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Abstract

For Marx generators to operate with a high pulse-repetition frequency, one needs to minimize the time
required to charge the capacitors, while not significantly loading the Marx during erection and discharge. Typical
design of the charging circuit involves a series string of resistors, or even a series string of inductors, running along
the capacitor stack. In this paper we consider parallel charging with inductors and resistors in which the charging

elements (and series combinations) are all connected in parallel to the power supplies (two for differential charging).




1. Introduction

In designing Marx generators for large pulse-repetition frequency (PRF) there are many features of one’s
concern. One of these is the charging time of the Marx capacitors. Typically these are charged with series resistor

networks as illustrated in Fig. 1.1. Thus is a differentially charged set of N capacitors with
V, = -V_ (typically 50 kV') (1.1)

Here the number of capacitors N is taken as even for convenience. When erected the open-circuit voltage presented

to the switch to the load is

Vo = NV = —NV, (1.2)

where the Marx voltage here is taken as negative, but could just as easily be taken as positive. Note that due to stray
capacitance and loading from the charging resistors (Rg, Ry, and Rg ) during the Marx erection the actual output

voltage is a little less than /[y in magnitude. The Marx capacitance (erected, neglecting strays) is

o
cy = & 13
LY (1.3)

This type of Marx can be triggered by various techniques. Triggering the first switch or first few switches
produces a strong overvoltage on successive switches leading to an erection wave progressing to the right in Fig.
1.1. This is the standard Marx design often referenced as the “Erwin” Marx [4]. Elaborate schemes for third-
electrode triggers in the subsequent switches with resistive (or capacitive) feed from earlier switches (to the left) can

also be constructed to speed up the erection process. Such are referenced as “Martin” Marxes [3, 6]. We do not

consider the details of the erection process in this paper.

In this paper we concentrate on the charging system for the Marx capacitors, comparing traditional series
charging to parallel charging including both resistive and inductive elements. In designing a Marx for high PRF one

can consider the time Ty for a Marx cycle as composed of four parts

To = tep + 1ty + Ly
t.p = time to charge the Marx capacitors

t, = bigh-voltage time

il

time Marx has some appreciable portion of ¥ (erection time (or gap running time) plus ring up
time (as into a transfer capacitor) plus discharge time '
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Fig. 1.1 A Series, Differential, Resistively Charged Marx Generator
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t,, = Marx erection time (or gap running time) . (1.4)
tyz;s = discharge time

= time from switching to load until voltage on load decays to negligible value (comparéd to V)

ts, = switch recovery time (after which Marx capacitors can begin recharging, not addressed here)

Generally, we would like to impose the inequality

tep >> 1y >> g (1.5)

so that for a fast discharge (in say the 10 ns regime) the high-voltage time in the 100 ns regime does not intrude on
the discharge time. Note that if one has a transfer capacitor the ringup time can be lumped with the high-voltage
time. Furthermore the high-voltage time needs to be short compared to the charging time so that the charging

network does not load down the erected Marx voltage. The switch recovery time is not discussed here.

For purposes of the present discussion (from which one can scale to other conditions) let us use as an

example
Z; =50Q
Vo = S50kV
N =20
(1.6)
Ny = 1MV
tgis = 10ns
ty = 100 ns
Using, for simplicity,
tais = ZLCpm (1.7)
we have
Cy = 02nF
M (1.8)
C =20Cy = 4nF
Furthermore, let us choose
tep 2108, = 1us (1.9)

These will be used later to estimate values of resistance and inductance in the charging networks.



2. Series Resistive Charging

N
Referring to Fig. 1.1, let all the charging resistors be the same, i.e., all R, are the same. Assuming initial
conditions of zero charge on each capacitor, the resistors to ground Rg do not enter into the charging by symmetry
(except for the last (rightmost) one which is an exceptional case for even N). As the Marx erects these resistors load
the Marx, so we can constrain
1
-]2\1 Ry Cy = 5 Ry C >> 1y @n
which places Ry >> 50Q in our example. The charging resistors R; also load the Marx and, noting the two
parallel chains of N/2 resistors each, we have
1
N Ry Cpg = — Ry C >> 8, (2.2)
4 4 :
which gives R, >> 100Q in our example. Of course the loading of both sets of resistors needs to be included.
Note that each of the above resistors needs to withstand about 100 kV in our example for some part of #,, .
~ The charging of the Marx by this series set of resistors takes some considerable time as can be seen by
modeling the N/2 resistors and capacitors of each half of the charging system as a distributed RC transmission line.
This has been worked out for large N/2 in [5]. Defining
N N
RT = —2-- Rs R CT = ?C , T = RTCT (2.3)
applying to each of the two halves of the charging system, the approximate solution for the normalized sum of the
capacitor voltages v(¢) is given by
)
g 1= —
Vi) = [1 - = e \2/ 1T | y(p (2.4)
2 .
T
assuming step excitation Vyu(t). At ¢t = ¢t the charging has reached 93%.
So tr is basically the charging time 7., , and
N



N2 N3

tT=—~RSC=—“RSCM >>N2tv

4 4

For our example, then

tr >> 40 us

So we are looking at a charging time in the hundreds of us regime.

