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Abstract .

Development of a periodic structure to couple slow and fast wave trans-
mission lines is described. The slow wave line is a coaxial line with rectan-
gular corrugations on the outer conductor and with smooth metallic walle for
the inner conductor. The fast wave structure is a coaxial line with smooth
inner and outer metallic conductors. or with-outer conductors where the corru-
gétion depth approaches zero. The unit celis. or quarter wave sections, are
developed for both binomial and Chebyshev coefficients. The Chebyshev trans-
former ig designed for arbitrary bandwidthe from 1.0 to larger numbers, an&
when the bandwidth equals 1.0, the binomial and Chebyshev transformers are the
Same.

Chebyshev coefficients are found with unppblished methods. They are then
applied in-calculating charactgristic impedances for prescribed input aﬁd out-
put line impedances. Thé_modification here is inclusion bf_slow/fast'wave |

velocities to the characteristic impedances.
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i. Introduction ' : .

This report describes a method of design for transformer struciures

capable of matching slow ﬁave transmission lines with different characteristic
impedances for given wavelengths. Degign technigques were formerly develoved
by Seymour_Cohn [1] for fast wave lines. This study modifies Cohn's tech-
niques for slow wave lines. The slow wave structure coﬁsxsts 0f a succession
of different characteristic impedances gpaced by equal electrical lengths of
glow wave lines. The slow wave line may be coaxial, waveguide, or paralletl
planes. With a given number of steps, the ﬁodified method yields the maximum
bandwidth for a given VSWR,-OP a minimum VSWR for a given bandwidth. It is
called the Chebyshev transformer because the Chebyshev polynomials are used 1in

its formulation.
II. Quarter Wave Transformers and Small Reflectiong

Quarter wave transformers are found as intermediate matching sections
connecting two transmission lines with different characteristic impedances.
When matching two lines over a narrow baﬁd of fregquencies. one transformer
gection is #dequate; For a wide bandwidth, several intermediate transformer
sectiong are required to achieve the same overall gstanding wave ratioc (VSWR}.

The design of a quarter wave transformer section is described by matching
a transmission line of real characteristic impedance Z(1) to a resistive load
impedance Z(3). The transformer section with a characteristic impedance Z{2)

and a quarter wavelength long connects the transmission line and the load

—

Z(1) 2(2) _ Z2(3)

Z(3), seen in Fig. 2.

&— _ L

Fig. 2.1 A quarter wave transiormer.




The eifective load impedance Z secen be the main Iiine when £ = ) 74 is

S Z(3) cos (BL ) + 4 Z(2) sin (BL )
K'j) Z = Z(2)
Z2{2} cos (B2} + j Z(3) =in (8L
2 .
Z{2) 2¢2)
= 7(2) = . {(2.1)
Z2(3) Z(3)

where £ is the phase comstant. If Z(2) is selected to be equal to
/TETITETET, then Z equals Z(1) and the load impedance is matched to the
characterist;c impedance of the main transmission line. For frequencies or
transformer lengths where BL is noit a quarter wavelength, or lengths not
equal to (N A/2 + A/4)}, the reflection coefficient is
Z - Z2{1) 2(3) - Z(1)

= = ) (2.2}
Z + Z(1) Z(1) + Z(3) + § 2 Y2(1)Z(3) tan (gL )

2
where Eq. (2.1) and Z(2) equale Z{1)Z{(3) were used.

o When applied to many intermediate transformer sections, the veflection
{w:> coefficients for several reflecting impedances are déveloped becauge they
provide simpler approximations for finding the overall reflection coefficient.
The approximations are made by considering only first order reflections
and dropping terms with multiply reflected waves.

In Fig. 2.2, the reflection coeifficients I'(l), T(2}, I'(3). and

transmission coefficients T{12), T(21) are

. Z(1) - 2(1)
T (1) = : re2)'=-r(l . (2.3)
Z(1) + Z(1)

22.(2) 2Z (1)

T(12) = 1 + T(1) = . T(12) = 1+ T(2) = . (2.4)
Z(1) + 2(2) Z(1) + Z(2)
Z(3) - Z2(2)

r(3) = (2.5

Z(3) + Z2(2)
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T(12) ¢—

L : : »
1 — T(li)_ “5rr(21 F(S):L
L Z(3)

2(1) a{2)

r &

- -
'%—w————— B =@ }l

Fig. 2.2. Transformer with two reflecting junctions.

- The incident electric field has unit amplitude and the reflected field has a

complex ampliitude T . When the incident field reaches the first junction., the

first partial reflected and transmitied waves are I' (1) an& T(21),

respectively. When thisg partial transmitied wave reachés the second junction

or load, paft 0f the wave is reflected with a reflection coefficient I'(3) to

create a wave,

| i 28
F(3)T(21) e . (2.6a]

incident upon the first junction from the load. The expénent indicates an
electriqal distance gL = & from first to second junction, and the same di=-
tance R4 = ® from first to second junction, for a total distance 2L = 2 6.
Part of the wave is transmitted and becomes part of the overaill reflection

coefficient,

-1 26
TOI2ITZNIT (3} ¢ . : {(2.6b) .
and part is reflected back to the load.
-j 29 .
: T2IIT (21T {3) e . (2.6¢)

This reflected wave travels to the load and part of the wave is reflected back

' to the first junction with amplitude,

2 -7 4 6 .
T(21I0(2)T(3) e . (2.64)
and at this junction, the transmitted wave isg o _ ;/A\)
2 -i 46

T(12)T(21)T(2)T(3) e . . (2.6e}
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with a wave reflected toward the icad.

T . 2 2 -i46
xmg) T(21)T(2) T(3) e . {2.6f)

after reflection at the load is incident upon the first junction with
amplitude,

2 3 -j66# |
T(ZUT(2) T(3) e -, | (2.68)

' creating another part of the overall reflection coefficient,

: 2 3 ~i6#8
T{12)T21IT (2 T(3) e (2.6R)

Thig reflection and transmission continues forever. The infinite sum of
reflected waves becomes the overall reflection coefficient,

-i 268 2 -i 48
T(D) + T(I2)T2NT(3) e . + TUDT(2L)T3) T(2) e

=
i

3 2 -i 6 9 ' 4 3 -184%
+ TOI2IT(2HT(3) T(2) e + TI)T(2AIT(3) T(2) e

. 5 4 -5 10 6
(f') fTUDTEDIGID () e e

. -j 28 N= = ¥ N -j2N6
T(1) & T(12)T(21)T(3) e E T(2) r(3) e . {(2.7)

u

and with the series. ' N=0

N S| ' -
E X =(1-% ,X<1, (2.8)
0 _ ’

the reflection coefficient 1=

-i 2.8
- TADT2DT(3) e
I =T(1) + (2.9)
-i 28 -
1 - T(2T(3) e

and replacing T(12}) by } - ['(1) and T(21) by 1 + T (1),

-j 2 8
T{1y +T(3) e
r = . . {2.10)
=i 24
1 + P (T3} e

(fﬁv  If the product of the magnitudes I (1) and I (3) is much less than 1.0. T is

approximated by



-j 2 8 .
I =T(1) +T(3) e (2.11)

g0 that when reflection magnitudes are less than 0.3 for example, the error in

I' is legs than 8 percent.
III. Multisection Quarter Wave Transformers

For an N-section gquarter wave transformer, the reflection coefficients

T(M) at each junction or step are (M =1, 2, . . . , W)
2031y - Z2(2}
rii} = = o(1) , (3. 1a)
2(3) + Z(2)
¢
o]
o]
Z{M*1) - Z(M) :
TiM) = = oM, (3.1b)
Z(M+1) + Z(M)
8]
4]
o
Z(N+1) - Z(N}
T(N) = =

o) . ' {(3.1c)
ZIN+1) + Z(W) .

