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Abstract

A classical problem in generating electromagnetic fields in a closed perfectly
conducting waveguide involves passing an electron beam modulated at some par-
ticular frequency through the guide. This paper discusses this problem in the
‘context of an idealized sheet beam for which one can set up a simple boundary

value problem for the Hy g mode in a conventional rectangular waveguide.
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I. Introduction

One of the classical problems of microwave engineering is that of con-
verting a modulated electron beam into a sinusoidal electromagnetic wave in or
on some waveguiding structure. This is formulated.in terms of integrals over

the current weighted by the appropriate waveguide mode [3].

This paper considers a canonical problem which conceﬁtually simplifies
the problem. In a conventional rectangular waveguide the electron beam is
chosen so as to match the Hl,O mode {lowest order mbde) in a form which
allows the solution of a simple boundary-value problem. This gives some
simple formulas for the modal amplitude. Noting the linear apﬁroximation
concerning the electron beam one can estimate limitations on the modal

amplitude, consistent with the beam parameters.




II. Canonical Form of Sheet Beam Traversing Waveguide

As illustrated for two cases in Figure 2.1, let there be a sheet beanm
on the z=0 plane traversing rectangular waveguides with surface current
density (idealized) as

ES(X,Y:t) = Io %; sin(gz) [1 + v cos(wot[].iy
(2.1)

I0 = average total current (average over time)

where v can be regarded as some kind of modulation efficiency associated with
the lowest H mode (Hl,O mode) and radian frequency v - Tﬁis canonical form is
chosen for its ease in matching to the Hl,O mode, but it has limitations. For
example, it does not allow for the transit time of the electrons across the
height b of the guide, but if b is small-compared to a this will not be a

severe limitation.

More generally one can define a sheet beam in the form
N :
Joxy,t) = 1) fCX.y,t)

Tz . :‘:t(x,y,t) =0
(2.2)
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T = %— = = period of T
o

o

a T

f % f Ty . %(X,Y,t) dt dx = 1 (normalization)

0 0

-+
In this form Js can contain harmonics -of fo’ a more realistic situation.

A special form which still allows for electron transit across the guide is’
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Figure 2.1. Electron Beam Traversing Rectangular Waveguide (N



' "f(x,ly,t) = £(x) g(t - \Ir)iy

0< |v] <e (v can be + or -)

a 4{%‘ | : (2.3)

_/f(x)A-l
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Relating this to the form in (2.1) one can think of v as representing the

component of the actual distribution at frequency fo’ distributed uniformly

in y, and as sin(f“) in x%.

Using the form in (2.1) one can integrate over a period and the guide

cross section as .

T b

a ) 7
= _% fff js(x’y't) . -iy sin(:—x) cos (wot) dx dy dt = IO
0 %0 ,

Similarly using the form in (2.2) gives a more general expression

col3

(2.4)

4a

T . : |
/ f %(x,y,t) . —]:y sin(zaz) cos(wot) dx.dy dc (2.5)
0 (43 '

=i

with appropriate attention to the phase in t or with a phase shift added to

w t to maximize the resulting magnitude. Comparing these forms allows one to

compare the efficiencies of various modulated beams for exciting the Hy o mode.



Note that this still neglects some phenomena, such as beam spreading in the
z direction, but this could also be included with appropriate weight from the

electric field in the Hl 0 mode .

Assuming the special form for t as in (2.3) we have

Defining an average over y of the time function as

-

a

X -1, f £(x) sin(z—x) dx

0

o'l=
==

. ..
f g(t - I) cos(wot) dt dyy (2.6)
0

- b
G(t) a%f gt - %) dy | | (2.7)
0 ' ' :
gives
a T
X =1 f £(x) sin(l'—-) dx %f G(t) cos (wot) dt (2.8) ‘;
0 0

as a more general form for the modulation efficiency. Again hote the defini-
tion of phase (or t=0) to maximize the integral with respect to the cos(wot)

weight (or null with respect to a sin(wot) weight).

