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Abstract

The peaking circuit has been extensively used in NEMP simulators. The ideal
output waveform for these simulators is a fast-rising, double exponential puise. This paper
develops a set of equations that can be used to calculate the value of the peaking capacitance
and the switching time for a circuit with inductance and resistance in the three legs of the
circuit. While this paper does not provide a closed-form solution for these two unknowns,

it provides a set of simultaneous equations that can be solved using a calculator or a
computer. ' .
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THE PEAKING CIRCUIT REVISITED

INTRODUCTION

The peaking circuit has been used extensively in EMP simulators. The ideal output
puise from these simulators is an overdamped, double exponential pulse with a rise time
that is an order of magnitude, or more, shorter than the exponential decay. The pulse en-
ergy for these generators is usually stored in a Marx generator which has a substantial in-
ductance. The peaking circuit is used to charge this inductance before the simulator is
switched into its load. '

The full first-order circuit of a pulse generator of this type is shown in Figure 1.
The source element in the circuit, the Marx generator, is represented by elements Cy, Ly,
R1, and S1. The discharge form this circuit is initiated by closing Sy. This redistributes
the energy in the Marx in the reactive elements L.j, Cp, and L, and deposits some energy
in the resistive losses in the circuit, R) and Rs.

The elements Cy, Ly, and Ry comprise the peaking circuit. Switch S3 closes when
the peaking leg is charged to the required voltage. This energizes the oad circuit repre-

‘sented by L3 and R3.

A circuit of this type was analyzed by Lupton! for the case where Lp =L3 =R =
Rz =0and C;» Cp. Subsequently the circuit was analyzed by the author? under generally
the same conditions, except that C; 2 Cp. Both these analyses gave the value of C; and the
time delay between the closure of ) and S; for generating an cxpohential output pulse in
the load. These solutions are in closed form.

The analysis described in this paper extends this earlier work. It develops a set of
equations that can be ﬁsed to determine the initial voltage on Cj, the values of C1 and C»,
the time delay between switch closures and the output wave rise time for the full circuit
shown in Figure 1. The solution is for the case where the circuit generates the required
double exponential output pulse shape.

The resulting equations have not been solved in closed form. However, they can
be solved numerically using a digital computer, a calculator or even a slide rule.

1 Waveform Distortion from Peaking Circuit Switch Jitter, William H. Lupton NRL Memorandum
Report 1829, November 1967 and Not 1 “Pulsed Electrical Power Circuit and Electromagnetic System
Design Notes”. AFWL TR 73-166, April 1973. _

2 Solution of Peaking Equation for Finite Storage Capacitor Size, by John L. Harrison, Note 32 “Pulsed
Electrical Power Circuit and Electromagnetic System Design Notes”, January 1973.
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Figure 1. Schematic of circuit analyzed



GENERAL OUTLINE OF THE METHOD USED

The equations for the Figure 1 circuit are analyzed separately for the time before
switch S3 closes, and the time after this switch closes. Real time, t, measured from the
time S; closes, is used for the first analysis, and the retarded time

"=t -
T t3

is used for the second analysis. Here t3 is the closure time of S3.

The analysis is straightforward for the early time solution since this part of the cir-
cuit is a simple damped series LCR circuit. To solve the late time circuit, the differential
equations for the circuit are developed, and the circuit is evaluated by forcing the required

solution
v ( _r _t_'J
T T '
i2 (t) = R+O e - 2
3 _ (1)
and assuming
' -t .
T T
s fey — 1 _ 2
iy (tY = Ale A2e @
where
Vo = the specified output voltage
71 = the spe_ciﬁed decay time constant
T2 = 1isthe time constant of the rise time which is determined by the circuit pa-

rameters.

Equations (1) and (2) are differentiated and integrated, and the resulting values are
substituted in the differential equation of the current. The equations are expressed in terms
containing exp (- £'/T1), terms containing exp (- t /T2) and terms with no exponential.
These three types of terms are orthogonal, so three independent sets of equations can now
be written.