(2.5)

(2.6)



3. Series Inductive Charging

If the series resistors R; are each replaced with inductors L¢ then the charging system behaves as a

lumped-element LC transmission line. For large N we have

Z, = li—lis—J?' = characteristic impedance for each transmission line forming half of the charging system

1
N N T2 N 1
tr = [— LS "'2— lez = 7[LS C]2

transit time along transmission line _ (3.1

1
1, = [LCJ2 = 2, C

= transit time for one section

N, N7 ¢

t":?tL 2 ¢

If we put step excitation u(?) into each line the capacitors are all charged to ¥, at time ¢, .

At this point one need not close the switch to the load. The transmission-line waves (two) can reflect
(positively) at this open circuit and propagate back to the left and in Fig. 1.1, reaching there at a time 2 ¢, . The
capacitors are all charged to 2 ¥, (the individual capacitors are now required to take this double voltage and the
currents in all the inductors are zero. Erecting the Marx at this time, the open-circuit voltage at the load switch is 2

Vp - For good performance we would like

ty << 1, (3.2)

so that the capacitors are discharged before current can build back up in any inductors. This in turn implies in our

example
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t—Nt >>ﬁt = 1us
oL 2V H (3.3)

teh = 2t, >> 2us

So a charging time in the tens of us regime is acceptable, and is much faster than the resistive case in (2.6).

There is a disadvantage to using this type of charging system [9]. This has some of the characteristics of a
resonant charging system. As such the Lg; and C elements can resonate together if the currents through the
inductors and charge on the capacitors are not all zero at the end of the discharge into the load. In addition the

output of the power supply must have low impedance compared to Z, and rise in a time short compared to ¢, .

~



4. Parallel Resisitive Charging

Another circuit topology for the charging network is a parallel one as in Fig. 4.1. In this case, there is a
direct connection from each capacitor through charging elements to the ¥_ or ¥, power supply. Consider first the

case of parallel resistors R, by setting L p to zero.

With zero initial charge on the capacitors and charge voltage Vy u(f), we have the voltage on each

capacitor (except for the last one due to the influence of Rg)

t
o et .
A 1-e 7 |u(?) _ @)

|

R

h‘
It

this well-known waveform rises to 90% in about 2.3 7 , so we might choose
toh = 237 ' 4.2)

or some larger number.

During the Marx erection process these resistors load the capacitors, removing some charge. With the
Marx switches closed the symmetry of the network allows both negative and positive power supply voltages to be
set to zero. We have a resistance of R, /2 to ground just after each odd numbered capacitor. For the present let us
assume that R, >> R, so that we can neglect the presence of the Rg resistors. Let us then consider how much
the R; loading reduces the erected Marx voltage ¥;. (Again the rightmost Ry is a special case that needs to be

comparable to R, . This is neglected for the present.)

The initial currents in the R p Tesistors after full voltage is reached are given by the voltages 2V, /R p for

odd n as indicated in Fig. 4.2, where now

Vo = nV_
2 .
I, = _Z,Vn =y (4.3)
Rp Rp
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Fig. 4.1. Parallel, Differential, Resistively and Inductively Charged Marx Generator.
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Fig. 4.2 Loading by Parallel Charging Resistors After Full Marx Voltage is Reached
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here ¢, is assumed short enough that the voltages have not been significantly reduced by the R, . These currents
remove charge from the capacitors and hence decrease the voltages. Considering just the leading terms (first time

derivatives) we have

dn; 1 2
ikl N I, = ——=— V.
dt c 2. In R.C 2 m
m=1 p n=1
S S
2R,C
N-1,2 N-1,2
d 2 " & 4 !
V2l === D Iy = - VoY m (4.4)
dr c = R,C ~ &
1

=—V_ l:N2 —[n—l]zjlfor oddnwith3<n<N-1
RpC

d
£ -V =0
7 [Vn -Vn-1]

where the summation of odd integers is found in [8]. The second upper index in the summation indicates that m

increments in steps of 2. Summing these derivatives we obtain the derivative of the Marx voltage (open circuit) as