For another shapé of beam let us suppose

f(x).s %E sin(gg)

(2.9

:2 for cos(wot) >0
G(t) =

0 for_cos(wot) <0

where b is assumed small enough that electron velocities can be assumed -

infinite. This square-wave modulation gives
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- which is a sligﬁt increase over (2.4) for wv=l,

(2.10)

Another idealized beam is formed by bunching the beam in the center of

the guide (x—-a/2) for which

£(x) = 6(x - )

Then still using the square-wave form of G(t) we have

. i |
. -
X = Io T fG(t) cos(wot) dt
. 0 .
-2
w0

which is a small increase again.

(2.11)

(2.12)

' Comparing these various results one can then use the form in (2.1) to _

obtain estimates of the Hj o excitation, noting that other interesting forms -

of beam modulation give similar answers.
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ITI. Ma;ching to Hl,O Mode
The varioué modes of a closed perfectly conducting waveguide are a
classical problem in electromagnetic theory which are discussed in numerous
places (e.g. [1,3]). For a rectangular waveguide, these are espécially well
known. The lowest order H mode is the Hy o mode described for radian fre-
quency w_ and propagation in the +z direction by [1].

’jw t-v_ 2z
= . (TR 2 o z
Et = ;zh Ho 51n(z—) ly e

(3.1)
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where H0 is some scaling constant to be computed. Note that the frequency is
chosen as v Pper the previous section (and likewise for fo and Ab). Appro-
priate change of signs gives propagation in the -z direction. Here (3.1)
gives the complex form; for present purposes we need only consider the real

- part when matching to the bean.

As discussed in [1] for optimum power-handling capability one should
operate with the frequency just below the cutoff frequency of the next H mode
which has a wavelength of the larger of a and 2b. Then in the limit we can
take ' ' '
A= % A, =a,0<bx

M

~ .866 (3.3)

MW

‘h
== -1 =
Zh Z0 §h 435Q

recognizing that the actual wavelength is just a little longer than this,
Note that with the restriction on b we still have some flexibility of choosing

b to match beam parameters.

Now referring back to Figure 2.1 let us match this H) o mode to the
electron beam. In Figure 2.1A there is a quarter wavelength section of wave-
guide terminated in a perfectly conducting surface (short circuit) with the
guide wavelength given by .

- -1
Ag X, ¢ (3.4)
In this case the magnetic field tangential to and just behind the z=0 plane

(z=0-) in the Hl o Mode is zero. The boundary condition at z=0 is
. ]

-
- H(x:y:zlt)

Jox,y,t) =1 X [H(x,y.z,t) 2=0+

z=0-] (3.5)

Applying this to the Hy 3 mode (real part from (3.1)) with radian frequency

v and the form of the surface current density in (2.1) we have

H =1 v o - (3.6)



As indicated in the figure, there is one wave propagating away from the beam

in the +z direction. Let us designate this case by N-1.

Another case is given in Figure 2.1B which we designate by N=2. Here

there are two waves propagating away from the beam in the +z and -z direc-

tions. Noting from symmetry that, except for some signs, the two waves are

equal, and applying (3.5) we have

.S : '
2H0 = Io 22 Y 3.
Summarizing both cases we have
Io T
HO =N 2aV (3.

In this form we can consider both configurations in Figure 2.1 in the same

formulas.

Having the magnetic field in the Hy g mode one also has the peak

- electric field as

7)

8)

-

I -
: o il
Eo = zh Ho = zh N Za” (3.9)
One can also then define a peak "voltage" associated with the Hy o mode as
b
v E T dy = E i Hb = o b (3.10)
o t a y T 5P ZpHb =2 § 227 . : )
x= 2
0 2 : :
The power in the waveguide (Hy 5 mode) is
' b a
P =N Box i 1 dax 4q
v [ £ t] iy W
o 0 1]z=0+
- (3.11)

=N Eo H0 égcosz(wot)
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which is the usual average sense is

1 ab o L _ 8,
PW T2 Pw - N 4 Eo Ho N 4 zh Ho
avg max
B2 | Lo (3.12)
- 3 o _x -2 T b 4 2
N 4 Zh g Y vo Io N16a? Zh Io

Letting Ve be the beam voltage, i.e., the'positive potential through
which the electrons have been accelerated before passing through the waveguide
(or equivalently the electron energy in e.V.) the average power available in

the beam is (with I0 taken positive)

P -V, I - (3.13)

I
v? Z, 59 (3.14)

Note that other types of modulated beams can be considered by using (from

(2.4) and (2.5)) an effective parameter for v as

(3.15)

vV =

eff

A joo
o[

with, for example, the special results as in (2.10) and (2.12). However,
~one needs to be cautious here as the efficiencies approach unity because the
electrons give up energy to the field and slow down from their initial speeds,

making the problem nonlinear.