where Z(1), Z2(2)., . . ., Z(M, . . ., Z(¥+1) are characteristic impedances of
the waveguide, stripline or microstrip transmission line, or slow wave struc-

_ture. These appear in Fig. 3.1,

Z(1)

2 T(N-1)
Q 2(2) ' 9§
. D_ Z2(3) N-1 D_
r(1 ' N
r<2) Z(N)

Z{N+1)

Fig. 3.1. A multigection trangformer.
Each section has the same length pgg = 6, where & is a quarter wavelength at
the matching frequency._ The load impedance Z{N+1) is a resistance or the
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impedance of the lasgti part of the line. The characteristic impedances are

real and

ZIN+1Y > Z(N) > Z(8-1) > .. . . » 2{M) > . . . ; Z{3) > Z2(2) > Z(1), (3.2)
go that (M) are replaced by p(M), the magnitudes of T'(M). 1If the above impe-
dances are reversed in "greater than’ by “less than,” the p’'s are negative

real terms. We will assume the inequalities above. go that the overall

reflection coefficient T is

-j 20 -i 2 (M-1) #
I' = p(l) + p(2) e + . . .+ oM e oL

-i 2 (N-1) @
+ () e . (3.3

where exp (-j 2 (M-1) @) describes the distances traveled by the Mth partial
wave. With symmetry,

pll) = p(N), p(2) = p(N-1), po(3) = p(N-2), o(4} = p(N-3), . . ., ({3.4)
so.that I' becomes

-j {N—l) 8 j (N-1) 8 -j {N-1) 8 i (N-3) 8

r=e [ p(l)(e + e b+ pl2) (e +
-j (N-3) & :
+ e Y o+ .. L+ p(IN+11/72)]
(N -1)/2
-j (N-1) @ i (N+2M+1) @ -j (N+2M+1) &
= e i E p(M) (e + @ ) + PU[N+11/2)]
M=1 {3.5a)
for odd values of N, and when N ig even. the result is
ie -j 8
coee * p(N/2) (e + e ) ]
N/2
-i (N-1) @ i (N-ZM+1) ® ~j (N-2M+1) &
= @ E p{M) (e - + e ). (3.5b)
M=1 .
With the symmetrical trangformer, T is
' - (N-1) @
' =2e [ p(1) cos (N-1) & + p(2) cos (N-3) & + .
p (M) cos (N-2M+1) & + . . . + 1/2 p(IN+11/2) 1
' (N-1)/2
-i (N-1)
=2 e _ { Z p(M) cos (N-2M+1l) & + 1/2 P(EN+11/2) 1 , (3.6a)
C =.1 '
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for odd values of N, and when N is even, the result is

+ .. .+ p(M cos (N-2M+1) @ + . . . + o(N/2) cos & ] L
S -1 6 (U2 : |
=26 Y oM cos (N-2M+1) & . (3.6b)
=1

IV. Binomial Transformers

The accepted method for designing transformer structures was Hansen’s
binomial coefficient design prior to development of the Chebyshev or optimum
stepped trangformer. The binomial transformer is obtained from the Chebyshev
transformers for uﬁity bandwidth ratios.

Maximally flat passband responses are achieved when p equals the
magnitude of .P and when the first (N - 1) derivatives with respect to
frequency or angle & vanish at the matching frequency where BR = 8§ = w/2.
These are realized with the function.

-j 28 N-1 PN
' =4 1{1 +e ) , o - (4.1) Lo

where p is the magnitude of T,

N-1 N-1
p = 1T V1 =142 {cos &) - 1 , (4.2)

and where N is the number of junctions or steps. The constant A is found at
& =0 or w, where
N-1 Z(N+1) - Z(1) -{(N-1) Z(N+1) - Z2(1)

A2 b= . A =2
Z2(N+1} + Z(1) Z{N+1) -+ Z2(1)

{4.3)

With A obtained from Eq. (4.3), Egq. {3.1) is expanded by the Binomial Theocrem,

-(N-1) Z(N+1) - Z(1) : -j 28 N-1
= 2 - {1 + e )
Z(N+1) + Z(1)
={N-1) Z{N+1} - «i{D) -i2e (N-1) (N-2) -j 4 9
= 2 (L + (N-1) e t——— ¢ + .
o Z2(N+1) + Z2(1) -2
(N-1} (N-2}. . . (N-Mtl) =-j 2 (M-1) & (N-1)(N-2) -j 2 (N-3) @ _f/~\>.
+ e + .. F e . . ) : 2\ —

M=ty 21



-j 2 (N-2) 0 -} 2 {N-1) 0
+ (N-1) e + @ ]
i‘ ) -(N-1) Z(N-1) - Z{1 (N-1) (N-2). . .(N-M*#1) ~-i 2 (M-1) O
o = 2 e
Z(N-1) + Z{1) {M-1)1
-i 2 (M-1) 0
= p(M) e . (4.4
N_
where the binomial coefficients are
-1
-1 {(N-~1) (N-2). . .(N-M+1) {N-1})1 -1
= = = (4.5)
M-1 (M-1) ! {N-M) L (M-1) ¢ N-M
and some simple terms have the forms or definitionsg
: T a .
N- -1 {N-1) i N-1 N- {N-1) !
= T ——— =] . Co= 5 e— = (N-1) (4.6)
0 N-1 (N-1)10! 1 N-2 (N-2)11t
4 1
Another simplification is made with the series,
3 , 2M+1
X-1 2 |X- 2 i1 X-1
In ¥ 2 23 — + - |—] +. . .+ ] o, Fd (4.7)
— ' X+1 3 |X+1 {(2M+1) |X+1 X+l
&\f> for M=1, 2, 3, . . ., with small values of X, applied to X equal to
Z{N+1)/Z(1) and X equal to Z(M+1}/Z(1l). The above approximations are 9
percent in error with X = 3, and 3 percent when X = 2. : ’
Symmetry provides the terms,
-{N-1) Z(N+1) - Z(1}) |N-1 -N [N-1 FZ(N+1)
PIM) = 2 = 2 - in ! :
2(N+1) + Z(1) IM-1 M- EZ0L)
-N fN-17. izaweny! -
p(M = 2 in i = p{N-M+1} , (4.8}
-M P 2{(1) i ,
and with Eq. (4.7),
2(M+1) - Z(M) 1 IZ(M+1)
p (M) = = - lp ———— (4.9)
ZM+1) + Z(M) 2 P Z(M
Combining Eqs. (4.8) and (4.9) yield
— N fN-1} . 2D 1 iz |
L) ' : p{M) = 2 In i e o E o ln — {4.10)
e o N-M A 00 B 2 i Z(M) ' '



which is the solution for the logarithmic ratios of the characteristic impe-
dances for adiacent transformer sections M and M+1. where M = 1., 2, 3,
, N. The logarithmi¢ ratios are proportional to the binomial
coefiicients and a constant given by
N-1 -N Z(N+1)

2 In (
M-1 Z{

b ' (4.11)

gince Z{1} is the characterigtic impedance of the main iine at the transformer
input, Z(N+1) ig the load or characteristic impedance of %“he line at the end
of the transformer, and N is the.number of gteps or junctiéns.