N-12
d d T d d
Loy =S vy =| Y SV Vma2l| + SN
a N N l: dt[”’ ”'2]} dr !

m=3
N-1,2
-y > [Nz—[m—l]z]}rf—
R,C
LL m=
[ 2 N-12
[ [,,,_ﬂ
R,C | 2~
i N=22
PP ,,,}
R,C 7| 2 ~
( N2
1 N-1_ o 2 2
= —— V_ —N* - Z [Zm]
R,C 2 ~
__ 1 ¥ 1y2 _ 4N 2[1\/ 2+]}[2N 2+1]
R,C | 2 2 | 2
R VY iy Y —-]—[N—I]N[N—Z]:I
RpC L 2 6
S S Y 1Y N_[N-2]
R,C 2 6
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1
=———V_—|N-1|N|N+1 4.5
| r,c -3 NN ] (4.5)
~
Normalizing this by V() we obtain
1y 1N N—1][N+1]=—L£[N2-1] (4.6)
Vo dt R,C 3 R,C 3
This can be used to define a time constant ¢ p for the loading of the charging resistors as
1 avy 3
ty = —-|——X| = R,C
W ad N[NZ —1]
‘ 3
= R,Cy (4.7)
oz
3 R,Cy = 3 R,C as N
_)ﬁ p M = -]\,—2 p as —> o0
Constraining
~—
tp >> ty “4.8)
we have for our example
2 2
N N
R, = —1t, > —1, = 33KQ 49
P3¢ ® 3¢’ (49
Considering the charging (4.2) gives for our example
2 2
te, = 23 RpC = 2.3NTtp >> 2.3NTtv = 31us (4.10)
which is a modest improvement over (2.6).
The rightmost charging resistors need to withstand a megavolt (in our example) for about 100 ns, a
significant stress.
S



5. Parallel Inductive Charging

One can, of coufse, consider parallel inductive loading where the resistances Ry, are replaced by
inductances Lj,. In this case the capacitors are resonantly charged and reach their peak voltages 2 ¥, in one half

cycle given by

1
toh = ;z[ch]E (5.1)

which we require to be large compared to ¢,,. This gives

tzh t2
L, = < > Y . -~ 0.25 uH : (5.2)
P 7z2C r:ZC

when erected the open-circuit voltage at the load is 2V} .

The analysis of the previous section can be modified for this case. Replace R p by sL, where s=Q+ jo

is the Laplace-transform variable or complex frequency. In (4.3) we then have a leading term

I, = %”— V_ tu(t) (5.2)

P
Inserting this in (4.4) and (4.5) we obtain

d 1 1
—VN = ——L-p—CV_ E[N-l]N[N+1]tu(t) (5.3)

So it is the second time derivative that is significant and we have

1dvy 11
o d L,C 3

Our loading then decreases the voltage proportional to time squared. We then define the time constant as

14

[V -1][N+1] (54) ,
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L vy | 3 % 1
f, = |-— N 2 T cl2
P { Vo o dr? } [N -1][N+1] (€] , (5.5)
N 1
—)WI:LPC]Z as N>
Constraining

Ip >> ty (5.6)

we have for our example
N

Ly = —12 >> 2 = 033mH (5.7)
3C

This result replaces (5.2), being a more severe constraint. This implies a charging time

= 7N N
tep, = ﬂ[LpC:'2 == tp > —\/—5

3

ty = 3.6 us (5.8)

This parallel inductive charging time can then be in the tens of us regime, similar to the series-inductive-

charging result in (3.3). As with series inductive charging this case can have resonances that may be troublesome.
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6. Series Resistors and Inductors for Parallel Charging

Now let the parallel charging elements comprise the series combination or resistors and inductors as in

Fig. 4.1. During the charging cycle the voitage on each capacitor is

1
Vis) _ sC.
Ve

-1
< = [1ssRycs?L,c] 57!
R, + sL,+— 7

P P sC

l
]

Laplace-transform over time ¢ (6.1)

s =Q+ jo = Laplace-transform variable or complex frequency

If Lp =0 we have

) _ [1 +sr]—1 571

Ve
, t
YO e | u (6.2)
Ve
T = R,C

consistent with (4.1).

For the special case of critical damping we have

7 = R,C = 2[ch]5 (6.3)

76 _ [Hﬁr .