There are other ways to look at the onset of nonlinearities, this
. being a limitation on the basic linear model. Compare Vo to Ve (both taken
positive)}. For small b 3- electron transit time across the guide can be

neglected we can require

=

oszZ=<1 . (3.18)
v, o o ‘

11



This merely states that during the peak retarding electric field the electrons

can 1ose no more than their initial energy.

Another potential limitation concerns the space charge in the electron
beam. Assuming an electron speed v, the sheet beam (assuming only a y com-

ponent)} has a surface charge density

J
s

- —L i '
P - (negative) . (3.17?

This gives a normal electric field (f z direction)

E, - ;% - ;LV -%Tf;—l—zo 3, (3.18)
y
Using the ideal form of 35 in (2.1) gives
ES-%.!—"’TZO I %sin(:—x) [1+u.cos(wot)] (3.19)
with maximum value
E, =i_frTZo . %-112'-‘1 (3.20)

max

" Comparing this to the peak electric field for the Hl o mode in (3 9) we can

see that they are comparable for v mear 1 and |v| near c.

As one Increases the efficiency of conversion g of average beam power
to average Hl,O mode power (i.e. as n—l) we then expect nonlinearities to
become significant. In such a case the present formulas break down and much
more detailed calculations are appropriate. Note that (3.14) can be rear-

ranged (using the effective beam parameter in (3.13)) as

12
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_e__:_l._ﬁ 2 Ei
I, 116 "eff a¥
b Zn
=X, 5 {3.21)
2
_lx2 . _4|x
X=5916 Yeff " q I,
where x is of rough order 1 under optimum conditions (n and v of order 1).

eff
Note then that Ve/Io (dimensionally a resistance for the electron beam) is

of the order b/a times Zh (the'modal'impedance) divided by N (the number of
"parallel" waveguide outputs). For given beam parameters this gives some

rough estimate of the optimum b/a for the waveguide,

13



Iv. Transformation of Guide Height

The choice of a is related to the choice of v, or equivalently Ao’
with
a< AO < 2a (4.10)

but ideally near a [1l] with

0<b <. (4.2)

ra

Within this last restriction, the guide wavelength is not a function of b.
Efficiency of coupling the electron beam to the Hy o mode then influences the
?

choice of b as in (3.21).

Assuming that the desired value of b is <<a/2 one may wish to change
this value to some other, say a/2, the usual dimension of a rectangular wave-
guide. Other useful choices for this parameter lie in the range given by
(4.2). As discussed in [1] perfectly conducting.sheets can be placed on
planes of constant y without perturbing the Hl,O mode. This can be used to
divide such a mode in one waveguide into Hl,O modes on 2 or more wavéguides,
or combine Hl,O modes from 2 or more waveguides into one mode in a single

waveguide.

So starting with one height b1 at the electron beam, the problem is to
| transform the waveguide height to some other value b3. Such transformers come
in many kinds [2,3]. A simple example is the quarter-wave transformer illus-
trated in Figure 4.1. The transformer section is a quarter guide wavelength

long and has height b2.given by
b, = /b. b (4.3)

Note that due to the special properties of the Hl,O mode, the width a can be
the same for all sections and the guide wavelength is not a function of the
height. However, the equivalent impedance of the'guide is Zh b/a.(i.e.
(bEt)/(aHt)) so that (4.3) is related to the requirement that the transformer
section have a geometric mean impedance. Note that for various reasons (guch

as bandwidth) one may wish to use a more gradual type of transformer section.