The reflection coefiicient is expressed in two forms with Egqs. {(4.4) and
(4.10),

N
2 M8

-j
E p (M) e =

=1

Z(M+1) -7 2 (M-1) 9

N
E In ¢ ) e
2

M=1

o]
i

FAQY

When Eq. (4.10) is divided by Eq. (4.12) for 0 = 0, the result is

1 Z(M+1) -N z(u+1) N1
- 1ln ( } 2 In ( )
2 Z (M Z{L M-1]
= 5 - {4.13)
1 Z(M+1) -N ZI{N+1} N-1
- E In ( ) 2 In ¢ ) E
2 AS S . Z{1) | M-1
M=1 -
and when like terms are canceled, and with the reduction of a sum of
logarithmic terms,
Z{M+1) 2(2) Z(3) 204y _ Z{N+1}
in . ( } = In ( Y + 1In | ) # 1In ( 1 o+, . .+ 1n { )
_ Z{M Z2(1) 2(2) Z2{3} Z ()
Z(2)  Z(3) Z(4) Z(N+D) ozl
= 1ln ( Y ( 1 { ) 3= 1n ( ) s (4.14)_

Z({1) Z{2y - Z2(3) Z(N) Z(1)

so that Eg. (4.12) becomes

Z(M+1) N-1 Z(N+1)
In { ] o= In ( E {(4.1%)
CozZtm Y _ 2(1) _

1
9 .
SN Z(Ms1) —j 2 (M-1) 8
2 In (==m-=-) E : _ (4.12)

!
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V. Chebyshev Transformers

Hansen's [2] binomial-coefficient design for transmission line trans-
former seétions was described in the preceding section. In his design, the
logarithms of the characteristic impedance ratios of adiacent gections were
made to be in the ratio of the binomial coefficients.

In this section, the design method calculates the logarithms of the
characteristic impedance ratios so that the VSWR has the characteristic
‘equal ripple” response of a Chebyshev polynomial. Instead of the maximally
flat passband characterigstic, the Chebyshev iransiormer provideé a_variation
0f reflection coefficient P to vary or oscillate between OAand p {M) across
the passband. Since the equal ripple response makes ©¢ behave like a Chebvehev
polynomial, it is named the Chebyshev transformer. The reflection is zero at
as many different frequencies in the pagssband as there are transformer
sections.

Use of the Chebyshevlpolynomials can be better undersgood by looking at

the generation and properties of these polynomials. In the differential

equation,
2
2 4¥Y 4y 2 :
(1l-X) ——2 - I —+NY = 0, (5.1)
d X dX

where N is an integer, the general solution is a linear combination of the

first kind T (x), and the second kind U (x).

N N
Y=C TE +C U (X . 5.2)
i N 1 X
where we will use the first kind T (X). The functional forms of the Chebyshev
. N
polynomials are
‘ : -1 N Nj N-2 2 N N-4 2 2
T (X) = cos (Ncog X)) =X - X (1L - %) + X (1 - X7 +

K : 2 4
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X (1 - %) - X (1 - X1 + X (L =X +. . ¢
) 8 i0
_ M N N-2M 2 M N/2 |N 2 N/%
(-1} X {1 - X)) +. . .+ (-1} (1 - X . N even.
M N
O {N-1)/2 2 (N-1)/2
and +. . .+ (-1} (1 - X)) . N odd. (5.3)
Ny KN-3 2
U (X} = gin (¥ =in (1 o- X - X (1 - X)) +
N 3
Nl N-5 23 [N} ¥N-9 204
X (1 - X ) - (1 - X))+ X (L-X ) +. . .t
5 91 '
M-1'| N N-2M+1 2 M-1
{-1) X {1'- X)) +oo. Lt
2M-1
(N-2)/2 } X 2 (§-2)/2
{-1) (1 - X1 . N even. and for N odd.
IN-1
-11/2 [N 2 (N-1)/2 | ()
o4 (=1 (1 - X) B (5.4) e
N
if X = cos (8) in Eq. (5.3) and X = gin € fﬁ*Eq. {6.4). other forms for T (¥}
N
and U (X} are
N
T (cos (&)} = cos (N @) (5.8
N
U (cog (&#)) = gin (N &) . - ' {(§.6)
N . .
As functions of X. the first few terms of T (X} and U (X) are
M M
: 2 3 .
T =1, T((X) =X, T(X)=2¥X -1, T(X)=4¢4X -3XK.
] . 1 2 3
4 2 ' 5 3 _
T (X =8X -8X +1, T(X)=16X -20X +5X, . . .,
s 5 . .
. . _ P
T(X) =2XT (¥} - T (X) . T {(5.7) KJJJ
M M~1 M-2 ' o

12



U (X =0, U (X) =
0 1

2
1 -X, U X
2

p
= 2 XYWl - X,

9 2 3 7.
v x) =(4% -11¥1-x, v =18x -2x1¥1-1x,
L 4

3
J Xy =2X74U (¥) - U (X)y . (5.8)
M M-1 M-2
where a few properties of the Chebyshev functionsg may be noted. When X = 1,
or 0 = 0,
T (1) =T (1) =T() =...=7T¢(1) =1, (5.9)
1 2 M :
and when X = -1, or 0 = , for odd orders,
T {-1) T (-1 = -1, (6.10)
1 M+l
and for even crders,
T (-1) =T (-1} = +1 , _ {5.11)
2 2M |

resulting in

an increaging number of oscillations between -1 and +1 {or ¢ and

and for X = 0,

180 degrees} as M increases, while the absolute value of T (X) increases
M

asymptotically with increasing values of X (greater than 1) as
M-1 M

T (X)) —— 2 i {5.12;
M

so that “equal ripple’ is encountered!
With U (X), the function iz not defined for the absolute value of ¥

greater than one. For X = +1 or -1 (& = 0 or 180 degrees),

U (+1l or -1) = U (+1 or -1} =0, M=0, 1, 2, 3,

(5.13)
M M : :

U =1, O (0)=-1,M=1,2,3,. (5.14)

4M-1 : aM-1
where U (¥X) oscillates between +1 and -1, with oscillations increasing with M.
M
it is not suitable for equal ripple filters. antennasg, or transformers because
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of the region outside of X equal to +] and -1.
The suitable function for equal ripple is the Chebyshev polynomial of the _{'7}
first kind T (X}, with X replaced by cos (8} in Egq. (5.5). As & varies from
0 fo 180 degfees, the range of X varies from +1 to -1, If the bandwidth or
equal Pipplg characteristic is chogen from @(l} to 180 degrees - @(1). we must
choose
cos (8) -1 cos (8)

T ( 1 = cog M (cos
M cos (8(1)) cog (8(1))

[ ' {5.15)

where the'argument ig unity when @ = #(1}), and less than unity for

8(1) < 0 ¢ mw- 6(1). This defines the bandwidth B by
0
£{2) 8(2) 180 - 8(}

{1 9(1) e(l)

in coaxial or two conductor transmission lines, and in waveguides by

£(2) 8(2) A (guide 1)
B = = = ) {(5.18) P
£(1)  8(l) A (guide 2) o,
For a given value of B, @(1) is found with
o
180
8(1l) = - {(5.18)
1+ 8B

o
When B = 1.0, then 8(1) = & (2), and both are 90 . But with B = 2.0,

f{2) = 2 f{1), satisfied by typical rangesg of 200 and 400 MHz, and 3 and 8
GHz. With a narrower B, such as 1.2, we have 3 and 3.6 GHz, and 209 and 240

. MHz. The frequency band for a given bandwidth ratio B is

f=£(2) - £(1) = (B - 1) £(1) , {5.19)

or with a center frequency f(8),

f(8) =:(f(1) » £02)1/2 = £(1) (1 + B)/2 = £(2) (1 + B)/2 B.. {5.20)

With_the above descriptioné of Chebyshev polvnomialg and bandwidths. wé
return to the overall'reflection in Eq. (3.3) for all multisection quarter..' S KEHJ
wave transformers with small reflections at each gtep, -
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-i 2% -i 48 ' -i 2 (M-1) &

