg 2 0 (causal)

a* (for real coefficients)

If, in addition, a = b we have

[l_ae—sto ]_2 o i[n+l] d"5(t-ntp)
n=0

(A4)
a = real |a| <1

This is like a second order pole, except in the variable ¢ 0 . This gives an infinite set of second order poles in the
left half of the s plane.

The formulae in this appendix can be extended to include an additional factor of sL corresponding to step

excitation. The time-domain formulae (inverse Laplace transforms) are simply modified by replacing delta func-
tions by step functions.
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