14
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Figure 4.1. Quarter-Wave Transformer in Rectangular Waveguide
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v. Compensation for Finite Electron Speed

In Section 2 the electron beam traversing the waveguide on the z=0
plane is given a speed v, which is idealized as infinite for some purpoées
(as in (2.1)). Provided b is sufficiently small (<<a/2) and |v/c| is not too
small (compared to 1) then this is an appropriate approximation. Still one
may wish to compensate for the finite electron speed to improve the execitation

efficiency for the Hi o mode.

As in [1] let us divide the guide at planes of constant y so that the
transit time of the electrons across the spacing A between the conducting
sheets is made as small as desired. Then in the waveguides of height A the

electron transit-time is not significant and Wwe can approximate in (2.7) as
.2 Ly |
6(o) = gl - ) (5.1)

for each of these guides. The different guides will, however, have different

phases on their Hy ; modes (reflected in the y/v term in g).

Consider the quarter-wave section as in Figure 2.1A and Figure 4.1A F

l‘\\-‘,/

with shorting surface to provide an open circuit (no tangential magnetic
field) at z=0-. This concept of dividing the guide on planes of comstant y
is illustrated in Figure 5.1. Here the electron beam on the z=0 plane has
electrons traveling in the -y direction (giving current in the +y direction).
Note that the finite speed of the electrons means that the signal at frequency
fo is first induced in the uppermost subguide, and is progressively induced
in the lower subguides. As illustrated in Figure 5.1, the wavefront (in a
phase speed sense) has moved farther to the left in the upper subguides (and
reflects back first in these). This provides én‘open circuit at z=0- at each
subguide (for frequency fo) with the phase of the electriec field at the sub-
guide openings matched to that of the electron beam propagating in the -y

direction.

For a wavegulde transporting power away from the electron beam, the
guide can be subdivided as in Figure 5.2 so that the subguides are of differ-
ent lengths. There are many different ways to do this. The exaﬁple in Figure
5.2 shows one way involving an E-plane bend of the wavegﬁide. Let this bend .
be described by . o ) ' . )

16
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wl = inner radius

oy
]

2 outer radius

¢ = angle of bend (radians) (5.2)

=02 _Db
Te T v Be
- L1 2
=¥ _ - R
B = i v+ Ve:l <1
MO (5.3)
Vm = energy of electron at rest in potential units '

It

.51 MV

The additional transit time {in a phase-velocity sense) in the outer subguide

(over the inner one) is just

v_ = phase speed in wavéguide (5.4)
Yazla_

- = -1
c Ao gh >1

Equating these two times so that the waves are all in phase on the recombina-

. tion plane (perpendicular to the new guide direction after the bepd) gives

. _ b

Te - Tg - Be v
| (5.5)
o]

SR I g
N ]

v _
¢ =2 = ge<1l > 1 radian
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The angle of bend is rather large, and if this is undesirable other geometries
‘can be used to lengthen the subguides first excited by the electron beam, in-
cluding ﬁhysical separation of the subguldes (as discussed in [1]). One could
also vary the width a of the subguides to appropriately increase the phase

speeds (with appropriate attention to any impedance changes).

One also needs to integrate the electron beam with the waveguide struc-
ture. The beam should pass through the conducting walls without disconti-
nuities which would significantly perturb the desired fields. A classical
technique for doing this is to replace portions of the walls through which the
beam is to pass by a conducting grid or grating as in Figure 5.3. Most of the
beam then passes through the holes or separation between the conductors. One
also needs to appropriately comnect the beam source to one wall and a beam

- exit or dump to the opposite wall of the overall waveguide.

20
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VI. Concluding Remarks

While the basic concepts are rather straightforward, there are various
problems in optimizing the coupling of a modulated electro; beam to a wave-
guide. The present analysis is linear and can be used to estimate various
parameters. However, an efficient design will remove a significant -portion
of the beam energy, making the problem nonlinedr for which a more detailed
analysis and/or experiments are appropriate. One can "tune up" various
configurations such as by varying the shorted quarter-wave section (for N=1)
to present a slightly reactive impedance at the electron beam to try to com-
pensate for various non-ideal properties of the beam. Transformer sections of
waveguide can also be varied to optimize the performance. In an experimental

configuration one can try to make various dimensions (such as bl) variable to

determine best operating conditions.
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