_ T=pq) +0(2) e +0(3) e ... s e
8 |

) -; 2 (N-1) 8
+...+p(N}e
-i (N-1) @ -3 (N-1) @ - (N-3) 8

= e [ p(l) e  +p(2) e oL L ¢
-j (N-2M+1) @ - (N-1) ®
p(M) e + ...t p(N) e R (5.21)

and the magnitude of the reflection coefficient is

~-j (N-1}) @ -j (N-3) 8 -j (N-2M+1) ©
p =T 1 =pf{l) e + p(2). e t .. .t (M e

- {(N-1) @ :
. . . +p(NY e . (6.22)

and with the same symmetry as that expressed in Eg. (3.4) the above

expression is

2p(l) cos (N-1) & s+ 25(2) cos (N-3) & + . . . + 2 (M cos (N-2M+1) @

p =
(’ ) + .. . +o([N+1])/2) , for odd N, 1, 3, 5, . . ., and for ¥ even {5.23)
L _ ) :

32 p(l) cos (N-1) 8 + . . . + 20 (N/2) cog & , {5.24)

In order to have the Chebyshev form of equal ripple acrosgs the bandwidth of

the slow wave structure, we first adjust the bandwidth ratioc B with

Y = cos (8) = X cos {(&(1)) o {5.25)
so that the cosine functions become
cos (8) = Y = X cos (8(1)) , _ ' (5.26a)
2 2 2 _
cos (208) = 2 Y -1=2% c¢og (6(1)) -1 , {5.26b}
3 3 3 _ _ : o
cos (39) = 4Y -3 Y =42Xcos (0(1)) - 3 X cos (8(1)) ., (5L26c)
' ' 4 2 : S 4 . :
”“3 . . cos (48) = 8Y -8Y +1=8X cos (8(1)) +1 .,  {5326d)A
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5 3 5 5 3 3
cos (68} = 16 Y - 20 Y + 5 Y = 16 X cos (&{(I}) - 20X cos (&(1)) +

5 X cos (&(1)) . _ {5.26e)
5 4 2 6 8 4 4
cos (68) = 32 Y - 48 Y + 18Y - 1=32 X cos (8(1)}) - 48 X cos (&(1))
2 2 :
+ 18 X cos (6(1)) - 1 , (5.26%}

et cetera. et cetera., et cetera. We now match powers of X in Eg. (5.26a) %o

(5.26f) et cetera, et cetera, et cetera with powers of X in g(N} in T (30

: N-1
to evaluate the arbitrary comstants o(1), p(2)}, . . ., p(H}. The term
o (W) is given by
1 Z(N+1)
- 1ln ( ]
2 21
o (N) = . {(8.27)
, T { ———) ~
¥-1 cos (6(1)) =
| | o
When ¥ = 1, p{M} are found with Eg. (5.23},. -
' | 1 242
- in ¢ )
2 Z2(1) H Zi2) :
p o= p(l) = a(l} T (X) = . T(X) = - 1ln { yo. (5,28)
0 1 0 2 Z01}
T (—m——)
0 cos (8{(1))
and when N = 2, p (M} are found with Eq. (5.24),
p = 2 p(l)'cos (8) = 2 p(l) X cos (8(1) = a(2) T (X
. 1
1 Z(2)
- in « }
2 2D
0 = X, : ' (5.29)
1 : .
T (~———)

1 cos {(8(1})}

so that coefficients of X are equal to each other.

16



1 Z(3)
- 1n ¢
N - 1 9 Z(1)
L P(1)

)

2 cos (0(1)) I
T (————)
I cos {(8(1))

Z(3)
In (—)
Z{1} 1 Z(3) )
= = -'1ln {(—1) . (5.30}
i 4 Z(1}

" 4 cos (B(1))Y T ()
1 cos (8(1}))

from T (B) = B = 1.0/ cos (#{1)). With N = 3, o(M are found with Eg. (5.23)

1
2 2
e =2 p(l) cos (2 6€) +p(2) = p(l) [ (4 cos #{)) X -21+ p()
1 Z(4}
- In { )
2 Z{1) 2
= al{3) T (X) = (2 X -1, (5.3
- 2 1
('“) T ()
e " 2 cos (&(1))

and when coefficients of powers of X are equated,

7(4) 2 Z(4)
in ¢ ] B ln ( )
1 Z(1 Z(1)
p{l) = = (5.32a)
2 T (B) 4 T (B)
4 cos {(8(1)) 2 2
Z2(4)
in (=) _
Z(1) 2 _ : :
p(2) = [B ~-11. (5.32b)
27T (B
2
When B = 2.0, the reflection coeffiéients are
2 72(4) R TS Z(4)
B 1n (=) : In ( ) In ¢ I
: i Z(1) o Z(1) Z(1}
o Cp(l) F ——— = ., (5.33a)
(”“j : - 8T (By . 2 . i4

2 2{2B ~11
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214} 3
y (=) {5.33b)

Z{1l) 2

p(2) = 1In (

and the ratios of reflection coefficients are
P{Ll): p(2): p(3) = 1.0: 1.5: 1.0 . . {5.34)
With four steps., the ratios of reflection coefiicients become
P{lY: pP(2): p(3): p(4) = 1.9: 2.25: 2.25; 1.0 . “ {(5.34)

Derivation of subsequent reflection coefficients becomes increasingly
tedious but logically straightforward. A simplified method for calculation
these coefficients was developed for antenna arrays by Ross E. Graves,
Stanford University, in an unpublished report.

Grave's method is similar to that emplo&éd with Pascal’s trianglie for
binomial coeffiéients. Pascal's triangle is formed by always ingerting a
number 1.0 in the first row. In the second row, another number 1.0 isg alﬁays
vlaced in the left of the element above and the same number 1.0 to the right
of the element above. This ritual for element placement is described above
because a similar ritual is followed with Grave’'s pyramid. In successive
rows, elements are formed by adding the two elements on the left and right of
.the calculated element in the row above. When elements are absent, they are

assumed to be zero. Pascal's itriangle appears in Table I for several rows.

1 : 7 21 35 - 35 21 N A 1

Table I. Pascal’s Triangle for Binomial Coefficients.
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Grave’s pyramid is formed by always inserting a number 2.0 in the first

“} row. In the second row another number B, representing the bandwidih described
N _earlier. ig always placed to the left of the element above and the saﬁe number
B is always placed %o the right.of the number above. In successive rows, ele-
‘ments ére formed by adding the £wo elements on the left and right in the row
above, multiplying the sum by B, and subtracting the element in the second row
above the entry being calculate& from this product. When elements are absent,
they are assumed to be zero. Grave;s pyramid appears in Table II as a func-
tion of B.
2
B B
Bxx2 2%Bx*2-2 _B**Q
Bxx3 . 3%B*%3-3#B 3JxBxx3-3#B . Bx*x3
<f“) Table II. Grave's Pyramid fof Chebyshev Coefficients.
When B = 2.0, Grave's Pyramid has the values geen in Table III.
2
2 2
4 s} 4
8 16 - 16 8
16 48 . 66 48 16
32 120 210 '210' . 120 32
64 288 612 774 ez 288 Y
Table III. Grave's Pyramid for Chebyshev Coefficients, B'='2.0.
When the elements of Table III are normalized with respect to the elements at:
<ii> thé ends, we have the réflection.coéfficient ratios seen below in Table IV.
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1.0

1.0 1.0
1.0 1.5 1.0
1.0 2.25 2.25 i.0-
1.0 3.0 4.125 3.0 1.0
1.0 3.75 6.5675 6.5675 3.75 1.0
1.0 4.5 9.5625 12.09375  9.5625 4.51 1.0

Table IV. Grave's Pyramid for Normalized Chebyshev Coefficients, B = 2.0.
VI. Matching of Periodic Structures

The binomial coefficients and the Chebyshev coefficienﬁs deseribed in
Sections 4.0 and 5.0 are used to match one trgnsmission line or waveguide to
another transmission line or waveguide with different cﬁaracteristic impe-
dances. The first unloaded line or guide may be a slow wave periodic struc-
ture, a fast wave structure, or a iwo conductor transmiggion line such as
coaxial lines, parallel wire lines, shielded pairs, parallel plates, or paral-
lel bars. The input guide or loaded line may be any of the above.