The equations developed using the above techniques, and the charge conservation

.equation
O = 0

C,V 0 =5 (T,—7T ’
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which equates the initial charge on capacitor C; to the total charge delivered to the load, are
then used to determine:

+  The initial voltage, V¢ (0), on C;

*  The capacitance of Cy

+  The capacitance of Cp

*  The voltage on C7 at time 13

*  The current, 11 (t3), around the initial loop at the time t3

¢ The time constant, T2, of the output current rise time

*  The time t3, when S3 closes.

- It is assumed that the values of all other circuit elements are known.

DIMENSIONLESS QUANTITIES
The following dimensionless quantities will be used in the equations developed in

the analysis
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It will be seen that a3 and a3 are constants, and that the other quantities are variables
since they include the variables C; and/or T3 in their formulation.

ANALYSIS OF CIRCUIT WITH S3 CLOSED

The circuit equations for times greater than t3, the time when S3 closes, are
di ' -

t
1 S T S
Val(ts) “Ll'dT‘Rlll"c_lg i de

=Veoa(t3) "y T TRy (1)
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i,
= L3_&ET +R?’12 o (4)

As mentioned above, these equations are written in the retarded time

t =t-t
: 3

Equations (1) and (2) are now used to rewrite Equation (4) giving
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2 agRaT +a,R, (Ty-apagReCh) T
St and equating the exp (- t'/12) terms of Equation (5), we get
A %G
27 1 0 _
2 (8
and
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_ Finally, equating the constant terms of Equation (5), and substituting the values of
Equations (6) and (8) for A and Ap, we get '

Va (*9) = (21237 01%3) Vg R an
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The value of ij at time t3 is obtained from Equations (2)

aa,Cy bybCy
T B 0

i (tyy = \s
1('3) ( . T, an

The two equations for Cy, Equations (7) and (9), reduce the number of independent
variables in the above equations to two; since if the value of any one of the variables Cy,
'Cy, or 13 are known, all the equations can be solved. Cj and t3 will be used as the inde-

pendent variables.

ANALYSIS OF THE CIRCUIT BEFORE S3 CLOSES
Equation (3) can be rewritten to give the value of the initial voltage on Cj in terms
of the two independent variables C; and T9. The equations for the voltage V1 on C; and
current i1 can then be formulated for the time t3 when S3 closes. Time t3 then becomes a """" \
third independent variable. '
The formula for Vi (t3) and i1 (t3) gives us two equations in variables Cj, T3, and
t3 since the values must equal the values givén in Equations (10) and (11). Thus, we now

have three simultaneous equations with three independent variables. These equations are

| ("1~ 223R3C) % _ (F2 ~5P3R5C)%
23R4T +a, R, (7 ~2)24R5CH - baR4T, + bR, (T, - b DaRLCY)

from Equations (7) and (9);
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from Equations (10} and (11) and the solution of the circuit equations before 33 closes.
Here

C, +C,
(1)) =
0 J (F1tha) &

Zé ) ‘/(L1+L2) (C1+_C2) |

CICZ
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1 2

The above equations are more complex than they appear because the quantities aj,
b1, bz, and b3 contain one or both of the variables C and T3 in their formulation.

SOLUTION OF EQUATIONS

The above equations have been solved for a range of values of Ly, L3, Ry, and Ra

 for given values of V¢ (0), Ly, T1, and R3. However, these solutions have not been re-
- duced to a form that is suitable for inclusion in this paper. Thus, an analysis of the effects

of losses in the initial loop and inductance in the peaking an load leg of the circuit on the
value of the peaking capacitance and the initial charge on the energy store will not be re-

~* ported in this paper.
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CONCLUSIONS - o
The above analysis shows that the peaking circuit can be designed to generate a

pure double exponential pulse in a real circuit with losses and inductance in all of the legs

of the circuit. '
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