Ve 2

2 (6.4)
ra l—{l+£}e )
Vi T
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For comparison the two time domain waveforms in (6.2) and (6.4) are plotted in Fig. 6.1. As we can see the
critically dumped waveform starts more slowly but crosses over the R,C waveform at 7/7 = 1.25 to give a
similar charging time. In more detail we can see that the early-time behavior is better for the resistive/inductive case
due to its initial quadratic behavior as in (5.4). This slows the initial charging to keep voltage off the Marx switches
longer than the ramp behavior of the resistive case. The late-time behavior is also better for the resistive/inductive
charging because, as we can see, the voltage more rapidly approaches the full-charge value. To give a few numbers,
for /7 =2.5 the resistive charging is 0.92 versus 0.96 for resistive/inductive charging, a change from 8% lack to
2% lack from final value. For #/7=3.3 the resistive charging is 0.963 versus 0.99 for resistive/inductive charging,

a change from about 4% lack to 1% lack from final value.

During the Marx erection, the current passing through R, is initially limited by L, which takes most of
the voltage drop. If we use the results of Section 5 for determining the required inductance to make ¢ p large

compared to ¢,, we have

1
3 —
1, = %[chjz >> 1y (6.5)

giving for our example

N22 N22

L, = >> S ter = 033mH (6.6)

p = 3¢ P
Then we have

1

= 2 2
T = RpC = 2[ch]2 = 'ﬁth >> ENIV =23 HS
1 6.7)
Ly, 12 2 N 2 N
p
= 2| — = —— — —1t, = 0575k
Ry 2[6] \/§CP>>\/§CIV 0.575 kQ

This is a significant improvement over purely resistive parallel charging, allowing charging in tens of s .

A significant advantage of the series R,L), is that during the Marx erection most of the voltage is across
L, instead of R, , thereby protecting the resistor to some degree. By increasing L, (and R, proportionally) then
ler becomes a smaller portion of 7, and less voltage appears across R, during this time. Another advantage of the
inclusion of the inductors is that, at the beginning of the charging cycle, the current through each inductor is

approximately zero (a ramp as in (5.2)). This can help by giving the Marx switches more time to recover).
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7. Concluding Remarks

Of the several techniques for Marx charging, inductive charging (series and parallel) is faster than resistive
charging. It also has a voltage-doubling property. The parallel resistive charging is modestly faster than the series
resistive charging. Parallel charging has the advantage that all the Marx capacitors are charged in approximately the
same time. Parallel charging with series Rj,,L,, is about as fast as inductive charging with the critical damping
avoiding resonances. The inclusion of L, in the parallel charging also has the advantage that after the Marx
discharges the inductors limit the initial charging current, thereby giving more time for the Marx switches to
recover. The inductors also protect the resistors by taking most of the voltage during the Marx high-voltage time.
Not considered here is the use of combinations of resistors and inductors in the series charging-circuit topology. It

can also be noted that various hybrids of series and parallel charging networks are also possible.

In this paper we have assumed a differential charging system. This is in contrast to the single-ended form
sometimes used [5]. While the differential form has much to recommend it, there is a lack of symmetry in the last
(rightmost) parallel charging and grounding elements (fig. 4.1). In order to maintain the same charging time for the

last capacitor we can set

L, =1L + L.
PP s ©.1)
Rp + Rg

=
A ]
f

where the prime denotes the modified values of these last elements. This increases the loading there, and to

minimize this, consistent with (9.1) we can set

L
’ - ’ — 14
Lp = Lp =
(9.2)
, , Rp
Rp = Rg = —2—

The loading when the Marx is erected is about four times that of the other L,,R, elements. While this is at a
position of near-maximum erected voltage, for large N this is a small correction. Furthermore, this loading occurs
for a time less than #,, since it occurs after the last Marx switch is closed. An alternate approach which removes this

exception is to select N odd.

The inclusion of inductors in the charging network has a potential problem in that the large magnetic fields
produced by a coil can couple to other parts of the Marx including other coils. If desired, one can suppress this
coupling by designing a coil which suppresses the external magnetic field while retaining a large internal magnetic

field. See [1] for the general theory. A simpler bisolenoidal form which suppresses the magnetic-dipole term is

19



discussed in [2]. In this latter case for each loop turn its magnetic-dipole moment is cancelled by another loop turn

with opposite sense, but displaced as part of a second parallel solenoid so that the magnetic fluxes do not cancel.

As the foregoing calculations indicate, the charging time #.; needs to be much greater than some multiple
of the Marx high-voltage time ¢, . This may be overly conservative in that the Marx loading during the high-voltage
time does not begin (approximately) until the Marx switches leading up to the particular parallel (and ground)
loading elements have all closed. So for many of the elements, especially the last (rightmost) few, the loading
occurs for a time somewhat less than #,. Because the voltage on these last elements is near the full Marx voltage
here, this loading is the most significant here. So some average of effective value of f, may be more useful in the

loading formulae.

One can reduce f,, and thereby increase the PRF by decreasing f, , but this is another subject.
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