Slow wave sgtructures are waveguides and transmission lines loaded at per-
iodic intervals with identical obstacles such as a reactive element like a di-
aphragm. The diaphragm may be a rectangular serration in the ferm of a thin
fin or a tﬁick rectangular or square shape. This type of waveguide structure
has two important properties, which are pagsband-stopband characteristics and
support of electromagnetic.waves with phase velocities much slower than the

velocity of light. An excellent physical picture of slow waves is found in

- the serperiine or sinusoidal serrated slow wave structure, where the periodic

- obstacleg look like a roller coaster track. The electromagnetid waves follow
the serpentine path with the velocity of light, but their'velocities along the

axis of the guide are much legs. Another example is the helical wire in a

20

T

TN

P
e



traveling wave tube (IWT}, where the waves travel along the surface of the

S ‘wire with the velocity of light, but their axial velocities are much slower.

The passband-stopband characteristic is the presence of frequency bands
in which waves propagate with negligible attenuation separated by freguency
bands in which the waves are cut off and do not propagate. The former is a
passband, and the latter ig a stopband. The passband—stopband is ugeful for
frequency filtering, -

The property of periodic structures to support slow waves with phase
velocities slower than that of light, is applied in linear magnetron type (M
type) TWTs with mégnetically.focuSEd electron beams wand a slow wave structure
of per%pdic annular cavities, ordinary (0 typej TWTs with a slow wave siruc-
ture in the form of a helix, registance wall amplifiers with a_slow wave
structure made with resgistive lining;, and related structures. Other applica-
tions are found in transmission lines coupling TWTs to slow waves, where the

) perlodic structure continues from source to antenna.

a

Metallic waveguides are one example of fagt wave structures. In wave-
guides, modal waveg are obliquely incident on'the'guide walls as they propa-
gate along the guide. As frequency decreages toward cutoff, the angle of
incidence approaches zero. With frequencies increasing above cutoff, the
angle of incidence increases. If we observe the velocity of the wave front
paraliel to the direction of propagation, the phase_velocity is greater than
the velocity measured normal to the wave front. It will be greater in any
oblique direction. As the angle of incidence approaches zero and the fre-
quency approachesg the cutoff frequency for the propagating mode, the phase
velocity measured in the direction of propagatién approaches infinity, .For
this reason, the guide is a “fast wave” guide. ‘The same phenomena occur;yin_
dielectric and insular waﬁeguides.

.<jj> : In most Qesigns for matching slow to fast wave guides, the fast wave
guidg is identical to the slow ﬁave guide when the obstacles are remqvgd.-'ln_
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this Section we cdnsider a slow wave coaxial line with square wave serra-
tions on the outer conductor, while the smooth coaxial line has a phase velo-
city equal to that of light.

The inner and outer conductor radii 6f the cocaxial line are R(I} and
R{0}), respectively, with R{Q) = 6.5 cm énd R(I) = 8.2 cm. The characteristic
impedance Z2(0) of the smooth coaxial line ig | :

n R(O) . R(0)

Z{Q) = in ( } = 60 1ln (==} , {6.1)
2w R{I} R{I)

where N is the intrinsic impedance of free space or air, 120 T ohms. The

characteristic impedance Z (0) of the slow wave coaxial line is

s
g c n R(O) ¢ R(0)
Z (0) = (-) In (——) = (=) 60 1n (=—) |, (6.2)
3 v aw R(I) v R(I)

where (C/V) ig the ratio of the phase velocity of light € to that of the slow
wave structure V. Figure 6.1 depicts the slow wave and fast wave guides to be

matched.

J [

S 7

ey

Fig. 6.1. Slow and fast wave.structures.

A more detailed picture of the slow wave structure iz seen in Fig. 6.2, which .

describes the coordinate system. The teeth are rectangular or square. The
-inner conductor is located at Y = - h, where h is the distance between the -

inner cdnductor R(I} and the outer .conductor R(0) of the coaxial line.
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Although the actual slow wave structure is-a coaxial line with the outer
corrugated surface radius R(Q) of 8.2 om to the teeth surfaces, a planar medel
yields similar results when the corrugation parameters are the same because of

the relatively close spacing between inner and outer conductors. Although

d

l.4 em, b = 0.7 ¢m, and % = 1.8 cm, the resultg are valid for any g¢ombi-

nation of these parameters.

f”

'-‘2 ;-/}/)/// ; d-b ,//[z//l}/ ///: d-b %544
4 . Z Z 7
Slot Metal
Region Tooth
-~
7 S, A 7
Y Z 4 ? 7
pIYIVIIY . ////////// Z] f///////// “] —Sy—
0 d-b d dib 3d-b 3d 3d+b 5d-b
2. 2 72 2 2.7 2 2

Free Space or Interaction Region
| ~ Air or Vacuum

T o™

Metal

Fig. 6.2. Coordinate sysﬁem for the slow wave structure..
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In designing the transformer sections, the characteristic impedance Z(1)
of the first gection is equal to the slow wave impedance in Eg. (6.2), while
the characteristic impedance of the lagt section Z(N+1) isg equal to the c¢ha-
racteristic impedancé of the smooth coaxial line in Egq. (6.1). Since coaxial
lines have no cutoff frequencies for TEM modes, they are only fast wave guides
for modes higher than TEM modes.

Binomial and Chebyshev transformers wiil be developed in subsequent
paragraphs to match the characteristic impedance Z(1) to match the characte-
ristic impedance Z{(N+l1) of the output or load section (N+1) in an N-gtep traﬁ—
gsformer. In order to find Z{1l} as a funcﬁion of slow wave guide geometry, the
ratio of phase velocity of light in an infinite dielectria space to slow wave
‘phase velocity inrthe dielectric material between coaxial conductors must be
fournd in section (1) of the transformer. These ratiog are C/V(M), where
.M = 1,. . .. N+l.

C/V(1) is calculated with equating slow wave and transmiggion line impe-
dances iﬁ fhe drifte pace for electron beam and electromagnetic wave interac-
tions. If a slow wﬁve transmission'line with phase velocity ratio C/VI(M) is’

introduced, the series impedance per unit length, 2 (M), is

SE
¢ 2 wu R(O)
Z M = (+—) In ( }  ohmg per meter , (6.3}
SE Vi . 2% R(I)
while the parallel susceptance Y (M) per unit length is
' PA
2 Twe : :
Y (M) = j mhog per meter . . (6.4)
PA R(O)
In )
R(I)

Equations (6.3) and (6.4) can be combined to obtain the characteristic impe-

dance in Eq. (6.2),

. c n R{0) s
ZIM = /2 M/ Y (M = — In ) ohms , {6.5)
"~ 8E PA VD 2w R(I) :
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and the phase velocity V(M) is

1 I
C

= ' = = V(M) . (6.6}
/[Z (M Y W v/(C/V(M)) 2 MY M C/V(M)
SE PA SE PA

VM =

For the short circuited radial transmission line, formed by circular,
parallel, infinitely conducting planes or tooth walls, with radial length & (M)
;nd width B{M), the input impedance Z(slot) ig

D(M)
A (M) =372 (M tan k £ (M) = j ~———— tan k & (M) , {6.7)
slot 0 2 TR(D)
where D(M) is the width of a unit cell (M) or section (M).

The series impedance per unit length for a unit cell with £ (M) = 0.0 (in

a smooth coaxial lipe) is
Wy RO}

2 (M = j In ¢ } ohms per meter |, (6.8)
SE 2m R(I)

so that the slow wave impedance due to radial cavities are the difference

between Eqs. (6.3) and (6.8), multiplied by the cavity width B(M) ,

c 2 wit R(O)
2 M =3[ (—) -11 B(M) 1n ( ), (6.9)
slot VM) 2T R(I)
and when Egs. (6.7) and (6.9) are equated,
DM e 2 . RO
j =———n tan k' 2(M) = j [ (—) -1 1 B(M) 1n ¢ ), (6.10)
2 RO V(M) 2 R(I)
. and with wy = kn, and canceling terms,
D (M) c 2 | R(0)
tan kK L (M) = [ (=) - 11k B(M In ¢ ),
R{M) ViM) R(I}
c 2  B(M R(0)
tan k £(M) = [ (—=) - 1 ] —=— k R(0) In (=) |
V(M D(M) ' R(I)
1 c 2 BN R(0)
(M} = - arc tan [ (——) -1 ] — k R(0) In ( ) (6.11)

k vim D(M) R{I}
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D{M) : .
: + 0 ] tan k2 (M) . (6.12; £
2 R(0)
V(M) k DM} R(O) In (

L]

1t
—

)
R{I)

where B(M)/D(M) = B/D in the first section (1). When the expression C/Vi{i) 1is
obtained for the input section (1) of the slow wave guide, the slow wave cha-
racteristiic impedance Z{(1) is found with Eg. (6.5).

ﬁith D(1) = 1.40 cm, B(1) = 0.70 cm, & (1) = 1.80 em, X = 8.12 cm
{irequency F = 3.69 GHz), the ratio V(iy/C ig 0.342. If the ratio V(1}/C is
chosen to be (.34 (based on computer gimulation results) &(1) isg 1.8032 cm.
This correlation with simulation results indicates a good approximation %o the
dispersion curve wiﬁh Eqs. (6.11) and (6.12).

The characteristic impedancesg of the N-gtep or N-junction transformers

are calculated with Eqs. (4.10) and (4.14),

Z{N+1) Z{N+1D Py
in { ) ) Iln {------ ) o)
Z{(M+1) Z(1) ' Zi1) bl
in ¢ =) = 2 p(M) = 2 p(M) = p (M)
Z _ Z{N+1) 1 Z{M+1)
in } - in )
Z(n 2 Z{M)
Z{N+1)
In ¢ }
Z(
= p(M - - - . {6.13)
g{l) + p(2)y + p(3) + . . . + p(N}

.With p (M) known from Pascal's Triangle and Grave's Pyramid, the charac-
teristic impedances can be obtained for the binomial and Chebyshev transfor-
mers.. Since Z(1}) ig known from the ratio O/V(l), Z(2) ig calculated. After
Z(2)} ie found, Z(3) is next éélculated. This procedure continues until the
_remaining Z(M) are iound, with M = 4, 3, . . ., N. The procedure for finding

binomial and Chebyshev coefficients simplifies calculating characteristic

impedances for both sets of sections. . ' ' _f’“w

26



With the values of Z(M) calculated, the subsequent values of the C/V(M)

are then found with

C R(0)
=z Z{M)/ 60 In {(——) , M =2, 3, 4, . . . , N. N+l
VM) R(I}

The widths D(M}) of the unit cells are egual to a half wavelength of the

glow waves,
C .
DIM) = ——— {6.151
2 F C/V(M

which are found with C/V(M) ratios. The cavity widths B(M) are proportional

to D(M) with
B .
B(M) = — = D{M} , {6.18)
D

when we do not have square waves (teeth may be thin fing or fat teeth with
negligible gaps}.

The inductance L(M} and capacitance C(M) per unit lengths are relatively

Simpler,
¢ 2 R(0)
L{M} = (=—) — 1n { ) henries per meter , (6.17
V(M) 2w R{D
ine
CtM) = =~————— farads per meter , o (6.18]
R{0O}
In ¢ }
R{I)

Adjustments for compatibility between teeth periods B(l), phase

‘velocities V(1)/C, and cavity or tooth lengths {1), and frequency F create

minor departures from simulated results. These departures are only 1-2
percent, but simulation results are only models and depend only uppn the
interpretation of the simuiation interpreter. .The following Tables indicate
the élow wave structure design for a Chebyshev transformer with 11 or less
sections, and 10 or less steps. Table V ig Grave's fyramid for the successive
Tables with 11 to 2 sections.
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1.0

1.0
1.5 - 1.0
2.25 1.0
4.125 3.0 1.0
6.5625 3.75 1.0
12.0938 9.5625 4.51 1.0
20,0156 13.125 5.25 1.0
37.0078 30.75 17.25 6.0 1.0
62.7539 44.7188 21.9375 6.75 1.0

Table V. Grave's Pyramid for 10 Steps and Normalized

Chebyshev Coefficients, with Bandwidth = 2.0.

in ﬁhe following sequence, Table IV starts with the transition summary
for 11 gections and 10 steps and continues to Table XV, transition summary for
2 sections and 1 step. Bandwidtﬁ ig 2.0, énd columns indicate section (M) .
characteristic impedance Z{M,N) for steps (N} in the transformer, the step
(M), ratio of slow wave phase veloecity to veloecity of light (V(M)/C), tooth
period D(M) and height H(M), cavity reactance X(M), and inductance L{M} and

capacitance C(M) per unit cells.
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Seot

10

11

Sect

10

Z(M.N)

ohms

40.9998

40.8388

39.7690

36.4819

30.5985

23.9068

18.6785

15.6662

-14.3713

13.9948

13.9309

Table

Z{M.N}
ohms
40,9998

40,7000

- 38.9458

34.3159

VI.

27.3838

20.8712

16.6551

14.6747

14.0428

13.9369

vsC

.3400
L3413
. 3505
.3821
.4556
.5831
. 7463
. 8888
.8700
.9861

.0000

Tooth

Feriod

1

.3804
.3858
.4231
.5513
. 8496
L3674
.0300
.6126
.§381
L0441

L0600

X

Transition Summarv

v/C

L3400
.3428
.3579
L4062
.5081
.6679
.8370
.9499
.;9927

. 0000

Tooth

Period

1

4,

.3804

L3906

. 4532

.5493

.0668

LTTLT

.3981

.8567

.0303

0600

X

(Biot) Tooth
ohme Ht., cm
113,91 1.8032

113.35  1.8012
109.59  1.7873
97.88  1.7355
76.18  1.5888
49.57  1.2417
26.00  0.6853
10.25  0.2475

2.67  0.0508

0.34  0.0075

0.00 ¢.0000

for 11 Sections

(Siot} Tooth
ohms Ht. cm
113.91 1.8032

112.86 1.7993

106.68 1.7757

90.02 1.6915
63.73 1.4574
36.32 0.,9578
15.67 0.3945
4.50 0.1029
0.64 - 0.0598

0.00.  0.0000

L/Cell C/Cell
nH DF
5.549 3.301
5.527 3.314
5.382 3,403
4.937 3.710
4,141 4.423
3.235 | 5.661
2.528 7;245
2.120 8.638
1.045 9.417
1.894 9.670
1.886 9.708

and 10 Steps.

L/Cell -~ C/Cell
| nH oF
5.549 3.301
5.508 3.325
5.271 3.475
4,644 3.0944
3.706 4,942
2.825 6.484
2.254 8.126
1.986  9.222
1.900 9.637
708

1.886 L5

" Table VII. Transitiqn Summary for 10 Sections and 9 Steps.
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Sect Z(M.N) V/C Tooth - X (Slot) Tooth L/Cell C/Cell
ohms . Period ohms Ht. ¢cm nH oF

i 40.9998 0.3400 1.3804 113.91 1.8032 5.549 3.301

pi 40.4421 0.3447 | 1.3994 111.95 1.7962 5.473 3.346

3 37.6337 0.3704 1.85037 102.02 1.7554 5.004 3.596

4 31.4453 0.4433 1.7¢98  79.38 1.6158 4,256 4.304
5 23.9068 0.5831 2.3674 49.57 1.2417 3.238 5.661
8 18.1755 0.7670 3.1138 22.51 0.6158 2.440 7.446
7 15.1855 0.9180 3.7270 7.51 0.1787 2.055 8.912
8 14,1321 0.9864 4.0048 1.20 0.0204 1.91%2 9.576
g 13.9399 1.0000 4.0600 0.00 0.0000 1.886  9.708

Table VIII. Transition Summary for 9 Sections and 8 Steps.

Sect  Z(M.N)  V/C  Tooth X (Slot) Tooth  L/Cell C/Cell
ohms Period ohms Ht. cm nH oF
1 40.9998  0.3400  1.3804  113.91  1.8032  5.549  3.301

2 39.9654 0.3488 1.4161 110.28 . 7869 5.4009 3.386

[

3 35.6242 0.3913 1.5887 94.78 1.7191 4.821 3.7899

4 27.9014 0.4996 2.0284 65.77 1.4821 3.776 4,850
5 20.4848 0.6808 ~ . 2.7629 34.55 0.9138 2.772 6.607
+3 16,0434 0.8689 .3.5Q7? 12.35 0.3035 2.171  8.436
7 14,3007 0.9748 3.9576 S2.23 0.0499 1.935 g.463

8 13.9399 ~1.0000 4.0600 0.00 0.0000 . 1.886 9.708

Table .1¥, Transition Summary for 8 3Jections and 7 Steps.
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Sect ZIM. W) v/C Tooth X (S8lot) Tooth L/Cell C/Cell
Yy ' ohms Period ohms Ht. om nH oF

.549 3.301

(8]

L 40.9998 0.3400 1.3804 i13.91 1.80372

2 39.0807 0.3566 1.4478 107.189 1.7778 5.280 3,492

3 32.6902 0.4264 1.7313 84,02 1.6515 4.424 4.140
4 23.9068 0.5831 2.3674 49.77 1.2417 . 3.2335 | 5.661
5 17.4833 0.7973 - 3.2371 20.01 .0.5164 2.366 7.741
6 14.6207 0.9534 3.8710 4.18 0.0951 1.979 9.258
7 13,9399 1.0000 4.0600 G.00 0.0000 1.886 9.708

Table X, Transition Summary for 7 Sections and § Steps.

Sect Z{M.N} V/C Tooth X (8lot) Tooth L/Cell C/Cell
ohms Period ohms Ht. om nH oF

i 40.9598 0.3400 1.3804 113.91 1.8032 5.549 3.301

(’“3 2 37.5004  0.3716 1.5088 101.56 1.7533  5.076  3.608
3 28.7222  0.4853  1.9705 = 69.98  1.5183  3.887  4.712
4 19.8087  0.7005  2.8442 31.83  0.8438  2.603  6.801
5§  15.2371  0.9148  3.7144 . 7.80  0.1843  2.062  8.882
6 13.9399 1.0000  4.0600 0.00  0.0000  1.888  9.708

Tabie XI. Transition Summary for 6 Sections and 5 Steps.

Sect Z(M.ID v/c Tooth = X (Slot) Tooth  L/Cell C/Cell
chms Period  ohms Ht. om nH oF

1 40.9988 0.3400 - 1.3804 113.91 | 1.8032 5.549 3.301

2 34.7297  0.4041  1.6206  91.56  1.7006 ~ 4.700  3.897
3 23.9068  0.5831  2.3674 . 49.57  1.2417  3.235  5.661
4  16.4566  0.8471  3.4301 = 14.60  0.3650 - 2.227  §.224
f’%>' 5 13.9309  1.0000  4.0600 0.00  0.0000  1.886  9.708

Table XII. Transition Summary for 5 Sections and 4 Steps.
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Sact Z{M.N}

ohms

H 40.9998 0.
2 30.1%244 0.

3 18.9724 0.

4 13.9396 1

Table XIII.

Sect Z{M, M
ohms

1 40.9598 0

2 23,9068 0.
3 13.9399 1.

Table XIV.

Sect Z(M,N}

ohms

1 40.9998 0.

2 13.9369 1

Table XV.

v/C Tooth X (Slot) Tooth L/Cell {r/Cell

Period ohms Ht. com nH | DF
3400 1.3804 113.91 1.8032 5.549 3.301
4627 1.8787 74.37 1.5724 4.077 4.492

7347 2.9831 27.43 0.7249 2.568  7.133

L0000 4,0600 0.00  0.0000 1.886 9.708

Transition Summary for 4 Sections and 3 Steps.

v/C - Tooth X (Slot) Tooth L/Cell C/Cell

Period ohms Ht. ecm - nH oF

L3400 1.3804 113.91 1.8032 5.849 3.301

5831 2.3674 49,57 1.2417 3.235 5.661
0000 4.0600 0.00 0.0000 1.886 9.708

Transition Summary for 3 Sections and 2 Steps.

v/C Tooth X (Slot) Tooth L/Cell C/Cell
Period - ohms Ht. em nH oF

3400 1.3804 113.91 1.8032 5.549 3.301

L0000 4,0600 G6.00 0.0000 1,886 9.708

Trangition Summary for 2 Sections and 1 Step.

The following Tables indicate the slow wave structure design for a

Binomial transformer with 11 or less sections, and 10 or less gteps. Table.
iVl is Pascal’s Triéngle for the succesgive Tables with 11 to 2 sections.

In the following seguence,. Table XVII starts with the.transition summary
for 11 sections and 10 steps and continues to Table XXVI, the transition sum-
mary for.z sections and | step. Bandwidth is 1;0. and columng indicate sec- .

tion (M), characteristic impedances Z{(M,N) for steps.(N) in the the transfdr-

" mer, the step (M), the ratio of slow wave phase velocity_to velocity
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of light (V/C), tooth peried D(M) and Height H(M), cavity reactance X{M), and

{f'w inductance L{M) and Capacitance C(M) per unit cells.
1 .
2 1
3 1
6 4 1
10 5 1
20 15 6 1
35 21 7 1
70 56 28 8 1
126 84 36 S i
Table XVI. Pascal’s Triagle or Graves' Pyramid for 10 Steps
and Normalized Binomial Coefficients with Bandwidth = 1.0.
{/m> Sect  Z(M,N) v/C Tooth X (Slot) Tooth  L/Cell C/Cell
. ohms : Period ‘ohms Ht. cm nH oF
1 40.9998 0.3400 1.3804 113.91 1.8032 5.849 3.301
2 40.9135 - 0.3407 1.3833 113.61 1.802t 5.837 3.308
3 | 40.1448 0.3472 1.4098 110.91 1.7923 5.433 3.371
.4 37.2122 0.3746 1.52009 1060.50 1.7483 5.036 3.637
5_ 31.1739 0.4471 1.81%4 78.36 1.6076 4.219 4,341
6 ZSTQOGB 0.5831 2.3674 49.57 i.2417 3.235 5.661
7 18.3325 0.7404 3.0872 24.29 ‘0.6376 _ 2.481 7.382
8 15.3587 0.9076 3.6849 8.50 . 0.2021 2.078 8.812
9. 14.2368 0.9791 3.9753 1.85 . 0,0410 1.927  9.506
10 13.9693 0.9879 4.0515 | 0.18 0.0040 1.880 9.688
11 - 13.8398 1.0000 4.0600 ¢.00 0.0000 1,886 9.708
(Tﬁ) | .. Table XVII. Transition Summary for 11 Sections and 10 Steps.
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Sect ZIM.N) V/C Tooth X (Slot%} Tooth L/Cell . CrCell
ohms ] Period ohms Ht. cm nH oF

1 40.9998 0.3400 1.3804 113.91 1.8032 5.549  3.301

2 40.8273 0.3414 1.3862 113.31 1.8011 5.525 3.315

3 38,4738 0.3531 1.4338 108.54 | 1.7832 §.342 3.428

4 35.0803 0.3974 1.6133 92.81 1.7081 4.748 3.858
5 27.7061 0.5031 2.0427 65.01 1.4730 3.750 4,385
6 20.6284 0.6758 2.7436 35.21 0.8304 2.792 6.560
7 16.2921 0.8556 3.4738 13,71 0.3405 2.205 8.307
8 14,4788 0.9628 3.8089 3.32 0.0750 1.960 9.347
9 13.9988 0.99568 4,0429 0.37 0.0081 1.894 5.668
10 13.9399 1.0000 4.0600 6.00 0.0000 1.886 9.708

Table XVIII. Transition Summary for 10 Sections and § Steps.

Sect Z(M N v/C Tooth X (S;ot) Tooth L/Cell C/Cell
ohms Period ohms Ht. cm nH. o pF

1 40.9998 0.3400 1.3804 113.91 1.8032 5.549 3.301
2 40.6556 0.3429 1.3921 112.71 1.7989 5.502 3,348

3 38.3263 0.3637 1.4767 104.48 1.7664 §.189 3.531

4 32.1092_ 0.4341 1.7626 B81.86 .1.83585 4.346 4.215
5 23.9068 0.5831 2.3674 49.57 1.2417  3.235 5.661
6 i7.7997 | 0.7832 3.1796 32.62 0.5622  2.409 7.603
f 14.8123 0.9348 3.7953 - 5.91 0.13%0 2.018 89.075
8 14.0879 0.9916 4.0259 .'0.74 0.0162 1.902 g.627

9 13.9399 1.0000 4.0600 - Q.00 0.0000 1,886 9.708

Table XIX.,  Transition Summary for 9 Sections and 8 Steps.
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Sect Z (M, N) V/C Tooth X (8let) Tooth L/Cell C/Cell

 ;”> ohns Period ohms Ht. cm nE pF

- 1 40.9998  0.3400  1.3804  113.91  1.8032  5.549  3.301
2 40.3144  0.3458  1.4039  111.51  1.7945  5.456  3.357
3 36.4363  (.3826  1.5533 97.71  1.7346  4.931  3.714
4 28.2061  0.4926  2.0001 67.32  1.5000  3.820  4.783
§  20.1983  0.6902  2.8020 33.23  0.8802  2.734  6.700
6 15.6858  0.8887  3.6081 10.34  0.2504  2.123  8.628
7 14,1769  0.9933  3.0921 1.48  0.0327  1.919  9.546
8  13.9389  1.0000  4.0600 0.00  0.0000  1.886  9.708

Table XX. Transition Summary for 8 Sections and 7 Steps.
~
' Sect  Z(M.N) V/€  Tooth X (Slot) Tooth  L/Cell C/Cell

ohms Period ohms Ht. om nid pF
1 40.9968 0.3400 1.3804 113.91 1.8032 5.549 3.301

2 39.6405 0.33517 1.4277 108.13 1.7855 3.365 3.414

3 33.4913 0.4162 1.689¢ 86.99 1.68720 4.532 4.041
4 23.9068 ‘0.5831 .2.3674 49.77 1.2417 3.238 5.661
5 17.0652 0.8169 3.3165 17.84 0.4552 2;310 7.830
.6 14.4179 0.9668 | 3.9254 2.95 0.0664 1.951  9.386
T 13.9399 1.0000 4.0600 0.00 0.0000 1.886 9.708

Table XXI. Transgition Summary for 7 Sections and 6 Steps. -

35



Sect

Sect

Sect

Z(M,N)
ohms
40.9998
38.3263
29.2662
19.5288
14.9123

13.9399

Table

Z(M.N
ohms
40.9998
356.8273
23.9068
15.9525

13.9399

Table

ZIM. D
ohms
40,9998

31.3074

-.18.2555

13.9399

v/C

0.3400
0.3637
0.4783
0.7138
0.9348

1.0000

Tooth

FPeriod

1.3804

1.4767

- 1.9338

2.8981

3.7983

4.0600

i (Slot)
ohms
113.91
104.48
71.08
30.08

5.91

0.0C

Tooth

Ht. cm

1.8032

1.7664

-1.5403

¢.7975

¢.1370

0.0000

XXII. Transition Summary for 6 Sections and

v/C

G.3400
0.3981
0.5831
0.8738

1.0000

XXIII.

v/C

0.3400
. 0.4483
0.7636

1.0000

Tooth

Period

1.3804

1.8797

2.3674

3.5478

4.0600

Tooth
-Period

~1.3804

1.8078
3.1002

4.0800

X (8lot}

ohms

113.81

85.52

49 .57

11.85

¢.00

Transition Summary for 35

X (Slot%)

ohms

113.91

78.86

23.91

0.00

Tooth

Ht. cm

1.8032

1.7231

1.2417

0-.2899

0.0000

Sections and 4 Stevps.

Tooth

Ht. om

1.8032

1.6117

0.6268

0.0000

L/Cell C/Cell
nH oF
5.549 3.301
5.189 3.831
3.961 4,824
2.643 | 6.930C
2.018 9.078
1.886 9.708
5 Stepsf_
L/Cell C/Cell

nH oF |
5.549 3.301
4,849 3.777
3.235 5.661
2.159 8.484
1.886 $.708

L/Cell

5.
4.
2.

Tl

nH

549 -

237

471

886 -

C/Cell

7.

g.

Table XXIV. Transition Summary for 4 Sections and 3 Steps.
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Sect Z(M. N v/C Tooth X (Slot) Tooth L/Cell C/Cell

ohms Period ohms Ht. cm nH pF

i 40.9998 0.3400 1.3804 113.81 1.8032 5.549 3.301

2 23.9068 0.5831 2.36874 49 .57 1.2417 3.235 5.661

3 13.9389 1.0000 4.0600 0.00 0.0000 1.886 9.708
Table XXV. Transition Summary for 3 Sections and 2 Steps.

Sect Z(M, N v/C Tooth X (8lot) Tooth‘ L/Cell C/Cell

ohms Period ohms Ht. cm nH oF

1 40.9968 0.3400 1.3804 113.81 1.8032 5.549 3.301

2 13.9389 1.0000 4,0600 0.00 0.0000 1.886 9.708
Table XXVI. Transition Summary for 2 Sectiong and | Step.

Vil.  Conclusions

This paper describes the use of binomial éoefficients and Chebyshev coef-
fiéients in the design of multisection quarter wave traﬂsformers. 12 reduce
the sidelobe level of linear in-phase broadside antenna arrays, John éione
Stone [1] proposed that the sources have amplitudes proportional to the coef-

ficients of binomial coefficients. After John Stone Stone's work, Charlies

" Dolph {2] then applied Chebyshev coefficients to sidelobe reduction in antenna

arrays in 1946, and Seymour Cohn [3] applied Dolph’s results to electromagne-
tic filters in 1955. Examples with both binomial and Chebvghev coefficients
are pregented 'in slow to faster wave guides or transmigsion lines. The modi-
fications to the work by Stone Stone, Dolph, and Cohn iz derivation of.charac—
teristic*impeaances Z(Mi for each unit cell (M) with binomial and Chebyshev
coefficients, and then equating these Z(M) to the product of fhe ratio of the

phase velocity of light € to the slow wave phase velocity V(M) in unit cell

(M), C/V(M), given by
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Z{M) = Z(N+1)xC/V(M}, (7.1)
whepre Z(N+1) is the characteristic impedance of the fast wave guide or line at
the tra?sformer output.

Although the slow wave velocity V(l} wag found from circuit concepts for
the input line, unit cell (1), more exact results.will be developed with
methode based on matching boundary conditions between wave in the radial cavi-

ties or teeth glots and the guiding region between inner smooth conductor and

outer serrated conducter.
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